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1 Introduction

Active fault injection attacks pose a serious threat for many cryptographic
applications, such as smartcards. Various countermeasures have been proposed
to provide security against these attacks.

In [1, 2], a solution based on time redundancy by means of a double-
data-rate (DDR) computation template was presented. Each computation is
conducted twice and the results are compared to detect injected faults. Both
clock edges were exploited to control the computation flow for the purpose of
improving the throughput of the system. In [3, 4], the authors investigated the
usage of dual-rail encoding for the protection of cryptographic devices against
different types of side-channel attacks in asynchronous circuits.

The most commonly used fault detection technique is concurrent error
detection (CED) which employ circuit level coding techniques, e.g. parity
schemes, modular redundancy, etc. to produce and verify check digits after
each computation. In [5], a secure AES architecture based on linear parity
codes were proposed. The method could detect all errors of odd multiplicities
with reasonable hardware overhead. In [6], an approach to fault tolerant public
key cryptography based on redundant arithmetic in finite rings were presented.
The method is closely related to cyclic binary and arithmetic codes. In [7],
the authors proposed a CED technique that exploits the inverse relationships
existing between encryption and decryption at various levels. A decryption is
immediately conducted to verify the correctness of the encryption operation.
A lightweight concurrent fault detection scheme for the S-box of AES was
proposed in [8]. The structure of the S-box is divided into blocks and the pre-
dicted parities for these blocks are obtained and used for the fault detection.
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Various fault attack countermeasures were compared in terms of the hardware
overhead and the fault detection capabilities in [9].

Error detecting codes [10] are often used in cryptographic devices to detect
errors caused by injected faults and prevent the leakage of useful information
to attackers. Most of the proposed error detecting codes are linear codes like
parity codes, Hamming codes and AN codes [7]. Protection architectures based
on linear codes concentrate their error detecting abilities on errors with small
multiplicities or errors of particular types, e.g. errors with odd multiplicities
or byte errors. However, in the presence of unanticipated types of errors linear
codes can provide little protection. Linear parity codes, for example, can detect
no errors with even multiplicities.

It has never been proven nor argued that it is sufficient to only detect a
particular subset of faults or errors to prevent a fault attack. The spectrum
of available fault injection methods and the adaptive nature of an attacker
suggests that it would be possible to bypass such protection by injecting a class
of faults or errors which the cryptographic device has not been anticipating.
Considering even only inexpensive non-invasive or semi-invasive fault attacks,
there is a wide spectrum of the types of faults and injection methods an
attacker has at his disposal [11].

Robust codes have been proposed as solution to the limitation of linear
error detecting codes for detection of fault injection attacks [12]. These non-
linear codes are designed to provide equal protection against all errors thereby
eliminating possible weak areas in the protection that can be exploited by an
attacker. Several variants of robust codes have been used to protect both pri-
vate and public cryptographic algorithms. These variants allow several trade-
offs in terms of robustness and hardware overhead for many architectures.
Robust and partially robust codes have been used for the protection for both
private [13, 12] and public key cryptosystems [14].

In this chapter we will present the basic constructions of robust codes
and their applications for the design of secure cryptographic devices. As case
studies, we discuss secure AES, secure ECC (Elliptic curve cryptography)
and secure finite state machine (FSM) architectures based on robust codes,
which are resilient to strong fault injection attacks. Sections 2, 3, 4 and 5
are contributed by the second and the third authors. Sections 6 and 7 are
contributed by the first and the fourth authors. More details related to robust
codes and their applications in the design of cryptographic devices can be
found in [15, 13, 12, 14, 16, 6, 17, 18, 19].

2 Definition and Basic Properties of Robust Codes

We present all of the definitions in terms of binary codes. Most of the results
can be easily generalized for codes over nonbinary fields.
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Definition 1. (R-Robust Code) A code C ⊆ GF (2n) is R-robust if the
size of the intersection of the code C and any of its translates C̃ = {x̃|x̃ =
x+ e, x ∈ C, e ∈ GF (2n), e 6= 0} is upper bounded by R:

R = max
06=e∈GF (2n)

|{x|x ∈ C, x+ e ∈ C}|. (1)

where + is the componentwise addition modulo two.

A graphic depiction of the definition of a robust code is shown in Figure
1. Let C ⊆ GF (2n), and C̃e be the set of all codewords of C shifted by an
element e ∈ GF (2n). The code C is R-robust if for any nonzero e ∈ GF (2n),
the size of the intersection of C and C̃e is upperbounded by R.

