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Abstract—Public-key cryptographic devices are vulnerable to
fault-injection attacks. As countermeasures, a number of secure
architectures based on linear and nonlinear error detecting codes
were proposed. Linear codes provide protection only against
primitive adversaries which no longer represents practice. On
the other hand nonlinear codes provide protection against strong
adversaries, but at the price of high area overhead (200–400%).
In this paper we propose a novel error detection technique,
based on the random selection of linear arithmetic codes for
each encryption and the corresponding decryption operation.
Under mild assumptions the proposed construction achieves near
nonlinear code error detection performance at a lower cost (at
most 50% area overhead) due to the fact that no nonlinear
operations are needed for the encoder and decoder.

Index Terms—Arithmetic Codes, Side-Channel Attacks, Cryp-
tography, Multipliers.

I. INTRODUCTION

Cryptographic devices are widely used in applications like
ATM cards and commercial electronics. These devices are vul-
nerable to side-channel attacks such as timing analysis attacks
[1], power analysis attacks [2] and fault-injection attacks [3],
[4]. Due to their active and adaptive nature, fault based attacks
are one of the most powerful types of side-channel attacks.
Since a fault attack was demonstrated by Boneh et al. in [5]
in 1996, numerous papers have been published proposing a
variety of fault attacks on both public-key and private-key
cryptographic devices. One of the most efficient fault-injection
attacks on AES-128, for example, requires only two faulty
ciphertexts to retrieve all 128 bits of the secret key [6]. Without
proper protection against fault-injection attacks, the security of
cryptographic devices can never be guaranteed.

Error detecting codes are often used in cryptographic de-
vices to detect errors caused by injected faults and prevent
the leakage of useful information to attackers. Most of the
proposed error detecting codes are linear codes like par-
ity codes, Hamming codes and AN codes [7]. Protection
architectures based on linear codes concentrate their error
detecting abilities on errors with small multiplicities or errors
of particular types, e.g. errors with odd multiplicities or byte
errors. However, in the presence of unanticipated errors linear
codes can provide little protection. Linear 1-d parity codes,
for example, can detect no errors with even multiplicities. By
carefully selecting faults and injection methods an attacker can
with high probability bypass the protection based on linear

Zhen Wang, Mark Karpovsky and Ajay Joshi are with the Reliable
Computing Laboratory, Department of Electrical and Computer Engineering,
Boston University, 8 Saint Marys Street, Boston, MA, USA. The work of the
second author has been partially supported by the NSF grant CNR 1012910.

codes and still be able to break the security of cryptographic
devices in a reasonably short time.

In [8], robust algebraic codes were proposed as an alterna-
tive to classical linear codes to protect cryptographic devices
implementing AES against fault-injection attacks. In [9], ro-
bust arithmetic residue codes were proposed for the design
of fault tolerant cryptographic devices performing arithmetic
operations. Instead of concentrating the error detecting abilities
on particular types of errors, robust codes provide nearly
equal protection against all error patterns. Hence robust codes
eliminate the weakness of linear codes which can be exploited
by attackers to mount successful fault attacks. Moreover, the
detection of errors for robust codes are message-dependent. If
the same error stays for more than one clock cycle, even if the
injected fault manifests as an error that cannot be detected at
the current clock cycle, it is still possible that the error will be
detected at the next clock cycle when a new message arrives.
Thereby, the advantage of robust codes will be more significant
for lazy channels where errors have high probabilities to
repeat themselves for several clock cycles. Variants of both
algebraic and arithmetic robust codes – partially robust and
minimum distance robust codes – were proposed in [10]. The
corresponding architectures allow various tradeoffs in terms of
robustness and hardware overhead.

The main disadvantage of robust codes is the large hardware
overhead when implementing nonlinear operations for the
encoding and decoding circuits. In this paper, we propose a
novel error detection technique based on the idea of randomly
selecting a code from multiple linear codes for each encoding
and the corresponding decoding operation. The resulting codes
are called multilinear codes. These codes have similar error
detection capabilities to robust codes while requiring much
less hardware overhead due to the fact that no nonlinear
operations are needed for the encoder and decoder.

In this paper, the constructions of multilinear arithmetic
codes are presented. As an illustrative example, the design
of secure multipliers (widely used as sub-blocks in public-
key cryptosystems) based on multilinear arithmetic codes will
be shown. We assume that countermeasures are implemented
in the cryptographic device preventing the attackers from
tampering with the clock signals. We further assume that a
low-rate true random number generator (e.g. [11]) is available.
In fact, most cryptographic devices incorporate a true random
number generator by default for key initialization, random pad
computation, challenge generation etc.

The error detection capability of the proposed secure mul-
tiplier architecture was simulated in C++ and compared to
architectures based on linear and partially robust arithmetic
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codes to demonstrate the advantages of the proposed error
detection techniques. The paper was extended from our pre-
vious work on applications of multilinear arithmetic codes in
[12]. The constructions of multilinear algebraic codes and the
analysis of fault detection capabilities of architectures based
on multilinear algebraic codes was discussed in [13]. The
application of multilinear algebraic codes in the design of
secure FSMs was shown in [14].

The rest part of the paper is organized as follows. In Section
II, the error and attacker models used throughout the paper are
described. In Section III, we analyze the repeatability of errors
when injecting faults into Wallace Tree multipliers to further
motivate the usage of robust and multilinear arithmetic codes.
In Section IV we formalize the design and propose several
constructions of multilinear arithmetic codes. The hardware
overhead and the error and fault detection capabilities of 16-
bit unsigned secure Wallace tree multipliers based on linear,
multilinear and partially robust arithmetic codes are compared
in Section V.

II. ERROR AND ATTACKER MODEL

In this paper we concentrate on the analysis of the error
detection capabilities for systematic arithmetic codes and the
security of multipliers based on these codes. Different from the
widely used non-systematic AN codes [7], the codewords of
systematic arithmetic codes contain two parts: the information
part and the redundant part. Any codeword c can be written in
the format of (x, y), x ∈ Z2k , y ∈ Z2r , where k is the number
of information bits, r is the number of redundant bits and Z2k

is the additive group of integers {0, 1, · · · , 2k−1}. We denote
by e = (ex, ey) the error vector and c̃ = (|x+ex|2k , |y+ey|2r )
the distorted codeword in which ex ∈ Z2k , ey ∈ Z2r , + is the
arithmetic addition and | · |p is the modulo p operation.

Let C be an arithmetic code. An error e = (ex, ey) is
masked by a codeword c = (x, y) ∈ C if c̃ = (|x+ex|2k , |y+
ey|2r ) also belongs to C. Given an error e, the error masking
probability Q(e) is calculated as follows:

Q(e) =
{c|c ∈ C, c̃ ∈ C}

|C|
. (1)

If an error is masked by all codewords of the code, Q(e) = 1
and the error is called undetectable. If 0 < Q(e) < 1,
the error is called conditionally detectable. Different from
algebraic codes, arithmetic codes rarely have undetectable
errors. To illustrate the advantage of multilinear arithmetic
codes, we compare the number and the probability of bad
errors – errors e with Q(e) ≥ 0.5 – for linear arithmetic codes
and the proposed multilinear arithmetic codes. Since bad errors
are the most difficult to detect, we will show that the transition
from linear to multilinear arithmetic codes results in a drastic
reduction of the number of bad errors and an improvement of
the error detection ability of the code.

