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Abstract—Cryptographic devices are vulnerable to fault
injection attacks. All previous countermeasures against fault
injection attacks based on error detecting codes assume that the
attacker cannot simultaneously control the fault-free outputs
of a device-under-attack and error patterns. For advanced
attackers who are able to control both of the above two aspects,
traditional protections can be easily compromised. In this
paper, we propose optimal algebraic manipulation detection
(AMD) codes based on the nonlinear encoding functions and
the random number generators. The proposed codes can
provide a guaranteed high error detecting probability even
if the attacker can fully control the fault-free outputs of a
device-under-attack as well as the error patterns. As a case
study, we present the protection architectures based on AMD
codes for multipliers in Galois fields used for the elliptic curve
cryptography. The results show that the proposed architecture
can provide a very low error masking probability at the cost
of a reasonable area overhead. The protected multiplier has
no latency penalty when the predictor is pipelined.

Keywords-Security; Error Detecting Codes; Fault Injection
Attacks; Cryptographic Hardware;

I. INTRODUCTION

The security of modern cryptographic devices is threat-
ened by side-channel attacks such as timing analysis attacks
[1], power analysis attacks [2] and fault injection attacks
[3], [4]. Unlike other forms of side-channel attacks, fault
injection attacks are often active and hence adaptive. The
adaptive nature combined with the vast arsenal of fault
injection methods and techniques available to an attacker
complicate the design of secure cryptographic devices. The
attack described in [5], for example, requires only 2 faulty
cipher-texts to retrieve from AES all 128-bits of the secret
key.

To protect cryptographic devices against fault injection
attacks, redundancy based on error detecting codes (EDC)
is often added. Most of the existing proposals of EDC
architectures are based on linear codes such as 1-d parity
codes [6], duplication codes and Hamming codes. Proposals
for secure architectures based on linear codes usually make
assumptions about how the faults manifest as non-zero errors
at the output of a device-under-attack. The error detecting
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capabilities and the security level of these architectures
largely depend on the accuracy of the error model. For ex-
ample, cryptographic devices protected by linear 1-d parity
codes can provide 100% error detection probabilities if all
injected faults manifest as errors with odd multiplicities at
the output of the device. However, if the attacker can inject
faults that manifest as errors with even multiplicities, the
protection based on linear 1-d parity codes can be easily
bypassed. Similarly, for the protection based on duplication
[7], identical errors in both copies are undetectable.

Due to the above inherent weakness, secure architec-
tures based on linear codes can only provide satisfactory
protection assuming a weak attacker model, in which the
attacker can not precisely control the location and the timing
of the injected faults. As more advanced fault injection
mechanisms are proposed, protection architectures based on
linear codes are no longer sufficient. For example, the author
in [3] showed that any arbitrary bit location in memory could
be modified via an optical induction attack. Against such
attackers linear codes stand no chance.

As an alternative to linear codes, robust codes based on
nonlinear encoding functions were proposed [8], [9], [10],
[11], [12]. Robust codes can provide nearly equal protection
against all error patterns. The error masking probabilities
for robust codes are upper-bounded by very small numbers
for all non-zero errors. Compared to architectures based
on linear codes, architectures based on robust codes can
provide a guaranteed protection even if the attacker has a
high spatial resolution of fault injection and can inject faults
which generate specific error patterns. Variants of robust
codes — partially robust and minimum distance robust codes
— were proposed in [11], [12], which allow tradeoffs in terms
of robustness and hardware overhead.

One limitation of robust codes is that these codes assume
the output of the cryptographic device is almost uniformly
distributed and is not controllable by the attacker, i.e. the
attacker cannot select the fault-free outputs of the device-
under-attack during fault injection attacks.

In this paper, we present constructions of algebraic ma-
nipulation detection codes based on nonlinear encoding
functions and true random number generators. We show the
architectures based on these codes, for which the probability



of a successful fault injection attack is upper-bounded by a
very small number even assuming the above strong attacker
model.