Fig. 1. Definition of robustness

The above defined robust codes have beneficial properties when the worst
case error masking probability of the codes is considered. Let M = |C| be the
number of codewords in a code C. By definition of a R-robust code there are
at most R codewords which can mask any fixed error e. The error masking
probability Q(e) can be thus defined as

Q(e) =
|{x|x ∈ C, x+ e ∈ C}|

M
. (2)

Robust codes have no undetectable errors. For a R-robust code, the worst
case probability of masking an error is at most R/M for any error when the
codewords of the robust code are assumed equiprobable. Clearly, robust codes
which have a minimum R for a given M will also have the lowest probability
of error masking and hence a predictable behavior in the presence of unpre-
dictable error distributions since the worst case probability of masking any
error is bounded. In the following sections we investigate the constructions
and optimality of the codes followed by some examples of applications.

3 Bounds, Optimality, and Perfect Robust Codes

Based on the above definitions of the robust codes it is possible to derive the
following main property for a R-robust code.
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Property 1. If the code C is R-robust then in the multiset SC = {xj +
xi|xi, xj ∈ C, xi 6= xj}, any element appears at most R times.

Robust codes are optimal if they have the maximum number of codewords
M for a given R and and length n. From Property 1, a relation on R, n and
M of the code can be established.

M2 −M ≤ R(2n − 1). (3)

Definition 2. (Perfect Robust Code) A R-robust code with n bits and M
codewords satisfying M2 −M = R(2n − 1) is perfect.

Perfect robust codes are equivalent to classical combinatorial structures
known as difference sets and symmetric designs [20]. It has been shown by
Mann that all symmetric designs over binary fields and hence perfect binary
robust codes exist only for even dimensions and are limited to the following
parameters: (2m+2, 22m+1±2m, 22m±2m) [21]. Moreover, systematic robust
codes, which are often more practical for error detection in computer hardware
due to their separation of data and check bits, cannot be perfect.

Theorem 1. [22] For any systematic R-robust code with length n and k in-
formation bits, there are at least 2n−k elements in GF (2n) which cannot be
expressed as differences of two codewords.

Corollary 1. There are no perfect systematic robust codes.

When perfect robust codes are not available, the best possible codes which
maximize M for a given n and R are referred to as optimum robust codes.

Definition 3. (Optimum Robust code) Robust codes which have the max-
imum possible number of codewords M for a given length n and robustness
R with respect to (3) are called optimum. For optimum codes adding any
additional codewords would violate bound (3) and

M2 −M ≤ R(2n − 1) < M2 +M. (4)

Example 1. Consider the following binary code C = {000, 001, 010, 100}. It is
easy to verify that for any nonzero element e ∈ GF (23), there are at most two
pairs of c1, c2 satisfying e = c1 + c2, where + is the XOR operation. Hence
the code is 2-robust.

The code is not perfect since equality does not hold for (3). The code,
however is an optimum Robust code with n = 3,M = 4, R = 2. No other code
can exist with the same n and R that has more codewords since 5 codewords
would violate condition (3).

Several constructions of optimum systematic robust codes will be pre-
sented in the next section.
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4 Constructions of Optimal Systematic Robust Codes

There is a strong relationship between robust codes, nonlinearity, and non-
linear functions since all robust codes are nonlinear. The parameters of sys-
tematic robust codes depend on nonlinearity of the encoding function of the
codes.

We first review some basic definitions and properties of nonlinearity, a
good survey of nonlinear functions can be found in [23].

Let f be a function that maps elements from GF (2k) to GF (2r).

f : GF (2k)→ GF (2r) : a→ b = f(a). (5)

The nonlinearity of the function can be measured by using derivatives Daf(x) =
f(x+ a) + f(x). Let

Pf = max
06=a∈GF (2k)

max
b∈GF (2r)

Pr(Daf(x) = b), (6)

where Pr(E) denotes the fraction of cases when E occurred. The smaller
the value of Pf , the higher the corresponding nonlinearity of f . For linear
functions Pf = 1.

Definition 4. A binary function f : GF (2k)→ GF (2r) has perfect nonlin-
earity iff Pf = 1

2r .

Theorem 2. [24] Let f be a nonlinear function that maps GF (2k) to GF (2r)
where k ≥ r, the set of vectors resulting from the concatenation of x1, x2 :
(x1, x2 = f(x1)) where x1 ∈ GF (2k) and x2 ∈ GF (2r) forms a robust system-
atic code with R = 2kPf , n = k + r and M = 2k.

From Theorem 1, there are at least 2n−k errors which will be detected
with probability 1 by any systematic code with length n and k information
bits. Thereby a more strict bound can be derived for systematic codes. In this
case we have

M2 −M ≤ R(2n − 2n−k). (7)

Corollary 2. A systematic robust code

C = {(x1, x2 = f(x1))|x1 ∈ GF (2k), x2 ∈ GF (2r)}

is optimum if the encoding function f is a perfect nonlinear function.