Remark 1: For bad errors, randomly attaching a 1-bit tag
to the original message and verifying the tag after the com-
putation can achieve an equal or even better error detecting
capabilities than using more complex error control codes.
Similar analysis can be conducted if we want to compare the
number of errors with Q(e) ≥ β, β < 0.5.

Fault attacks can be performed in many different ways.
The most investigated mechanisms of fault injections in the
cryptography communities include introducing variations in
power supplies [15], [16], [17], [18], perturbing the silicon
of the chip using white light or laser guns (light attacks) [3],
[19], [20], [15], [21], [22] and generating eddy current on
the surface of the chip using magnetic field (electromagnetic
attacks) [23], [20].

Fault attacks can be classified according to the capabilities
of the attackers to control the parameters of the injected faults
such as timing, locations, the type of the faults and the error
patterns [4], [21]. With the vast arsenal of fault injection
methods and techniques available to the attacker, the type of
faults and the error patterns appearing as manifestations of the
injected faults at the outputs of the device-under-attack is hard
to model and predict. In [18], for example, the author showed
that the number of faults can be controlled by reducing the
supply voltage to a certain level. However, as the technology
moves into deep-micro realm, it becomes harder and harder for
the attacker to control the specific error patterns at the output
of the device [22]. Moreover, to our best knowledge, all the
known fault injection mechanisms can only provide a limited
spatial and timing resolution. For instance, the affected area of
the laser gun, which is one of the most powerful fault injection
methods, is determined by the technologies and the width of
the laser beam [22]. The time between two consecutive shot
of the laser gun is affected by the speed of recharging and the
delay between the trigger signal and the shot [21].

In this paper we concentrate on protecting the data path
of cryptographic devices against fault injection attacks. We
assume that countermeasures are implemented in the crypto-
graphic device preventing the attackers from tampering with
the clock signal and the control circuits (e.g. finite state
machines and state registers). This is a common assumption
in many papers discussing countermeasures against fault in-
jection attacks for the data path of cryptographic devices [24],
[10].

Throughout the paper we assume a strong attacker model
in which an attacker knows everything about the hardware
architecture of the device including the codes used to detect
errors. Specifically, the attackers may be able to inject faults
which only affect the original multiplier (but not the redundant
portion used for error detection). We assume that the attacker
cannot fully control the manifested nonzero error patterns at
the output of the device. The manifested error patterns are
determined by factors such as the number of affected gates
and the input patterns to the device, etc. We further assume
that the attacker cannot change the faults at each clock cycle
(slow fault-injection mechanisms). Once faults are injected
and an error is generated, the faults stay for several clock
cycles before new faults can be injected and tend to manifest
themselves as the same error patterns at the output of the
device. This is the case for several well known fault-injection
methodologies mentioned in the last paragraph. We call this
kind of channels where errors have high probabilities to repeat
themselves for several consecutive clock cycles lazy channels
or channels with memory. Even if the attacker injects new
faults, it is still possible that the new faults will have similar
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locations thus manifest themselves in a similar way to previous
faults. For example, the author in [21] showed that two shots
of a laser gun fired in rapid succession on a 32-bit ARM
processor produces the same type of errors. The reason is that
the fault locations cannot be adjusted in a short time due to
the inflexible laser bench.

As it will be shown in the following sections, the advantages
of multilinear arithmetic codes in terms of error detection
capabilities are two-fold. First, they are better than linear
arithmetic codes in a sense that they have a much smaller
number of bad errors. Second, multilinear arithmetic codes
have much higher error detection probabilities than linear
codes for lazy channels hence they will effectively prevent
the attacker from implementing a successful fault induction
attack under the aforementioned strong attacker model.

III. REPEATABILITY OF ERRORS WHEN INJECTING
FAULTS INTO WALLACE TREE MULTIPLIERS

To support the statement that slow fault-injection method-
ologies may result in repeating errors, we conduct fault-
injection simulations in C++ for unsigned and signed (2’s
complement) Wallace tree multipliers.

Multipliers based on Wallace trees[25] are commonly used
in various applications due to their faster speed compared
to other alternatives. In general, the propagation delay of a
n-bit Wallace tree multiplier is on the order of O(log(n))
in terms of logic gates. When combined with the Booth
encoding technique, Wallace tree multipliers can be used for
2’s complement multiplications. The gate level netlists for both
signed and unsigned Wallace tree multipliers are modeled in
C++. In order to inject faults into the device, we insert a
multiplexer at the output of every logic gate as shown in Figure
1. To simplify the analysis, we assume that the injected faults
are either stuck-at-0 or stuck-at-1 faults. When fault enable is
asserted, faulty output is selected and the observed output of
the gate is determined by the internal fault model. We further
assume that the attackers are able to inject multiple faults into
the devices and the injected fault (or faults) may affect more
than one logic gate. Ten thousands of simulations have been
performed for every fixed number of affected gates. For each
simulation, locations of the affected gates are randomly picked
up and one million input operand pairs to the multipliers are
randomly generated.

The injected faults may or may not manifest as non-zero
error patterns at the output of the multiplier. The probability
of manifestation increases as more gates are affected. We also
note that when only 1 gate is affected and the fault manifests,

Fig. 1: Fault-injection into a single gate

TABLE I: The estimated repeatability of errors for faults
injected into signed(2’s complement) and unsigned Wallace
tree multipliers

Type of the Multipliers The number of faulty gates
1 2 3 4 5

16-bit Unsigned 0.5430 0.3166 0.2520 0.1857 0.1323
32-bit Unsigned 0.5174 0.2967 0.2301 0.1624 0.1110

16-bit Signed 0.3127 0.1904 0.1313 0.0839 0.0516
32-bit Signed 0.2730 0.1811 0.1197 0.0721 0.0418

it will always manifest as the same non-zero error pattern at
the output of the multiplier. Moreover, it is highly probable
that the manifested non-zero error pattern is in the format of
±2i, where i is an integer (single errors). As the number of
the affected gates increases, both the number of possible error
patterns and the average multiplicity of errors will increase.

For fixed faults, the error pattern e = (ex, ey) observed
at the output of the multiplier may vary for different input
pairs. Assume that every multiplication takes one clock cycle
to finish. Let et be the observed error pattern at the tth

clock cycle. The repeatability of errors can be defined by the
following equation.

PR = P (et+1 = et, et 6= 0). (2)

Table I shows the average repeatability of errors when up
to 5 logic gates are affected by the injected faults for 16-
bit and 32-bit signed and unsigned Wallace tree multipliers.
For the 16-bit unsigned Wallace tree multiplier, the average
repeatability of errors is higher than 0.5 when only one
gate is affected. The repeatability of errors decreases as the
number of affected gates increases. The signed Wallace tree
multipliers based on the Booth encoding technique has smaller
repeatability of errors compared to the unsigned Wallace tree
multipliers. We also note that longer operand size will result
in smaller error repeatability for both signed and unsigned
Wallace tree multipliers.