The rest part of the paper is organized as follows. In
Section II, we describe the conception of strong security
and present the attacker model used throughout the paper.
In Section III, the definitions and bounds for AMD codes
are described. In Section IV, constructions of optimal and
near optimal AMD codes are presented. In Section V, case
studies of applying AMD codes to the design of secure serial
multipliers used for elliptic curve public key cryptography
are shown. The hardware overhead and the security level of
different alternatives are compared.

II. ATTACKER MODELS AND STRONG SECURITY

Robust codes [11], [12] are designed to provide a guar-
anteed level of detection against all error types and classes,
assuming the attacker cannot control the fault-free outputs
of the cryptographic devices. These codes can be easily
compromised when the above assumption is not valid.

Example 2.1: Suppose the 32-bit linear block of AES
is protected by a robust duplication code C' = {u, f(u)},
where u, f(u) € GF(232), f(u) = u® and all operations
are in GF(23?). It is easy to prove that any non-zero error
e will be masked by at most two out of 232 codewords [8].
If the attacker has the ability to control the inputs (hence
the fault-free outputs) and can inject arbitrary error patterns
at the output, let (u,y) be an input-output pair, i.e. y is
the output of the AES linear block when the input to the
device is u. The attacker can easily derive an error pattern
e=(ey,ef), ey, €5 € GF(23?), e, # 0 that will be masked
by the codeword with y as the information bits. During the
attack, the attacker can simply input u to the linear block
and inject e = (ey,e5),e, # 0 at the output of the block.
In this case, the attack will always be successful.

The above example assumes an advanced attacker model,
where the attacker knows every detail of the cryptographic
device including the error detecting code used to protect
the device. The attacker can select specific inputs to the
device during fault injection attacks. Moreover, the attacker
is also able to inject any specific error pattern at the output
of the device. In this case, the attacker has full control
of not only the non-zero error e = (e,,ey), but also the
fault-free output y and the faulty output § = y @ ey.
This situation is probable for the modern fault injection
techniques [3]. Under this attacker model, all previous
protection architectures based on error detecting codes will
not be sufficient. We will call an architecture that can
still provide a guaranteed fault detection probability under
the above attacker model strongly secure cryptographic
architecture. Correspondingly, a coding technique that can
be used to build strongly secure cryptographic devices is
called algebraic manipulation detection code (AMD). The
strongly secure architectures provide also a high level of

protection when the attacker can force the output of the
protected device into any specific value.

In this paper, we present constructions of AMD codes
based on introducing randomness into the information bits
of the code. We describe the architecture of strongly se-
cure cryptographic devices protected by these codes. In
the presented architecture, the redundant bits of the code
are determined not only by the output y of the original
device but also by the random data z generated by a
true random number generator, which is incorporated into
most cryptographic devices by default for key initialization,
random pad computation, challenge generation, etc [13]. We
assume that both the original cryptographic devices and the
true random number generator may be attacked. We will
show that under the most advanced attacker model described
in this Section, the cryptographic devices protected by the
presented AMD codes can still have a high error (fault)
detecting probability.

III. DEFINITIONS AND BOUNDS FOR ALGEBRAIC
MANIPULATION DETECTION CODES

Throughout the paper we denote by ¢ the addition in
GF(q),q = 2". Due to the lack of space, all proofs are
omitted. (All the results presented in the paper can be easily
generalized to the case where ¢ = p” (p is a prime).)

Definition 3.1: (Security Kernel) For any (k,m,r) error
detecting code V' with the encoding function f(x,y), where
y € GF(2*) are information bits, z € GF(2™) are random
bits and f(x,y) € GF(2") are redundant bits, the security
kernel Kg is the set of errors e = (ey,ez,e5),€y €
GF(2%),e, € GF(2™),ey € GF(2"), for which there
exists y so that f(z® ez, yde,) ® f(x,y) = ey is satisfied
for all z.