Remark 1. The nonlinearity of the encoding function f for systematic codes
corresponds to the worst case error masking probability of the codes ([22, 24]).
We have:

Pf = max
e=(e1,e2),e1 6=0

Q(e) = max
e∈GF (2k+r)

Q(e). (8)

where e1 ∈ GF (2k), e2 ∈ GF (2r).
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The following two constructions are examples of optimum robust codes
based on perfect nonlinear functions.

Construction 4.1 (Quadratic Systematic Code) [24] Let x = (x1, x2, · · · ,
x2s, x2s+1), xi ∈ GF (2r), s ≥ 1. A vector x ∈ GF (2(2s+1)r) belongs to the code
iff

x1 • x2 + x3 • x4 + · · ·+ x2s−1 • x2s = x2s+1, (9)

where • is the multiplication in GF (2r) and
∑s

i=1 x2i−1 • x2i is a perfect
nonlinear function from GF (22sr) to GF (2r). The resulting code is a robust
code with R = 2(2s−1)r, n = (2s + 1)r and M = 22sr. The code is optimum
with respect to Definition 3.

Example 2. (Robust Parity) Methods based on linear parity check codes
are often used for on-line error detection in combinational circuits [25]. The
linear 1-dim parity codes can detect all errors of odd multiplicities but offer
no protection for errors of even multiplicities.

As an alternative to the 1-dim parity codes the quadratic systematic robust
codes defined in Construction 4.1 can be used. When r = 1, the function
defined in (9) is known as the bent function. The resulting systematic robust
code has the same redundancy as the linear parity code. Unlike the linear
parity code, the robust code will mask an error with a probability of at most
1
2 regardless of the error multiplicity providing predictable error detection
regardless of the error distribution.

Perfect nonlinear functions from GF (2k) to GF (2k) do not exist [23]. Func-
tions with optimum nonlinearity in this case have Pf = 2−k+1 and are called
almost perfect nonlinear (APN) functions [26]. When f are APN functions,
the robust codes constructed as in Theorem 2 have R = 2. These codes are
not optimum.

Construction 4.2 (Robust Duplication Code) Let x = (x1, x2), x1, x2 ∈
GF (2r)(k = r) . The robust duplication code C contains all vectors x ∈
GF (22r) which satisfy x3

1 = x2 where all the computations are in GF (2r).
The code is a 2-robust code with n = 2r and M = 2r.

As an example, Figure 2 shows the percent of detectable errors as a func-
tion of error multiplicity (number of distorted bits) for 8-bit linear and robust
duplication codes (k = r = 8). The detection capability of linear duplication
codes depends largely on the multiplicity and type of the error. The scheme
offers relatively poor protection for errors of even multiplicities, which can be
exploited by the attacker to increase his chance of implementing a successful
fault injection attack. On the contrary, robust duplication code has almost
completely uniform error detection. This robust code has R = 2. Any error
can be masked for at most two messages. Unlike for the linear codes, regard-
less of what subset of errors is chosen for this robust code the error masking
probability is upper bounded by 2−7.
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(a) (b)

Fig. 2. Percentages of errors detected versus error multiplicities for (a) 8-bit linear
duplication (b) 8-bit robust duplication

4.1 Partially Robust Codes

Robust codes generally have higher complexity of encoding and decoding than
classical linear codes. The quadratic systematic codes from Construction 4.1
require s r-bit multipliers and s−1 r-bit componentwise additions. Assuming
a r-bit multiplier requires r2 two-input gates the encoder for the systematic
quadratic code can be implemented with sr2 + r(s− 1) 2-input gates.

As a tradeoff between robustness and the hardware overhead for compu-
tational devices, partially robust codes were introduced in [15]. These codes
combine linear and nonlinear mappings to decrease the hardware overhead
associated with generation of check bits by the predictor. The encoding of
systematic partially robust code is performed first by using a linear function
to compute the redundant r check bits followed by nonlinear transformation.
The use of the linear code as the first step in the encoding process typically
results in a hardware savings in the encoder or predictor since the nonlinear
function needs to only be computed based on the r bit output of the linear
block. The application of the nonlinear transformation reduces the number of
undetectable errors thus increasing the robustness of the linear codes.

Construction 4.3 (Partially Robust Codes) [16] Let f : GF (2r) →
GF (2r) be a nonlinear function with Pf < 1 and let P : GF (2k) → GF (2r),
r ≤ k be a linear onto function. The set of words in the form (x, f(P (x)) form
a code with 2k−r undetectable errors.