In practice, more than 5 logic gates may be affected by
the injected faults. However, in general the increase of the
affected logic gates does not always result in a decrease of
the repeatability of errors as we observed for Wallace tree
multipliers. Generally speaking, the more linear the device
is, the higher the repeatability of the error is. It is easy to
verify that for linear network composed of only XOR gates
(e.g. adders in Galois field GF (2m), where m is an integer),
the repeatability of the error is 1 no matter how many gates
are affected. Similarly, for faults injected into memories (e.g.
SRAM array, FLASH), the faults tend to manifest as the same
error pattern regardless of the number of memory cells that are
affected. Moreover, we note that even a small repeatability of
errors (e.g. 0.05 for the 32-bit signed Wallace tree multiplier)
can be sufficient for robust and multilinear arithmetic codes
to increase their error detection capabilities.

Remark 2: For secure applications, robust and multilinear
arithmetic codes can benefit from design for repeatibilities.
The circuit can be designed and synthesized in such a way
that the repeatability of errors is high. In this case, the
error detection capabilities of robust and multilinear arithmetic
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codes can be drastically increased. Thereby, the security level
of the system protected by these codes will be much higher.
For example, reducing the average fanout of gates can result
in a smaller number of possible error patterns once the fault
is fixed. As a result, the repeatability of errors will increase,
assuming a similar probability of fault manifestation. We also
note that for linear networks consisting of only XOR gates,
PR = 1 assuming a simple stuck-at fault model.

IV. CONSTRUCTIONS OF CODES AND ANALYSIS OF
NUMBERS OF BAD ERRORS

We first analyze the error detection properties of linear
arithmetic codes.

Theorem 1: (Linear Arithmetic Codes) Let C be a linear
arithmetic code defined by

C = {(x, y)|x ∈ Z2k , y = f(x) ∈ Z2r}, (3)

in which f(x) = |x|p, where p is an integer larger than 2 and |·
|p represents the modulo p reduction operation. Denote by e =
(ex, ey) an additive error, ex ∈ Z2k , ey ∈ Z2r , r = dlog2 pe.
The distorted codeword is c̃ = c+e = (|x+ex|2k , |y+ey|2r ),
c ∈ C. As p

2k
→ 0, the number of bad errors is upper bounded

by

2 · (2k + p− 2k(Hp−1 −Hb p2 c)−
2k−1

p
), (4)

and is lower bounded by

2 · (2k − 2k(Hp−1 −Hb p2 c)−
2k−1

p
), (5)

where Hn represents the n-th harmonic number. For large p
the difference Hp−1−Hb p2 c converges to ln 2. In this case the
probability of bad errors converges to 0.3 · 2−r+1 as p

2k
→ 0.

If no errors occur to the redundant part of the code (ey = 0),
the number of bad errors e = (ex, 0) is upper bounded by
2 · d 2

k−1

p e and is lower bounded by 2 · b 2
k−1

p c. As p
2k
→ 0, the

probability of bad errors in the format of e = (ex, 0) converges
to 2−2r.

Proof: To simplify the analysis, we divide the errors into
two classes according to the value of x+ ex.

1) x+ ex < 2k, we have |x+ ex|2k = x+ ex, f(x+ ex) =
|x+ ex|p.

a) |x|p + ey < p, then ||x|p + ey|2r = |x|p + ey .
An error (ex, ey) is masked if and only if |x +
ex|p = |x|p + ey . Or equivalently |ex|p = ey . For
a codeword x to mask a given error (ex, ey), the
following conditions must be satisfied:

x+ ex < 2k, (6)
|x|p + ey < p, (7)
|ex|p = ey. (8)

From (7) and (8) we have |x|p < p−|ex|p. For any
given |x|p < p− |ex|p, the number of x satisfying
(6) is bounded by d 2

k−ex
p e. Thereby for a given

error (ex, ey), the total number of codewords that
mask the error is d 2

k−ex
p e · (p − |ex|p). For bad

errors the error masking probability is larger or
equal to 0.5. Thus

2−k · d2
k − ex
p
e · (p− |ex|p) ≥ 0.5. (9)

As p
2k
→ 0, the error masking probability can

be estimated by removing the ceiling function.
Thereby (9) can be re-written as follows:

2−k · 2
k − ex
p

· (p− |ex|p) ≥ 0.5. (10)

Thereby,

ex ≤
2k−1(p− 2 · |ex|p)

p− |ex|p
. (11)

We know that ex ≥ 0, so

0 ≤ |ex|p ≤ b
p

2
c. (12)

The total number of ex satisfying (11) and (12) is
upper bounded by (For simplicity, let i = |ex|p.)

b p2 c∑
i=0

(
1

p
· 2

k−1(p− 2i)

p− i
+ 1), (13)

and is lower bounded by

b p2 c∑
i=0

(
1

p
· 2

k−1(p− 2i)

p− i
), (14)

So the number of bad errors in this class is bounded
by (13) and is lower bounded by (14).

b) p ≤ |x|p + ey < 2r, errors in this class will never
be masked because the redundant part is an invalid
value.

c) |x|p+ey ≥ 2r, then ||x|p+ey|2r = |x|p+ey−2r.
An error (ex, ey) is masked if and only if |x +
ex|p = |x|p+ey−2r. Or equivalently |ex|p = |ey−
2r|p. It is easy to show that ey−2r ∈ [−p+1, 0], so
|ey−2r|p = p+ey−2r. For a codeword x to mask a
given error (ex, ey), the following conditions must
be satisfied:

x+ ex < 2k, (15)
|x|p + ey ≥ 2r, (16)
|ex|p = ey + p− 2r. (17)

From (16) and (17) we have |x|p ≥ p−|ex|p. For a
certain value of |x|p ≥ p− |ex|p, the number of x
satisfying (15) is bounded by d 2

k−ex
p e. Thereby

for a given error (ex, ey), the total number of
codewords that mask the error is d 2

k−ex
p e · |ex|p.

For bad errors the error masking probability is
larger or equal to 0.5. Thus

2−k · d2
k − ex
p
e · |ex|p ≥ 0.5. (18)
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As p
2k
→ 0, the error masking probability can

be estimated by removing the ceiling function.
Thereby (18) can be re-written as follows:

2−k · 2
k − ex
p

· |ex|p ≥ 0.5. (19)

So
ex ≤

1

|ex|p
· 2k−1 · (2|ex|p − p). (20)

Because ex ≥ 0,

|ex|p ≥ d
p

2
e. (21)

The total number of ex satisfying (20) and (21) is
upper bounded by (For simplicity, let i = |ex|p.)

p−1∑
d p2 e

(
1

p
· 2

k−1(2i− p)
i

+ 1), (22)

and is lower bounded by
p−1∑
d p2 e

(
1

p
· 2

k−1(2i− p)
i

). (23)

So the number of bad errors in this class is upper
bounded by (22) and is lower bounded by (23).