Ks=Ae|Fy, flz ® e,y ®ey) ® f(z,y) =ep,Va}. (1)

Nonzero errors e € Kg can be used by an advanced
attacker to bypass the protection based on the error detecting
codes with security kernel Kg. By injecting faults that
manifest as e € Kg at the output of the device and selecting
y for which e is always masked as the input to the device,
the attacker can assure that the error (thus the injected fault)
will never be detected by the code. Thereby a strongly secure
code resilient to advanced fault injection attacks should have
no errors in the security kernel except for the all zero vector
in GF'(2"), where n = k4 m+r is the length of the code.

Definition 3.2: A (k,m,r) error detecting code is called
an Algebraic Manipulation Detection code (AMD) iff Kg =
{0}, where 0 is the all zero vector in GF'(2"), n = k+m-r.

AMD codes for the special case m = r and k = br were
introduced in [14] and were used in [15] for robust secret
sharing scheme and for robust fuzzy extractors.

For an AMD code V, let v = (y,z, f(z,y)) be the
original codeword and ¢ = (y & ey, x B ey, f(x,y) Bey) be
the distorted codeword. Denote by Qv (y, €) the probability



of missing an error e once y is fixed, which can be computed
as
Qv(y.e)=2""{z|veV,i eV} )

The optimal AMD code should minimize the maximum
value of Qv (y,e) among all codes with the same param-
eters. Thus the criterion we use to construct good AMD
codes is
ylpin  max Qv (ye), 3)

where Vi, , is the set of all (k, m, r) error detecting codes.
In the rest part of the paper, we denote max, ¢0 Qv (y, €)
by Qv and denote minycy, . . Qv by Q(k,m,7).

A lower bound on Q(k,m,r) for (k,m,r) AMD codes
is shown in the next Theorem.

Theorem 3.1: For any (k,m,r) AMD code, where k is
the number of information bits, m is the number of random
bits and r is the number of redundant bits,

k = i
Q( , M, ’I“) VEH‘}i?n,p ;{16‘326 QV(:% 6)
> 1—2""dy(n, M), )

where d,(n, M) is the maximum possible distance of a g-ary
code Cy (¢ = 2") with length n = 2™ and M = |Cy| =
2k+m+r_

Theorem 3.1 shows the relationship between the worst
case error masking probability @y for the AMD code V/
and the Hamming distance of the corresponding traditional
error detecting code Cy. We note that dy(n, M) can be
estimated by classical bounds such as the Hamming bound,
the Johnson bound, the Singleton bound, the Plotkin bound,
etc [16]. When d,(n, M) is estimated by the Singleton
bound, Q(k, m,r) can be written in the compact form.

Corollary 3.1: For any (k,m,r) AMD code,

QUk,m,r) > [E™

Remark 3.1: 1t follows from Corollary 3.1 that there are
no AMD codes when k > r2™ — m.

Definition 3.3: A (k,m,r) AMD code V is optimal iff

max Qv (y,e) = 1 —2""dy(n, M),
y,e#0

‘|2—77L. (5)

where ¢ = 27, n = 2™, M = 2k+m+r,

Example 3.1: Let k = m = 3 and » = 1. According to
%), Q(3,3,1) > g. Let V be the code composed of all
vectors (y,z, f(x,y)), where y,z € GF(23) and

flx,y) =m1 22 23021 -y1 D2 Y2 Dx3-y3. (6)

The error masking equation is f(z@e,, yde,) ® f(x,y) =
ey, which is a polynomial of x with degree 2. The function
on the left hand side of the error masking equation cor-
responds to a codeword in the second order binary Reed-
Muller code RM5(2,3) [16] with 3 variables. It is well
known that any codeword of RM5(2,3) has a Hamming

weight of at least 2. Thus the number of solutions for the
error masking equation is upper bounded by 6. V' is a AMD
code with Qy = 2. This code is optimal.