For partially robust codes described in Construction 4.3, the number of
undetectable errors is reduced from 2k to 2k−r compared to the linear code
with the same redundancy. Partially robust codes with k = 128 and r = 32
have been used in [13] for design of private key security devices on AES
resistant to fault injection attacks. Implementation of this approach resulted
in about 80% hardware overhead.
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4.2 Minimum Distance Robust and Partially Robust Codes

A possible variant of the traditional robust robust codes is to include a min-
imum distance into the design criteria. Let ||e|| denote the multiplicity of an
error e (the number of ones in e). A robust code where the Q(e) = 0 for all
errors with ||e|| < d is a d-minimum distance robust code.

Minimum distance robust codes are fully robust codes but also have a
minimum distance larger than one. Since these codes are robust they have
no undetectable errors and the worst case error masking probability is up-
per bounded and predictable. Moreover, they also provide for a guaranteed
100% probability of detection for errors with small multiplicities. Such codes
can be useful for providing the highest protection against the most likely or
most dangerous threat while maintaining a detection guarantee in case of an
unexpected behaviour or attack. Moreover, minimum distance robust or par-
tially robust codes with Hamming distance at least 3 can be used for not only
error detection but also error correction [27]. For constructions of minimum
distance robust and partially robust codes and applications of these codes in
the design of secure cryptographic devices and reliable memory architectures,
please refer to [16, 28, 29].

5 Secure AES Architectures Based on Nonlinear Codes

Encryption in AES-128 (AES with a 128-bit key) involves performing 10
rounds of transformations on a block of 128 bits with the last tenth round
having one less transformation and with the first round being preceded by a
round key addition. (The complete AES specification can be found in [30])
In each of the nine typical rounds there are four transformations: SBox, Shift
Rows, Mix Columns, and Add Round Key. The last round differs from the
rest in that it does not contain the Mix Columns transformation. The SBox
transformation actually involves two operations: inversion in GF (28) followed
by an affine transform which involves a matrix multiplication over GF (2),
followed by addition of a constant vector. With the exception of inversion, all
other transformations and operations are linear (Figure 3), i.e. they can be
implemented using XOR gates only.

When considering only one round, the 128-bit data path can be divided
into four identical independent 32-bit sections. Furthermore, in each of the
four partitions the nonlinear inversion is performed on 8-bit data block. Thus,
the nonlinear section is composed of 16 disjoint blocks and the linear portion
composed of four identical disjoint blocks (Figure 4).

Based on this partitioning, redundant protection hardware can be designed
for each of the two types of blocks. The details of each blocks method of
protection are discussed in the next section.
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Fig. 3. Transformations involved in one typical round of encryption of AES

Fig. 4. The nonlinear portion of one round can be separated into 16 identical
independent blocks. The linear portion can be separated into 4 identical independent
blocks

5.1 Protection of the Nonlinear Block of AES

The nonlinear block performs inversion in GF (28) . Since zero does not have
an inverse, it is defined that the result of the inverse operation on zero is zero.

Let x be the input to the nonlinear block. The fault detection circuitry for
the nonlinear block can be based on multiplication in GF (28) of input and
output vectors to verify the condition

x • x−1 =
{

00000001 if x 6= 0
00000000 if x = 0.

Remark 2. x−1 is an APN function over GF (28) [26]. Hence the code C defined
by {(x, x−1)} is a robust code with no undetectable errors.

To reduce the hardware overhead, we can compute the least r < 8 bits of
the product instead of the whole 8-bit product. The probability that an error
in the inverter will be missed is equal to the probability that two 8-bit vectors
multiplied together will produce the expected r-bit constant Ir. When x = 0,
Ir = 0. Otherwise Ir has 1 for the least significant bit and 0 else where.

Let e = (e1, e2) be the error vector, where e1 ∈ GF (28) is the error at
the output of the original inverter and e2 is the error at the output of the
redundant portion. Then e is missed iff
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Fig. 5. Architecture for protection of nonlinear block. The redundant portion per-
forms partial multiplication in GF (28), (r = 2).

((x−1 + e1) • x)r = Ir + e2, (10)

i.e. the least significant r bits of the product in GF (28) is equal to Ir + e2 or
equivalently x • e1 = e2.

For every nonzero e = (e1, e2), there is at most one solution for x. Thereby
all nonzero errors e will be detected with a probability of at least 1 − 2−r.
Moreover, since error detection depends on the input x, the probability that
e will be missed after m random inputs is 2−rm.