From the above analysis, the total number of bad errors
for the case when x + ex < 2k is upper bounded by
2k + p− 2k

∑p−1
i=d p2 e

1
i −

2k−1

p and is lower bounded by

2k − 2k
∑p−1

i=d p2 e
1
i −

2k−1

p

2) x+ ex ≥ 2k, we have |x+ ex|2k = x+ ex − 2k, f(x+
ex) = |x+ ex − 2k|p. Following the same analysis, we
can show that the number of bad errors in this class is
also upper bounded by 2k + p − 2k

∑p−1
i=d p2 e

1
i −

2k−1

p

and lower bounded by 2k − 2k
∑p−1

i=d p2 e
1
i −

2k−1

p .
Thereby for linear arithmetic codes, an upperbound of the
number of bad errors is

2 · (2k + p− 2k
p−1∑

i=d p2 e

1

i
− 2k−1

p
)

= 2 · (2k + p− 2k(Hp−1 −Hb p2 c)−
2k−1

p
).

Similarly, a lowerbound of the number of bad errors is

2 · (2k − 2k(Hp−1 −Hb p2 c)−
2k−1

p
).

If no errors occur to the redundant part of the code, ey =
0. For the case when x + ex < 2k, a codeword x mask an
error e = (ex, ey = 0) if and only if |ex|p = ey = 0. It is
easy to prove that the number of errors in this class is upper
bounded by d 2

k−1

p e and is lower bounded by b 2
k−1

p c. Similarly,
when x+ ex ≥ 2k, the number of bad errors in the format of
(ex, 0) is also upper bounded by d 2

k−1

p e and is lower bounded

by b 2
k−1

p c. So the total number of bad errors occurring to

the information part of the code is between 2 · b 2
k−1

p c and

2 · d 2
k−1

p e.

Remark 3: For a more general analysis, the probability of
bad errors (no matter whether ey = 0) is computed as the
number of bad errors divided by 2k+r. The attacker capability
is not taken into account during the computation. When an
attacker is able to inject faults that generates errors with
ey = 0, the chance that the injected faults manifest as a
bad error will be 2r times larger than the probability of bad
errors in the format of e = (ex, 0) given in Theorem 1.
Obviously, the chance for the attacker to generate a bad error
will vary depending on the fault types he can inject and the
corresponding error patterns.

For linear arithmetic codes, the number of bad errors in
the format of e = (ex, 0) decreases as p increases. When
p > 2k−1, there are nearly no bad errors in the format of
e = (ex, 0). However, the total number of bad errors is still
very large for linear arithmetic codes.

In general, the hardware overhead for the encoder of the
code is mostly affected by the number of redundant bits
r = dlog2(p)e. The smallest fraction of bad errors for linear
arithmetic code is of the order of 2−r. The only way to
reduce the fraction is to increase the number of redundant
bits, which is costly in terms of the hardware overhead. To
reduce the number of bad errors while maintaining the number
of redundant bits, partially robust codes based on nonlinear
functions were proposed in [10].

Construction 1: [10] Let x ∈ GF (2k), p be a prime number
larger than 2 and r = dlog2pe. Denote by | · |p the modulo
p reduction operation. The arithmetic code C composed of
all vectors (x, |x2|p), in which |x2|p ∈ GF (2r), is a partially
robust arithmetic code.

Partially robust (x, |x2|p) codes have nearly no bad errors
and can provide better protection of cryptographic devices
than linear arithmetic codes assuming a slow fault-injection
mechanism [10]. However, (x, |x2|p) codes rely on nonlinear
squaring operations and have larger overhead than linear arith-
metic codes. Moreover, (x, |x2|p) codes have worse detection
capabilities of errors in the format of e = (ex, 0) (Section
V-B3).

We next propose two constructions of multilinear arithmetic
codes based on the idea of randomly selecting among multiple
linear arithmetic codes for each encoding and the corre-
sponding decoding operation. For each multiplication, one
randomly selected code is used to encode the message before
the multiplication and decode the possibly distorted codeword
after the multiplication. For different multiplications, different
codes may be used. Intuitively, when we randomly select
among multiple codes, even if an error is missed by one of
the codes, it may still be detected by other codes. Suppose we
randomly select among t codes with equal probabilities. Let
pi(e), 1 ≤ i ≤ t be the probability that an error e is masked
by the ith code. It is easy to show that the average probability
that the error e is masked when we randomly selecting among
these t codes can be computed as

p(e) =

t∑
i=1

pi(e)/t (24)

With different error detecting properties, the t codes will
have different distribution of error masking probabilities
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pi(e), 1 <= i <= t. When randomly selecting among them,
even if some pi(e) are larger than 0.5 (For single arithmetic
codes, the error is bad.), it is highly probable that the average
error masking probability p(e) will still be smaller than 0.5
due to the fact that other pi(e) are very small. Specifically,
when we randomly selecting from two codes, the only possible
bad errors are errors masked by both of the codes or errors
masked by one of the codes with probability one. Obviously,
this constrain will drastically reduce the number of bad errors.

The proposed multilinear codes have similar number of bad
errors to (x, |x2|p) partially robust codes. One construction
will result in a hardware overhead close to architectures based
on linear arithmetic codes. The other construction will have
much better error detection capabilities of errors in the format
of e = (ex, 0) than linear and partially robust arithmetic codes.

Theorem 2: ([|x|p, |2x|p] Multilinear Code) Let C1, C2 be
two arithmetic systematic codes defined by

Ci = {(x, y)|x ∈ Z2k , y = fi(x) ∈ Z2r}, i ∈ {1, 2},

where f1(x) = |x|p , f2(x) = |2x|p , p is an integer larger
than 2 and | · |p is the modulo p operation. Denote by e =
(ex, ey) the arithmetic errors and c̃ = c+e = (|x+ex|2k , |y+
ey|2r ) the distorted codeword, where ex ∈ Z2k , ey ∈ Z2r and
r = dlog2 pe is the number of redundant bits. If we randomly
select C1 and C2 to encode the original messages with equal
probability, the total number of bad errors is upper bounded
by 2 · d 2

k−1

p e and is lower bounded by 2 · b 2
k−1

p c. As p
2k
→ 0,

the probability of bad errors for [|x|p, |2x|p] multilinear codes
converges to 2−2r.

Proof: A non-zero error e is masked by a linear arithmetic
code when one of the four cases shown in Table II is satisfied.
(Please refer to the proof of Theorem 1 for more details.)
When we randomly select C1 and C2 with equal probability,
an error e = (ex, ey) is bad if only it is masked by both
of the codes or it is masked by one code with probability 1.
More specifically, e is bad if and only if the total number of
codewords in C1 and C2 that mask e is larger or equal to 2k.

1) For a given error e, when C1 is in Case1 (i.e. x+ ex <
2k, f1(x) + ey < p, f1(ex) = ey) or Case2 and C2 is in
Case3 or Case4, the total number of codewords masking
the error e is less than 2k. So there are no bad errors in
this class. Similarly, when C1 is in Case3 or Case4 and
C2 is in Case1 or Case2, there are no bad errors.

2) C1 is in Case1 and C2 is in Case2. For C1, |x|p+ey < p,
the possible number of |x|p is p − ey . For C2, |2x|p +
ey ≥ 2r, the possible number of |x|p is p−2r + ey . For
each possible value of |x|p, the number of x is d 2

k−ex
p e.