IV. CONSTRUCTIONS OF AMD CODES

The codewords of a (k,m,r) AMD code V are in the
format of (y, z, f(x,y)), where y € GF(2*) are information
bits, x € GF(2™) are random bits and f(z,y) € GF(2")
are redundant bits. Let us re-write f(x,y) as f(z,y) =
A(z) ® B(x,y), where A(x) is independent of y. We next
show that by selecting A(x) and B(x,y) based on different
classical error detecting codes such as the Generalized Reed-
Muller codes and the extended Reed-Solomon codes, we can
construct good (and in many cases optimal) AMD codes for
different k& and different Qv = max, 2o Qv (y,e) when m
and r are given.

Let © = (z1,%2,---,2¢),2; € GF(q), ¢ = 2".
A b order g-ary Generalized Reed-Muller code [17]
with ¢t variables GRM,(b,t) consists of all codewords
(£(0), f(1),---, f(¢"* — 1)), where f(z) is a polynomial of
x = (1,22, -+ x;) of degree up to b. When b < ¢ — 3, the
dimension of the code is (t+b+1) [17]. The distance of the

t
code is ¢t — bg't~! [17]. Let

t b+2
Az) = Di— xi+
S @ittt

where €D is the accumulated sum in GF'(27). Let

B(CC,y): @

1<j1+j2++7j: <b+1

if b is odd;

if b is even and ¢ > 1;

t
o . 2 ()
Yiv,g2, i
i=1

where H§:1 :zzf is a monomial of z of a degree between 1
and b+ 1 and [['_, 2J' ¢ AB(x,y) defined by

{ {201 28T bt i b s odd;

(a5 zyal, - xyal} if bis even and ¢ > 1;

Suppose f(x,y) = A(z)®B(z,y), it is easy to verify that
the left hand side of the error masking equation f(z®e,, y®d
ey) @ f(z,y) ® ey =0 is always a non-zero polynomial of
x of a degree up to b+ 1. It corresponds to a codeword in
the (b+1)!" order g-ary Generalized Reed-Muller code. The
parameters of the AMD code with f(x,y) as the encoding
function are shown in the next Theorem.

Theorem 4.1: Let f(z,y) = A(z) ® B(z,y) be a g-
ary polynomial with y € GF(q®) as coefficients and
x € GF(q') as variables, where 1 < b < g—3 and q = 2".
Then the code V' composed of all vectors (y,z, f(z,y)) is
an (k,m,r) AMD code with m = tr, k = ((""0"") —1—t)r
and Qy = (b+1)27".

Remark 4.1: When k is not a multiple of r, 0’s can be
appended to y before f(x,y) is computed. The resulting
AMD code will have the same )y as the AMD code with
the same f(x,y), for which & is a multiple of r.



When b = 1 B(z,y) is the quadratic form x1-y; Dx2-y2 P
- @4y, where all the operations are in GF'(27). If e, # 0,
it is easy to verify that the number of solutions for the error
masking equation B(z © e,y D ey) ® B(x,y) Bey =0is
upper bounded by ¢‘ . In this case no A(z) is required and
the parameters of the AMD codes are shown in the following
Corollary.

Corollary 4.1 (b= 1,ey, # 0 in Theorem 4.1): If e, # 0,
the code composed of all vectors (y,z, f(z,y)), where
y,x € GF(q") and f(x,y) = 1 -y1 22 - Y2 B -+ D
xe - Yt f(x,y) € GF(27),q = 2" is an optimal (tr,tr,r)
AMD code with Qy =277,

When t = 1 and b is odd, A(z) = 272 and B(x,y) =
Ty D ys @ - ®a’ - yp. The left hand side of the
error masking equation f(r @ ez, y Dey) ® f(z,y) ey =
0 corresponds to a codeword in an extended g-ary Reed-
Solomon code, g = 2" [16]. For this case, the code generated
by Theorem 4.1 coincides with the construction shown in
[14].