In one round of encryption of AES there are T = 16 disjoint inverters,
each with its own independent error detection. While for a single inverter the
probability of missing an error is constant for all fault multiplicities that is
not the case when multiple inverters are considered together. The probability
that a fault will not be detected if it affects t inverters is qt where q is the
probability of missing a fault in one inverter. (For the proposed architecture
q ≤ 2−r)

Assuming that the distribution of faults is uniform, the probability that
a fault of multiplicity l will affect t out of T inverters can be determined
as PT (t, l) = NT (t,l)

2l , where NT (t, l) =
(
T
t

)
(tl −

∑t−1
j=1Nt(j, l)). Thus, for

AES and its T = 16 inverters the probability of missing a fault of mul-
tiplicity l in the whole nonlinear portion of encryption of one round is
QT (l) =

∑min{T,l}
i=1 qiPT (i, l).

5.2 Protection of the Linear Block of AES

The general architecture used for protection with linear codes is presented in
Figure 6. The architecture is composed of three major hardware components:
original hardware, redundant hardware for predicting the r-bit signature v
(which is a linear combination of components of the output x of the original
device), and an error detecting network (EDN).

The signature predictor contains the majority of the redundant hardware.
The k bits of output of the original hardware and the r redundant output bits
of the signature predictor form the n = k + r extended output of the device.
The extended output forms a codeword of the systematic error-detecting code
which can be used to detect errors in the original hardware or in the Predictor.
It is the EDN which verifies, that the extended output of the device belongs
to the corresponding code, if it does not then the EDN raises an error signal.
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Fig. 6. General architecture for protection of hardware with linear error detecting
codes

In a linear protection scheme the predicted r-bit signature v of the Predictor
is a linear combination of the k-bit output of the original device. ( v = Px ,
where P is a r × k check matrix for the linear code used for protection.)

With only a slight modification, the same architecture used for protection
with linear codes can be used to provide protection based on the system-
atic nonlinear partially robust codes {x, (Px)−1}. The transformation only
requires an addition of two copies of one extra component for multiplica-
tive inverse in GF (2r). The modified architecture is shown in Figure 7. The
extended output of the device is now protected with the partially robust non-
linear code with the properties outlined above. An additional (and identical)
multiplicative inverse is also needed in the EDN to verify the nonlinear sig-
nature. This transformation can be applied to any linear protection method
regardless of what algorithm it is protecting.

As Table 1 shows, one very desirable consequence of the addition of inver-
sion to create a robust code is the reduction in the number of undetectable
errors. The number of undetectable errors is reduced from 2k to 2k−r. When
k = r, the code is robust and all nonzero errors are detectable.

Since large r may be necessary to provide for a sufficiently high error-
detecting probability the use of one large device which takes the multiplicative

Fig. 7. Architecture for protection of hardware with nonlinear partially robust error
detecting codes
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inverse of all of the r-redundant bits might not be practical. Transforming
an implementation protected by a linear code with r = 32 into a robust
systematic code would require several thousands additional 2-input gates.

Fig. 8. Optimized architecture, the multiplicative inverse in split into t = 2 separate
modules

It is possible to tradeoff the level of robustness for the amount of hardware
overhead required to transform linear protection to protection based on sys-
tematic robust codes. Instead of taking one multiplicative inverse for all r-bit
vectors, it is possible to divide the one large inversion into disjoint smaller in-
versions while retaining many of the robust properties outlined earlier. That
is, we can replace multiplicative inverse in GF (2r) by t s-bit disjoint inverses
in GF (2s) to produce the nonlinear r bit output ( r = ts ). Thus, instead of
having two r-bit multiplicative inverses in GF (2r) for the whole design, there
could be 2t inverses in GF (2s) as it is presented in Figure 8 for t = 2. Since
the number of two input gates to implement the inverse is proportional to the
square of the number of bits at its input, a modification where t = 2 would
result in roughly 50% decrease of an overhead associated with the architecture
based on robust codes. As a consequence this also results in a slight decrease
in the level of robustness and an in introduction of errors which are detected
with different probabilities.

Table 1. Error detection capabilities of linear and nonlinear codes

Error Detection Number of Errors
Probability linear Robust (r is odd) Robust (r is even)

0 2k 2k−r 2k−r

1 2n − 2k 2n−1 + 2k−1 − 2k−r 2n−1 + 2k−1 − 2k−r + 2k − 2k−r

1− 2−r+1 0 2n−1 − 2k−1 2n−1 − 2k−1 − 2k+1 + 2k−r+1

1− 2−r+2 0 0 2k − 2r
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Protection of the Linear Block of AES Based on Minimum
Distance Robust and Partially Robust Codes

Protection architectures for the linear block of AES based on minimum dis-
tance robust and partially robust codes can be found in [16]. It was shown
that for slow fault injection mechanism, where the attacker cannot change the
injected faults at every clock cycle, minimum distance robust and partially
robust codes can provide better fault detection capabilities than linear codes
and traditional robust codes.