It is easy to prove that the total number of x masking
the error is less than 2k. So there are no bad errors in
this class. Similarly we can prove that for the following
three cases there are also no bad errors.

a) C1 is in Case2, C2 is in Case1;
b) C1 is in Case3, C2 is in Case4;
c) C1 is in Case4, C2 is in Case3.

3) When C1 and C2 both belong to Case2, x + ex < 2k,
we have |x + ex|2k = x + ex, |x|p + ey ≥ 2r and
|2x|p+ey ≥ 2r. In this case ||x|p+ey|2r = |x|p+ey−2r,

||2x|p+ey|2r = |2x|p+ey−2r. For C1, an error (ex, ey)
is missed if and only if

|x+ ex|p = |x|p + ey − 2r ⇒ |ex|p = |ey − 2r|p. (25)

For C2, an error (ex, ey) is missed if and only if

|2 · (x+ ex)|p = |2x|p + ey − 2r ⇒ |2ex|p = |ey − 2r|p.
(26)

From (25) and (26) we have |ex|p = |ey − 2r|p = ey +
p − 2r = 0. For an error to be masked by both of the
codes, the following conditions must be satisfied:

x+ ex < 2k, (27)
|x|p + ey ≥ 2r, (28)
|2x|p + ey ≥ 2r, (29)
|ex|p = ey + p− 2r = 0. (30)

From (30), ey = 2r − p⇒ |x|p + ey < 2r, |2x|p + ey <
2r. So no errors in this case will be masked by both
of the codes. Errors in this class are all non-bad errors.
Similarly, when C1 and C2 both belong to Case4, there
are no bad errors.

4) When C1 and C2 both belong to Case1, x + ex < 2k,
we have |x + ex|2k = x + ex, f1(x + ex) = |x + ex|p,
f2(x+ex) = |2·(x+ex)|p. |x|p+ey < p and |2x|p+ey <
p. In this case ||x|p+ey|2r = |x|p+ey , ||2x|p+ey|2r =
|2x|p + ey . For C1, an error (ex, ey) is missed if and
only if

|x+ ex|p = |x|p + ey ⇒ |ex|p = ey. (31)

For C2, an error (ex, ey) is missed if and only if

|2 · (x+ ex)|p = |2x|p + ey ⇒ |2ex|p = ey. (32)

From (31) and (32) we have |ex|p = ey = 0. For a
codeword x to mask a given error (ex, ey), the following
conditions must be satisfied:

x+ ex < 2k, (33)
|x|p + ey < p, (34)
|2x|p + ey < p, (35)
|ex|p = ey = 0. (36)

When (36) is satisfied, (34) and (35) are also satisfied.
For each (ex, ey) such that |ex|p = ey = 0, the total
number of codewords in C1 and C2 that mask the error
is 2 · (2k − ex). For bad errors this number should be
larger or equal to 2k. Thus

2 · (2k − ex) ≥ 2k (37)
⇒ ex ≤ 2k−1 (38)

From (36) and (38), the number of non-zero bad errors
is upper bounded by d 2

k−1

p e and is lower bounded by

b 2
k−1

p c. Similarly, when C1 and C2 both belong to
Case3, the number of bad errors is upper bounded by
d 2

k−1

p e and is lower bounded by b 2
k−1

p c.
So an upperbound of the total number of bad errors is 2 ·
d 2

k−1

p e. A lowerbound of the total number of bad errors is

2 · b 2
k−1

p c.
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TABLE II: Classification of masked errors for linear arithmetic codes

Case1 Case2 Case3 Case4

x+ ex < 2k x+ ex < 2k x+ ex ≥ 2k x+ ex ≥ 2k

fi(x) + ey < p fi(x) + ey ≥ 2r fi(x) + ey < p fi(x) + ey ≥ 2r

fi(ex) = ey fi(ex) = ey + p− 2r fi(ex − 2k) = ey fi(ex − 2k) = ey + p− 2r

The number of bad errors for [|x|p, |2x|p] multilinear codes
is much smaller than that for the linear arithmetic codes (see
(4)). All bad errors are in the format of e = (ex, 0). The
security level of systems protected by the [|x|p, |2x|p] codes
can be further increased by implementing a merged design
of the original device and the encoder generating redundant
bits of the output of the protected device. In that case, the
injected faults will have high probability to affect not only
the original device but also the encoder that generates the
redundant bits of the code. The probability of errors in the
format of e = (ex, 0) will be efficiently reduced. As a result,
the error detection capabilities and the security level of the
system will be increased.

If the original device and the encoder are separated and
the attacker is able to inject faults only to he original device,
[|x|p, |2x|p] multilinear codes do not have any advantages over
linear arithmetic codes in terms of the error detecting capabil-
ity. In this case, the system should be protected using multi-
modulus multilinear codes shown in Theorem 3 presented in
the left part of the section.

A more general case of Theorem 2 is to randomly select
from L ≤ p − 1 codes defined by Ci = {x, fi(x)} where
fi(x) = |ix|p, 1 ≤ i < p. However, from the proof of the
above theorem it is easy to show that increasing the number
of codes from which we randomly select a code for encoding
and decoding will not reduce the number of bad errors in
this situation. We next present a construction based on using
multiple modulii. The resulting codes will be different from
[|x|p, |2x|p] codes in the following two aspects.

� They have much less bad errors in the format of e =
(ex, 0);
� Increasing the number of codes from which we ran-

domly select a code for encoding and decoding will
further reduce the number of bad errors.

Theorem 3: (Multi-modulus Multilinear Code) Let
C1, C2 be two systematic arithmetic codes defined by

Ci = {(x, y)|x ∈ Z2k , y = fi(x) ∈ Z2r}, i ∈ {1, 2},

in which f1(x) = |x|p, f2(x) = |x|q where p, q are co-prime
numbers larger than 2, r = max(dlog2 pe, dlog2 qe) and |·|p is
the modulo p operation. Denote by e = (ex ∈ Z2k , ey ∈ Z2r )
the arithmetic additive errors and c̃ = c+e = (|x+ex|2k , |y+
ey|2r ) the distorted codeword. If we randomly select Ci with
equal probability to encode the original messages, the number
of bad errors in the format of e = (ex, 0) is upper bounded
by

2(d2
k−1

pq
e+ d2

k

pq
e), (39)

and is lower bounded by

2(b2
k−1

pq
c+ b2

k

pq
c). (40)

When pq << 2k and q is close to p, the probability of
bad errors occurring to the information part of multi-modulus
multilinear codes converges to 3 · 2−3r.

Proof: Since ey = 0, we have |x|p + ey < p and |x|q +
ey < q. For each linear code, errors are masked if and only
if one of the following two conditions are satisfied (see the
proof of Theorem 1).

Case1 : x+ ex < 2k, fi(ex) = 0.
Case2 : x+ ex ≥ 2k, fi(ex − 2k) = 0.

If we randomly select Ci with equal probability, an error e =
(ex, 0) is masked by a probability at least 0.5 if and only if
the total number of codewords belonging to Ci which mask
the error is larger or equal to 2k. For a given non-zero error
e = (ex, 0), there are three possible situations as stated below.