Corollary 4.2 (t = 1 in Theorem 4.1): When b < ¢ — 3
is an odd number, the code V' composed of all vectors
(y,, f(z,y)), where y € GF(¢"),r € GF(q) and
flay) =2 @x -y @ pa-ab oy, floy) €
GF(q),q = 2", is an optimal (br,r,7) AMD code with
QV = MaXy e£0 QV(y7 6) =l

Compared to codes with ¢ > 1 generated by Theorem
4.1, codes generated by Corollary 4.2 have higher data rate
and are more suitable for applications where the number
of redundant bits are critical, e.g. for secure memories
where the overall overhead is determined by the number
of redundant bits.

Example 4.1: Let y = (y1,¥2,¥3,Y4),y: € GF(28) be
the output of a 32-bit linear block of AES. Let » = 8 and
t=1and b = 4. Let x € GF(2®) be the 8-bit random
data generated by the random number generator. The linear
block of AES can be protected by verifying the redundant
bits computed as described in Corollary 4.2.

f:yl'$€By2-$2@y3-w3@y4-w4@x7.

In this case the probability of conducting a successful fault
injection attack is at most 6 - 275,

As a case study, in the next section we will present
architectures based on the proposed AMD codes for secure
multipliers in G F(2¥), which are commonly used blocks
in cryptographic devices implementing the elliptic curve
cryptographic algorithms [18], etc.

V. PROTECTION OF NORMAL BASE SERIAL
MULTIPLIERS IN GF(2F)

The general architecture based on AMD codes for the
protection of cryptographic devices against fault injection
attacks is shown in Figure 1. In addition to the original
device, two extra blocks, the predictor and the error detecting
network (EDN) are needed. The extended outputs of the

fault-free device are codewords of the AMD code. As
in most works discussing the protection of data-path in
cryptographic devices [9], [10], we assume that the EDN
is tamper resistant and cannot be attacked by the attacker.
Otherwise, an advanced attacker can easily bypass any kind
of protection mechanism based on error detecting codes by
forcing the error flag signal Error to be 0 (Figurel). In most
cases EDN is much smaller than the original device and the
predictor. For example, for a 6-cell 64M-bit SRAM with
k = 64 bits per word and Qy = 3 x 27!6, the number
of transistors in EDN divided by the number of transistors
in the SRAM array is less than 107°. We also note that to
improve the security of EDN, it may be implemented as a
self-checking checker using the dual rail design [19].

Input

Original Device

Redundant
Hardware

Predictor| RNG

f [ Extended O¢tput

EDN ol X

]

Error

Figure 1. General architecture of a device protected by a (k, m,r) AMD
code. RNG is an m-bit random number generator.

In this section we assume all Galois fields are represented
by normal bases. The hardware implementations of multi-
pliers in GF(2*) can be categorized as parallel multipliers
and serial (sequential) multipliers. Compared to parallel
multipliers, serial multipliers are more area efficient and are
more practical in hardware for multiplications in a large
Galois field especially in small digital devices, e.g. smart
phones. A digit-serial Massey-Omura multiplier can output
one digit of the product per clock cycle. Suppose the length
of the digit is r-bit and the output of the multiplier is k-bit.
The multiplication in GF(2*) is completed in [£] clock
cycles. The digit-serial Massey-Omura multiplier [20] can
be implemented by using r identical combinatorial blocks
with cyclically shifted inputs for normal base multiplication
in GF(2%).

We next estimate the area overhead for a digit-serial
Massey-Omura multiplier in GF(2*) protected by AMD
codes generated by Corollary 4.1 (b = 1 in Theorem 4.1)
and Corollary 4.2 (f = 1 in Theorem 4.1).