Table 2. Comparison of protection architectures of the linear block of AES based
on different alternatives

Code[1] Number of 2-Input Gates Overhead(%) |Kd|[2] Qm
[3]

Predictor EDN
Linear parity 31 32 30% 232 0
Robust parity 185 32 100% 0 0.5

Min. dist. robust [16] 196 64 120% 0 0.5
Hamming 253 80 153% 232 0

Gen. Vasil’ev [16] 292 116 188% 26 0.5
(x, (Px)3) [16] 432 266 322% 226 2−5

[1]: All codes have 32 information bits.
[2]: |Kd| is the number of undetectable errors.
[3]: Qm is the maximum error masking probability of detectable errors.

The hardware overhead in terms of the number of 2-input gates required
for the implementation of the predictor and EDN for different alternatives
are compared in Table 2. Compared to architectures based on linear codes,
architectures based on robust or partially robust codes have better protection
against strong fault injection attacks at the cost of higher hardware overhead.
The architecture based on (x, (Px)3) partially robust codes requires more than
300% hardware overhead for the protection of linear block. Since the nonlinear
block of AES is much larger than its linear block, the overall percentage
hardware overhead of architectures based on robust or partially robust codes
is much smaller than the data presented in Table 2. In [12], it was shown
that architectures based on (x, (Px)3) partially robust codes require less than
80% overhead to protect the whole AES device. For more information about
minimum distance robust codes and their applications, please refer to [16, 28,
29].

6 Secure FSM Design Based on Nonlinear Codes

Protecting the datapath of cryptographic algorithms is the focus of existing
countermeasures against active fault attacks. However, even if the datapath
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Idle Init Load1 Load2
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start=1

start=0

count < 0

Fig. 9. Fault injection example on the control unit of the Montgomery Ladder
Algorithm with Point of Attack indicated by the dashed transition [17]

is protected with the most secure scheme, the unprotected control unit may
cause a serious vulnerability on the system. For instance, by injecting specifi-
cally chosen errors into the part of the IC that implements the control units,
the adversary may bypass the encryption states in an FSM to conveniently
gain access to secret information. Similarly, in a cryptographic authorization
protocol the state which checks the validation of login information can be
skipped with minimal effort. Thereby, the adversary can directly imperson-
ate a valid user. Such attacks are indeed practical since states in an FSM
are implemented using flip-flops, which can be easily attacked using bit-flips
realized through fault injections. For example, Figure 9 shows an example at-
tack scenario on the FSM of the Montgomery Ladder Algorithm [17]. In their
paper, Gaubatz et al. show that the attacker can recover the secret exponent
using this attack with mild effort. As a result, secure FSM design becomes an
important problem.

6.1 The Error Detection Technique

In this section, we describe how to use the nonlinear error detection codes for
securing the next-state logic of an FSM. However, we first provide the details
of a specific nonlinear coding structure which is the main building block of
our security scheme.

Initial version of the robust codes defined in [15] do not preserve arith-
metic and hence cannot be applied to protect arithmetic structures against
fault attacks. As a solution to this problem, a new type of non-linear arith-
metic codes called “robust quadratic codes” is proposed in [14]. The following
definition from [14] rigorously defines this particular class of binary codes.

Definition 5. [14] Let C be an arithmetic single residue (n, k) code with r=n-
k redundant bits. Then Cp = {(x,w)|x ∈ Z2k , w = (x2 mod p) ∈ GF(p) }
where 2k − p < ε and r=k.

In this definition, ε is used to represent a relatively small number. As will
be explained in Theorem 3, ε determines how secure the coding scheme is.
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As ε gets smaller, the utilized code becomes more secure. In addition, in this
definition, Z2k is used to represent k-bit integers. While quantifying the error
detection capability of Cp, [14] makes the following uniformity assumption:

Assumption 1 The values of x ∈ Z2k in Cp are uniformly distributed and
each value of x is equal likely.

Under this assumption, reference [14] provides the following bound on the
error masking equation which quantifies the error detection performance of
the nonlinear code Cp.

Theorem 3. [14] For Cp, maxe 6=0(Q(e))=2−k·max(4, 2k − p+ 1).

Our protection scheme is built on top of this coding structure. The main
idea is to encode the variables of the FSM using the non-linear robust code
(n, k) as in Definition 5, and to use the error detection capability of this coding
scheme for fault detection. However, a direct implementation of this coding
scheme for an FSM would cause a serious security problem. Note that the
specific error detection technique proposed by Gaubatz et al. works under the
uniformity assumption which states that all the codewords are observed with
the same probability (Assumption 1). This is a valid assumption if the code
is applied to an arithmetic structure (such as an adder or a multiplier) where
the inputs, and hence the outputs tend to be uniformly distributed. However,
when the FSMs are concerned, this assumption becomes invalid because

1. depending on the FSM, some states may be visited more than others while
the device is in operation, and

2. the number of inputs and states in an FSM are usually relatively small
over a large domain.