1) Both Ci belong to Case1, |ex|p = |ex|q = 0. The total
number of codewords belonging to Ci which mask the
error e is 2 · (2k − ex). Hence the error is bad if and
only if ex ≤ 2k−1. Since |ex|p = |ex|q = 0, the number
of bad errors in this class is upper bounded by d 2

k−1

pq e
and is lower bounded by b 2

k−1

pq c (ex = 2k−1 does not
satisfy |ex|p = 0 and |ex|q = 0).

2) Both Ci belong to Case2, following similar analysis we
can prove that the number of bad errors in this class
is upper bounded by d 2

k−1

pq e and is lower bounded by

b 2
k−1

pq c.
3) When Ci belong to different cases, it is easy to prove

that as long as e = (ex, 0) satisfies |ex|p = 0, |ex|q =
|2k|q or |ex|p = |2k|p, |ex|q = 0, the total number of
codewords masking the error is always 2k. Hence the
error is always bad. The number of bad errors in this
class is upper bounded by 2d 2

k

pq e and is lower bounded

by 2b 2
k

pq c.

Remark 4: When randomly selecting from two codes, ex-
perimental results show that the total number of bad errors
e = (ex, ey) for the multi-modulus codes is comparable to that
of [|x|p, |2x|p] multilinear codes and is much smaller than that
of linear arithmetic codes. The idea of using multiple residues
as the redundant part of the code has already been presented
in [7]. With two residues, the codeword was in the format
of (x, |x|p, |x|q). We want to emphasize that our construction
is different from multi-residue codes proposed in [7] since at
each clock cycle our code has only one residue for the redun-
dant part. Instead of using multiple residues simultaneously,
we use only one for each encoding and decoding operation
and randomly select the modulus for different operations.

Multi-modulus codes have much less bad errors in the
format of e = (ex, 0) than linear and [|x|p, |2x|p] multilinear
arithmetic codes (see (39)). Table III shows the estimated
number of bad errors in this class for all three constructions.
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TABLE III: Number of bad errors in the format of e = (ex, 0) for linear and multilinear codes (k = 32)

p = 5 p = 241 p = 563 p = 883 p = 1237 p = 2767

LinearArithmetic 8.6× 108 1.8× 107 7.6× 106 4.9× 106 3.5× 106 1.6× 106

[|x|p, |2x|p] multilinear codes 8.6× 108 1.8× 107 7.6× 106 4.9× 106 3.5× 106 1.6× 106

Multi-modulus codes (L = 2) 8.6× 108 2.2× 105 4.1× 104 1.7× 104 8.5× 103 1.7× 103

The number of information bits of the codes in the Table
is k = 32. For multi-modulus codes, p corresponds to the
larger modulus. The other modulus is selected to be the largest
possible prime number less than p, e.g. when p = 241, the
other modulus is 239. As p increases, the number of bad errors
for multi-modulus codes decreases much faster than for the
other two alternatives. When p = 2767(r = 12), the multi-
modulus code has only 1.7× 103 bad errors in the format of
(ex, 0) while the other two codes have about 1.6× 106.

These characteristics of multi-modulus codes are beneficial
in many different situations. For example, when the attacker
can identify and inject faults only to the original device, or the
encoder of the code is only a small part of the cryptographic
system and is separated from the original device so that most
of the injected single (or even double) faults affect only the
original device, the generate errors will be in the format of
e = (ex, 0). In this case, systems protected by multi-modulus
codes will have a higher security level than architectures based
on other alternatives. Systems with different error rates for the
original device and the predictor can also benefit from this
characteristic of multi-modulus codes. Recently design based
on multi-voltage regions is proposed to reduce the total power
consumption of the system [26]. In the region with the smaller
voltage level, circuits are more vulnerable to soft errors and
are more probable to have errors caused by problems such as
timing violations [27]. As a result, the error rate for circuits
in this region will be higher. If the original device operates at
a lower voltage level than the predictor, multi-modulus codes
can provide better protections due to the fact that they have
higher detection capabilities of errors in the format of e =
(ex, 0).

Different from [|x|p, |2x|p] codes, for multi-modulus codes
increasing the number of codes from which we randomly
select a code for encoding and decoding can further reduce
the total number of bad errors. Table IV shows the simulation
results for a 8-bit multipliers protected by multi-modulus codes
with different number of modulii. The second line corresponds
to the case when a single linear arithmetic code is used. When
we randomly select from multiple linear arithmetic codes with
four different modulusi, the number of bad errors in the format
of e = (ex, 0) is only 13, which is more than 100 times better
than architectures based on linear arithmetic codes.

Remark 5: From Table IV, when we randomly select from
two linear arithmetic codes with different modulii, the number
of bad errors in the format of e = (ex, 0) is a little bit
larger than the result given by (39). This is because when
using arithmetic codes to protect multipliers, the output of the
multiplier, hence the information bits of the arithmetic codes,
is not uniformly distributed. Moreover, some combinations of
information bits in Z22k may never occur at the output of
a k-bit multiplier. However, simulation results show that in

this situation multilinear codes still largely over-perform linear
arithmetic codes and all the advantages of multilinear codes
are preserved.

Table V summarizes the probability of bad errors of linear
and multilinear arithmetic codes. In the next section we will
present secure multiplier architectures based on [|x|p, |2x|p]
and multi-modulus codes

V. SECURE MULTIPLIERS BASED ON LINEAR,
MULTILINEAR AND PARTIALLY ROBUST ARITHMETIC

CODES

The multiplier is a basic block in many public key crypto-
graphic devices. Due to its arithmetic nature of the operations,
arithmetic error model is most often used for such devices. We
assume that faults manifest as additive arithmetic errors at the
output of the multiplier and the predictor 1. The error is in the
format of e = (ex, ey), ex ∈ Z2k , ey ∈ Z2r , where k is the
number of information bits and r is the number of redundant
bits. In this section, we analyze and compare the hardware
overhead, the number of bad errors and the fault detection
capabilities for architectures protected by linear, multilinear
(Section IV) and robust arithmetic codes [10].

A. Hardware Overhead

The general architecture of multipliers protected by block
codes contains three parts: the original multiplier, the predictor
that generates the redundant bits of the code and the error
detection network (EDN). The detailed architectures for secure
multipliers protected by linear and multilinear arithmetic codes
are shown in Figure 2. For the architecture based on (x, |x2|p)
partially robust arithmetic codes, please refer to [10].

The predictor for the linear arithmetic codes contains one
multiplier in Zp. Except for the r-bit comparator, the only
operation implemented in the error detection network is a
modulo p operation. The hardware overhead mainly comes
from the r = dlog2(p)e bit modulo p multiplier, whose
complexity is of the order of O(r2), and the modulo p
operation in EDN, whose complexity is O(k). (k is the number
of information bits).