When b =1 in Theorem 4.1,

t t
f,y) =Pt eriyi=Pr@loy). @
i=1 i=1

If e, # 0, @le x? can be omitted and f(z,y) can be
simplified to be @le x;y;. The structure of the predictor
for (((*3?) — 1 — t)r, tr,r) AMD codes with b = 1 for the
protection of a digit-serial multiplier in G F(2*) is shown



Square Operation and Adder
in GF(2"). (Necessary only if e,
can be 0)

Optional Pipeline] ™[ "1 (yu0)|
Register i |

r-Bit REG

Multiplier in
GF(2r)

Figure 2.  Predictor for serial Massey-Omura multiplier in GF(2%)
protected by codes with b = 1 generated by Theorem 4.1

in Figure 2. z; € GF(2") is the random data generated by
the true random number generator. ¥; is the i*" component
of the product. (The square operation can be implemented
by cyclically shifting in normal base Galois fields [21].)
The parallel multiplier in GF'(2") can be implemented as
described in [22]. At every clock cycle, the digit generated
by the digit-serial multiplier in GF(2¥) is added to 2? and
then multiplied by z; (see (8)). The result is cumulatively
added and saved in the r-bit register. After ¢ clock cycles, the
redundant bits will be available in the r-bit register and will
be verified by EDN to detect errors. To reduce the latency
of the predictor, an optional pipeline register can be added
between the original digit-serial multiplier in GF(2*) and
the parallel multiplier in GF'(2") as shown by the dotted
block in Figure 2.

When ¢t = 1 and b is odd in Theorem 4.1,

b
$b+2 ® @ yixz
=1

= (@Yo - Dx(y®a?)-))

flzy) =

Table I
HARDWARE COMPLEXITY FOR PARALLEL AND DIGIT-SERIAL
MASSEY-OMURA MULTIPLIERS

Type IANDy XOR Latency

Digital-Serial MO[20]rC N/ T‘(CN — 1) Ta + “OQQCNWTX

Parallel RR-MO[22] | k2 g(C’N +k—2) Ta+ [log2(Cn +1)|Tx

Parallel RR-MO* | k2 k2 —1  Ta+ (1 + [loga(k—1))Tx

*: Type I optimal normal base (ONB) generated by irreducible all-one
polynomials exists [22].

The structure of the predictor for the resulting AMD
codes is shown in Figure 3. During the first clock cycle of
every multiplication, the output digit y; (0's are appended if
necessary) is added to 22 and then multiplied by z. For each
of the following clock cycles, zy,—;+1 is accumulated added
to the contents stored in the r-bit register. The predictor for
AMD codes with ¢ = 1 requires nearly same overhead in
area and latency as the predictor for AMD codes with b = 1.

Optional Pipeline |
Register

—
X2

First Clock Cycle?
m
f

Figure 3.  Predictor for serial Massey-Omura multiplier in GF(2F)
protected by codes with ¢t = 1 based on Theorem 4.1

A. Estimations of the Hardware Overhead for the Protection
of Multipliers in Galois Fields Recommended for Elliptic
Curve Cryptographic Algorithms

Table I summarizes the hardware complexity for the
reduced redundancy parallel [22] (Row 2 and 3) and the
digit-serial (Row 1) Massey-Omura multipliers in GF(2%),
where r is the bit-width of the digit, C'y is the complexity
of the normal base [22] and T4, T'x are the delays due to
one AND gate and one XOR gate respectively.

Table II shows the overhead for the predictor and EDN
of the AMD codes with b = 1 or ¢t = 1 generated by
Theorem 4.1 for multipliers in GF(2?3%) and GF(21%9),
which are among the recommended Galois fields for elliptic
curve cryptographic algorithms [18]. There are two columns
for the number of AND and XOR gates for each k. The
left column shows the number of gates that is required
to implement the original multiplier in G'F(2%). The right
column shows the number of gates that is required to
implement the other parts of the predictor and EDN. To
estimate the area overhead, we only consider multipliers and
ignore the adder, the multiplexer in GF(2") and the r-bit
register in the predictor since the space complexity of an
r-bit multiplier is of the order of O(r?) and the complexity
of an r-bit multiplexer and an r-bit adder is of the order
of O(r). We consider the cases where the multiplication in
GF(2’“) is completed in 2, 4 or 8 clock cycles. For each case,
we select r in such a way that there is an optimal normal
base of Type I in GF(2") for the purpose of minimizing
the hardware complexity of multipliers in GF(2"). When
computing the percentage overhead of the predictor and
EDN, we assume that the area of a XOR gate is about 1.5
times of the area of a AND gate according to the data of
the 45nm NANGATE library [23].