Due to this non-uniform behavior, the security level provided by Theorem
3 does not apply if this non-linear coding scheme is directly applied to an
FSM. In this case, the error detection probabilities of Theorem 3 will be much
smaller because the number of valid codewords (fault free next-state values)
determine the value of M=|Cp| in the error masking probability of (2).

If the whole state space is being used uniformly by the valid next-state
values (information carried by the code), then |Cp|=2k as in this theorem.
However, in the non-uniform case of FSMs, the value of |Cp|=t, where t is
the number of states in the FSM. This alone dramatically increases the error
masking probability of the detection scheme when t� 2k (which is usually the
case for reasonable security levels). In addition, if there are some states that
are visited more than others, this will decrease the effective value of |Cp| even
further, and hence will also cause an increase in the error masking probability.

Our solution to this problem is built around two innovative ideas:

• Arithmetic formulation of the next-state logic using Lagrange interpola-
tion.
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• Randomized embedding to solve the nonuniformity problem discussed be-
fore. In this method, each state value will have multiple images and this
will provide unpredictability and uniformity.

More specifically, we first propose making state transitions work according to
an arithmetic formula in a non-redundant field GF(q), i.e. s′=f(s, i) where s′

is the next-state value, i is the input, and s is the current-state value. In this
setting, s′, s, and i ∈ GF(q).

However, this is not sufficient to solve the previously discussed non-
uniformity problem because even though the state transitions are now working
according to an arithmetic formula, the same non-uniform behavior is ob-
served at the state registers. To solve this problem, we need unpredictability.
In other words, the state machine variables must be practically unpredictable
to the attacker. As a result, as the second step of the solution, we propose
embedding the non-redundant field GF(q) into a larger redundant ring R=ZM

using a transformation φ: GF(q) 7→ R (or φ: R 7→ R) where φ is a homomor-
phism. Therefore, all the arithmetic operations defined for GF(q) can also
be carried in R. In our case, randomized embedding is achieved by defining
the ring modulus M and the scaling factor S with M=S × q where q is the
prime defining the field GF(q). In this setting, we define the function φ as
φ(s)=s+R×q (mod M) where R is a randomly chosen value from ZS . This
scaling effectively partitions the ring R into co-sets, of which only one contains
the non-redundant codewords. As a result of this scaling, each state and input
value now has S images. In other words, the same state and input will now be
represented by S different values in the ring R depending on the value of the
random R. This will increase the uniformity of the state values observed at
the output of the next-state logic, and essentially increase the error detection
capability of the non-linear coding technique we propose in this section. Note
that when the state value is reduced using q, we obtain the non-redundant
value of the state. We now formally define a randomized robust code by merg-
ing this embedding with the robust code definition introduced by Gaubatz et
al. [14] in Definition 5 as follows.

Definition 6. [18] We define the coset randomized robust code (n, k) with
r=n-k redundant bits as C = {(x,w)|x = y +R × q (mod M),∀x and ∀y ∈
ZM , w = x2 (mod p) ∈ GF(p) , R ∈ ZS} where r=k, k ≥max(dlog2Me,
dlog2 pe).

After the randomization of the next-state function f is achieved, we can use
individually robust arithmetic circuits such as multipliers, adders, etc. to build
the proposed robust FSM. To achieve this, we utilize the non-linear code ex-
plained in Definition 6 to encode the state variables and inputs. Next, we
use the individually robust arithmetic circuits that will work in the ring R to
implement the next-state function f . Robust adder and multiplier implemen-
tation examples that work under the utilized code are provided in [14].

In the following theorem, we establish the error detection probability of
our scheme. A detailed proof of this theorem can be found in [18].
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Theorem 4. [18] For the nonlinear code C that is defined as in Definition 7,
the error masking probability will be upper bounded by S−1·max(4, 2k− p+ 1),
where S >max(4, 2k − p+ 1).

Example 3. Consider the FSM of Figure 9. As discussed before, this FSM
bounces between “Square” and “Multiply” states most of the time. If we select
GF(q)=GF(11) and S=390451572, then M=4294967292 and we will need a
(64, 32)-code with p=4294967291. In this case, injected errors are detected
with a probability of at least 1−S−1·max(4, 2k−p+1)=1−(232−4294967291+
1)/(2× 390451572) ' 1− 2−27. The denominator in this case becomes 2× S
because the “Square” and “Multiply” states and their images will be uniformly
distributed.