Compared with architectures based on linear arithmetic
codes, the architecture utilizing [|x|p, |2x|p] multilinear codes
only needs one extra r-bit multiplexer and one extra multiply-
by-2 operation in Zp for both the predictor and the EDN.
Multiply-by-2 operation is equal to shifting the operands by
1 bit, which is trivial in terms of the hardware overhead. The
complexity of a r-bit multiplexer is in general of the order

1The term predictor is used in this context to refer to the circuit that
computes the redundant bits of the output of the operation directly from
the inputs. In our case the predictor computes the redundant bits of the
multiplication result.
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TABLE IV: Number of bad errors when selecting from linear arithmetic codes with different modulii

Modulii Bad Errors Bad Errors in the Format of e = (ex, 0)

p1 = 31 47857 2113
p1 = 31, p2 = 29 1781 249

p1 = 31, p2 = 29, p3 = 23 1651 180
p1 = 31, p2 = 29, p3 = 23, p4 = 19 133 13

TABLE V: Probability of bad errors for linear and multilinear codes

Probability of Linear Arithmetic Codes [|x|p, |2x|p] ML codes Multi-modulus ML codes

Bad errors ≈ 0.3 · 2−r+1 ≈ 2−2r ≈ 2−2r∗

Bad errors e = (ex, 0) ≈ 2−2r ≈ 2−2r ≈ 3 · 2−3r

∗ : Based on experimental results.

(a) (b) (c)

Fig. 2: Hardware architectures for multipliers protected by (a) linear arithmetic codes, (b) [|x|p, |2x|p] multilinear codes and
(c) Multi-modulus multilinear codes

of O(r). Thereby this architecture has comparable hardware
overhead to linear arithmetic codes.

The protection architecture based on multi-modulus multi-
linear codes needs one more multiplier in Zq for the predictor.
When p << 2k, which is often the case in real life, q should
be selected as the largest prime number that is smaller than p
if we want to minimize the number of bad errors. A multiplier
in Zq will have about the same hardware complexity as the
multiplier in Zp and this will double the overhead for the
predictor. However, we claim that a merged design of the
two multipliers for the predictor should be implemented. First,
from the security point of view, separate redundant data path
may be used by attackers to derive the secret information of the
devices, e.g. the attacker can inject faults into one redundant
path of the device which will never influence the other. A
merged design can effectively solve the problem because most
of the faults injected into the redundant part of the device will
affect the generation of redundant bits for both codes. Second,
the hardware overhead of the predictor will be reduced if we
merge the design of the two multipliers. A more aggressive
approach is to design the original multiplier and the predictor
of the code together as discussed in Section IV.

Remark 6: There is a tradeoff between the error detection
capabilities and the hardware overhead when we select p and

q. Specialized p and q can significantly reduce the hardware
complexity of the modulo operation, e.g. using Mersenne
primes.

To compare the hardware area overhead, we modeled 16-bit
Wallace tree multipliers protected by different alternatives in
Verilog and synthesized them in RTL design compiler using
Nangate 45nm technology. The area comparison is based on
synthesized results. We expect similar results after placing and
routing to the first order. The results are shown in Table VI.
We select p to be 31. For multi-modulus multilinear codes, q
is selected to be 29. The percentage overhead is computed by
dividing the estimated gate area of the predictor and EDN by
the estimated area of the Wallace tree multiplier. As expected,
secure multipliers based on [|x|p, |2x|p] codes have similar
overhead to architectures based on linear arithmetic codes.
Architectures based on multi-modulus codes require the largest
overhead, which is around 50%. The benefit of these codes
is that they have the best error detection capabilities against
errors in the format of e = (ex, 0). In Section V-B3, we
will show that this characteristics of multi-modulus codes will
make them the best alternative against fault-injection attacks
when the design of the predictor is separated from the original
multiplier. Moreover, the hardware overhead of architectures
based on multi-modulus codes will be drastically reduced if
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TABLE VI: Hardware area overhead for architectures based on linear, multilinear and partially robust arithmetic codes (k =
32, r = 5, p = 31, q = 29)

Code Predictor EDN Total
Linear Arithmetic Codes 9.76% 10.68% 20.44%

[|x|p, |2x|p] Multilinear Codes 10.37% 11.75% 22.12%
Multi-modulus Multilinear Codes 16.14% 37.57% 53.71%

(x, |x2|p) Partially Robust Arithmetic Codes 14.60% 14.71% 29.31%

we select q to be a Mersenne prime. In fact, 50% overhead is
still much smaller than overheads for architectures based on
robust arithmetic codes, which is around 200% − 400% [9],
[10].

B. Experimental Results on Comparison of Error and Fault
Detection Capabilities for Linear, Partially Robust and Multi-
linear Arithmetic Codes

To demonstrate the advantages of multilinear codes and
partially robust codes over linear codes for building secure
multipliers against fault-injection attacks, we conduct simula-
tions to analyze and compare the number of bad errors and the
fault detection capabilities of the four alternatives presented
in the last section. For all the simulations, we assume the
operands of the multipliers are 16 bits. Each code has 32
information bits (k = 32). p and q are selected to be 31 and
29 respectively.

1) Number of Bad Errors: In this simulation, we randomly
generate 5000 non-zero errors e = (ex, ey). For each e, we
randomly select one million messages in Z232 and encode
them using linear, [|x|p, |2x|p], multi-modulus and (x, |x2|p)
partially robust arithmetic codes. The distorted codewords
c̃ = (x̃, ỹ) = (|x + ex|2k, |y + ey|2r ) are decoded by the
error detection network. The number of codewords masking
each error is recorded. The distribution of error masking
probabilities of the 5000 non-zero errors is shown in Table
VII. Most of the errors are masked by a probability of less
than 10% for all the alternatives. Linear arithmetic codes have
149 bad errors which are masked by a probability of at least
0.5. The numbers of bad errors for [|x|p, |2x|p], multi-modulus
and (x, |x2|p) codes are similar and are much smaller than
that of the linear arithmetic codes, which can result in better
fault detection capabilities assuming a slow fault-injection
mechanism (fault stays for several consecutive clock cycles).
Compared to multilinear codes, (x, |x2|p) codes have much
less errors that are masked by a probability of more than 10%.
However, we will show later in this section that (x, |x2|p)
codes actually have the worst error detection capabilities of
errors in the format of e = (ex, 0) and is only suitable for
designs where the multiplier and the predictor are synthesized
together. Moreover, (x, |x2|p) codes have larger overhead than
[|x|p, |2x|p] multilinear codes. The disadvantage of overhead
for (x, |x2|p) will become more significant as k increases.