Generally speaking, the area overhead for the predictor
and EDN for codes based on Theorem 4.1 decreases as the
number of clock cycles needed to finish one multiplication
in GF(2%) increases. For the three cases shown in Table
II, the overall area overhead for the predictor and EDN is
about 110% ~ 160%. In addition to the area overhead, the



Table II

ESTIMATION OF THE TOTAL AREA OVERHEAD FOR THE PREDICTOR AND EDN FOR DIGIT-SERIAL MULTIPLIERS IN GF(2’“) PROTECTED BY CODES
GENERATED BY THEOREM 4.1

Cycles k = 239 k = 409
T AND XOR ercentage log2Qv T AND XOR ercentagd  logaQv
2 [130™62, 010833, 800061, 880133, 798 154.5% |—129(—128)226")> 184, 642102, 150> 184, 416]102, 148 155.4% | —225(—224)
4 [60™ 28,620, 7,200 28,560 7,198| 125.2% |—59(—57.4)[106®)] 86,602 [22,470| 86,496 |22,468| 126.0% |-105(—103.4)
8 [36™[17,172(2,592[17,136/2,590| 115.1% |—35(—32.7)|52®| 42,484 | 5,406 | 42,432 | 5,404 | 112.8% | —51(—48.7)

(a): There exists an optimal normal base of Type II for G F'(2"") [22].

(b): There exists an optimal normal base of Type I for GF(?T) [22].

[¥]: We assume that the area of a XOR gate is approximately 1.5 times of the area of the AND gate according to the data of the 45nm NANGATE library[23].

protection architectures based on the proposed AMD codes
will also increase the latency of the multiplier due to the
longer critical path in the predictor. For example, when
k = 409 and r = 106, the latency of the serial reduced-
redundancy Massey-Omura multiplier is T4 + 97'x. In the
predictor, for codes with b = 1 shown in Figure 2, the
critical path contains a digit-serial multiplier in GF'(2109), a
parallel multiplier in GF'(21°¢) and a 2-level XOR network,
assuming e, # 0. Thus the latency of the predictor is
2Ty + 197x and is twice larger than the latency of the
original multiplier. To reduce the latency, optional pipeline
registers can be added between the duplicated multiplier
in GF(2%) and the multiplier in GF(2") as shown by the
dotted blocks in Figure 2. In this case the same latency as
for the original multiplier can be achieved for the predictor.
Similar strategy can also be applied for codes with t = 1
(Figure 3).
VI. CONCLUSIONS

In this paper, we present general constructions of strongly
secure algebraic manipulation detection (AMD) codes. The
proposed codes can provide a guaranteed level of protection
against fault injection attacks even if an attacker can fully
control the fault-free outputs of the device and the error
patterns. The same characteristic cannot be achieved by any
previously proposed protection countermeasures based on
error detecting codes in the literature. As a case study, we
present the protection architectures based on the AMD codes
for multipliers in Galois fields recommended for elliptic
curve cryptography. The area overhead for the protection
architectures is between 110% — 160%, which is much
smaller than for widely used duplication approach and as
opposed to duplication, for the ADM based architectures
there are no undetectable errors even for the strong attacker
model where both the error pattern and the fault-free outputs
of the device are controllable by the attacker. When the
predictor is pipelined, the protected multiplier has no latency
penalty and can achieve the same performance as the original
device.
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