2) Fault Detection Capabilities When Both the Multiplier
and the Predictor are Affected: Suppose both the original
multiplier and the predictor are affected by the injected faults,
which manifest as a non-zero error e = (ex, ey) at the output
of the device. Assume that each multiplication is completed

TABLE VIII: Fault masking probabilties when both the orig-
inal multiplier and the predictor are affected (k = 32, r =
5, p = 31, q = 29)

T Linear [|x|p, |2x|p] Multi-modulus (x, |x2|p)
T=1 3.12% 3.12% 3.12% 3.12%
T=2 1.81% 0.95% 0.95% 0.10%
T=3 1.25% 0.38% 0.35% 0.003%

* T is the number of clock cycles that a fault stays.

in one clock cycle and e stays for T consecutive clock cycles
(slow fault-injection mechanism). If e is detected at least once
among the T clock cycles, we say that e is detected. Otherwise
e is masked. In this simulation, we randomly select 10 millions
possible error patterns e and assume that e may stay up to
3 clock cycles. The average error masking probabilities of e
for the four presented alternatives are shown in Table VIII.
All codes have similar error detection capabilities when e
stays for only one clock cycle. However, when T = 2, the
error masking probabilities of [|x|p, |2x|p] and multi-modulus
codes are already nearly half of that of linear arithmetic
codes. As T increases, the advantage of [|x|p, |2x|p] and multi-
modulus codes become more significant. As expected, when
both the original multiplier and the predictor are affected by
the injected faults, [x, |x2|p] codes have the best error and fault
detection capabilities among the four alternatives.

3) Fault-Injection Simulations For the Case When Only the
Multiplier is Affected: Suppose the design of the multiplier
and the predictor is separated and the attacker manages to
inject faults only to the original multiplier. In order to analyze
the fault detection capabilities, we conduct gate-level fault-
injection simulations in C++ on 16-bit secure Wallace tree
multipliers protected by different alternatives. The gate level
netlist is derived from Verilog models. Each gate may have
stuck-at-0 or stuck-at-1 faults. We assume that 2 to 4 gates
(2 ≤ N ≤ 4) may be affected by the injected faults and
the faults stay for up to 3 consecutive clock cycles (T ≤ 3).
At each clock cycle, a new pair of operands are randomly
generated and multiplied. If the manifested error is detected
for at least one clock cycle, we say that the fault is detected.

Table IX summarizes the fault masking probabilities for
all combinations of N and T . When a certain number of
gates are affected (N is fixed), larger T will result in smaller
fault masking probabilities. When T = 1, the average fault
masking probabilities increase as N increases. However, when
T > 2, the average fault masking probabilities will drop as
N increases. This is because for larger N , errors are more
probable to manifest as different non-zero errors at the output
of the device. For smaller N , it is more likely that even if
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TABLE VII: Error masking probabiliy distributions for secure multipliers based on linear, multilinear and partially robust
arithmetic codes (k = 32, r = 5, p = 31, q = 29)

Code < 10% 10%− 20% 20%− 30% 30%− 40% 40%− 50% ≥ 50% (Bad Errors)
linear 4656 59 51 46 39 149(29.8%)

[|x|p, |2x|p] 4492 182 142 107 74 3(0.06%)
Multi-modulus 4444 196 140 118 97 5 (0.1%)
(x, |x2|p) 4996 0 0 0 0 4(0.08%)

the fault stays for several consecutive clock cycles, it only
manifests in one clock cycle. In this case, the fault detection
capabilities will not increase.

Linear arithmetic codes and [|x|p, |2x]p codes have the
same error detection capabilities for errors in the format of
e = (ex, 0). The reason is when ey = 0, the error masking
equations for (x, |x|p) and (x, |2x|p) codes are |ex|p =
0, |2ex|p = 0 and |ex − 2k|p = 0, |2(ex − 2k)| = 0 depending
on the ranges of x+ex. Obviously, |ex|p = 0 is equivalently to
|2ex|p = 0 and |ex−2k|p = 0 is equivalent to |2(ex−2k)| = 0.
Thereby, e = (ex, 0) is masked by [|x|p, |2x]p codes if and
only if it is masked by linear arithmetic codes.

(x, |x2|p) codes have the worst error detection capabilities
of errors in the format of e = (ex, 0) among the four
alternatives. When ey = 0, the error masking equation for
(x, |x2|p) is |2exx+e2x|p = 0 and |2(ex−2k)+(ex−2k)2|p = 0
for different ranges of x+ex. When |ex| = 0 or |ex−2k|p = 0,
|2exx+ e2x|p = 0 or |2(ex− 2k)+ (ex− 2k)2|p = 0 is always
true. But the inverse statement is incorrect. Thereby, (x, |x2|p)
will mask more errors in the format of e = (ex, 0) than linear
and [|x|p, |2x]p arithmetic codes.

When only the original multiplier is affected, multi-modulus
codes have the best error detection capabilities. When T =
2, the fault masking probabilities of multi-modulus codes are
nearly half of the fault masking probabilities of linear and
[|x|p, |2x]p arithmetic codes with the same N . The advantage
of multi-modulus codes becomes larger as T increases.

4) Selection of Arithmetic Codes for Secure Multipliers:
From the above analysis, linear arithmetic codes have a
lot of bad errors – errors masked with a probability of at
least 0.5 – which may compromise the security level of the
system. [|x|p, |2x|p], multi-modulus and (x, |x2|p) codes have
much less bad errors than linear arithmetic codes (Table V).
[|x|p, |2x|p] and (x, |x2|p) are more suitable for designs where
the original multipliers and the predictors are synthesized
together. (x, |x2|p) have better fault and error detection capa-
bilities while [|x|p, |2x|p] require less hardware overhead. The
selection of these two codes depends on specific applications.
When the designs of the multiplier and the predictor are
separated and only the multiplier is affected by the injected
faults, [|x|p, |2x|p] and (x, |x2|p) are no better than linear
arithmetic codes. In this case, we should select multi-modulus
codes which have the best detection capabilities against errors
in the format of e = (ex, 0).

VI. CONCLUSIONS

In this paper we propose to use multilinear codes to protect
cryptographic devices against strong fault-injection attacks.

Several constructions of multilinear arithmetic codes are pre-
sented. The hardware overhead and the error and fault de-
tection capabilities of secure multipliers based on multilinear
codes are analyzed and compared to those based on linear and
partially robust arithmetic codes. Simulation results show that
multilinear and partially robust arithmetic codes have much
smaller number of bad errors (errors masked by a probability
of at least 0.5) and can provide better protection than linear
arithmetic codes assuming a slow fault-injection mechanism.
[|x|p, |2x|p] codes have similar overhead to linear arithmetic
codes with the same number of redundant bits. (x, |x2|p) and
multi-modulus codes have slightly higher overhead than linear
arithmetic codes. But the overhead is at most around 50% and
is much smaller than the overhead of architectures based on
robust arithmetic codes, which is around 200%− 400%.

If the designs of the predictor and the original multiplier
are separated and the injected faults affect only the multiplier,
multi-modulus code is the best alternative. In this case, the
fault masking probability of architectures based on multi-
modulus codes is almost twice smaller than architectures based
on the other codes when the fault stays for only one clock
cycle. The advantage of multi-modulus codes will become
even more significant as the fault stays longer.

If the faults affect both the multiplier and the predictor,
(x, |x2|p) codes have the best fault detection capabilities.
[|x|p, |2x|p] code has similar performance to multi-modulus
codes and require the least hardware overhead among multi-
linear and partially robust arithmetic codes. The selection of
codes depends on specific applications. Multi-modulus codes
can be generalized to the case of randomly selecting from L
codes Ci = {(x, |x|pi), 1 ≤ i ≤ L}, where pi are different
prime numbers larger than 2. The number of bad errors will
be further reduced as L increases.
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