6.2 Case Study

In this section, we present the application of the proposed technique to the
example FSM shown in Figure 9. The first step is to use two-level Lagrange
interpolation to generate an algebraic polynomial for the next state logic. This
polynomial represents the next-state s′ as a function of the input and current
state variables i and s, respectively. For the example FSM we investigate
here, the following polynomial (see [18] for more details on the computation
process) shows the result of the two-level Lagrange interpolation

s′ = f(s, i) = (4i)s6+(2+4i)s5+(3+6i)s4+(1+2i)s3+(5+3i)s2+(5+i)s+i.
(11)

This function can be implemented in an efficient way. The idea is to add time-
redundancy and reuse the expensive hardware modules (e.g. the multiplier and
the adder) in a serial manner. This can be achieved by rearranging the next-
state polynomial of (11) using Horner’s method. In this case, the next-state
equation becomes

s′ = ((((((4i)s+(2+4i))s+(3+6i))s+(1+2i))s+(5+3i))s+(5+i))s+i. (12)

Once this polynomial is computed, the next step is to encode the input and
current state values using the coset randomized code of Definition 6. In this
case, the input will be (i, |i2|p) and the current state will be (s, |s2|p) where i,
s ∈ ZM . Next, using the computed function f(s, i), we compute (s′, |(s′)2|p).
In this computation, all the main datapath operations are conducted over
modulo M . Also note that each arithmetic unit (both in function f and ran-
domizer unit) is a robust one which implements nonlinear error detection in-
dividually. For example, all the multipliers in function f and randomizer unit
compute the output and its redundant checksum using the inputs and their
redundant checksums. These individual components can detect an injected
fault and raise an error signal. Next, using the randomizer unit, we compute
z=s′ +R× q (mod M). These operations are conducted using robust arith-
metic units and are over modulo M as well. The resulting randomized next
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Fig. 10. Time redundant (serial) arithmetic hardware implementation of the next-
state logic

state value is then fed as the current state value into the next state logic in
the next iteration. Note that we do not need to recover s′ for the following
next state computation. Since the function f(s, i) and randomizer unit work
modulo M , the next state value will always be a randomized image of the
correct next state value. The non-redundant form of the next state value (∈
GF(q)) can always be computed by reducing the randomized images modulo
q. The resulting implementation is shown in Figure 10 for this specific exam-
ple. For details on FSM security using nonlinear codes, the reader is referred
to [18].

7 Secure ECC based on Nonlinear Codes

Elliptic Curve Cryptosystems (ECC) have also been a target of active fault
attacks. In [31], Biehl et al. showed that using fault injection, ECC point
multiplication can be forced to be computed over a less secure elliptic curve.
As a result, it becomes relatively easy to solve the discrete log problem upon
which the ECC is based on. They also proposed implementing bit faults during
random moments of a multiplication operation and showed that it is possible
to reveal the secret key d in a bit-by-bit fashion. In [32], authors relaxed
the assumptions of Biehl et al. in terms of the location and precision of the
injected faults. Even with this new attacker model, their attack essentially
recovers the (partial) secret in ECC discrete log problem. Similarly, in [33],
Blomer et al. proposed the so-called “Sign Change Fault” attacks on the ECC
based systems. Using this attack, they recover the secret scalar in polynomial
time. In this section, we will discuss how nonlinear robust codes can be used
to protect ECC operations.

7.1 Elliptic Curve Cryptography Overview

This section briefly describes the elliptic curve discrete logarithm prob-
lem (ECDLP) and ECC formulations over finite fields of prime character-
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istics. A point P of order n, selected over an elliptic curve E defined over
a finite field GF(p), can be used to generate a cyclic subgroup 〈P 〉 =
{∞, P, 2P, 3P, . . . , (#n− 1)P} of E(GF(p)).

The ECDLP is the underlying number theoretical problem used by ECC,
and it is defined as determining the value k ∈ [1,#n− 1], given a point P ∈
E(GF(p)) of order #n, and a point Q = kP ∈ 〈P 〉. In a cryptosystem, the
private key is obtained by selecting an integer k randomly from the interval
[1,#n − 1]. Then corresponding public key is the result of scalar point mul-
tiplication Q = kP , which is computed by a series of point additions and
doublings.

ECC can be built upon two curves: 1) Weierstrass 2) Edwards. In this
chapter, we focus on Edwards curves. However, note that the technique we
propose is a generic one that can be applied to all elliptic curve structures
(Weierstrass and Edwards) and all coordinate systems (projective and affine).

Edwards Formulation for Elliptic Curves

An elliptic curve E defined over a prime field GF(p) (with p > 3) can be
written in the Edwards normal form as:

E(GF (p)) : x2 + y2 = c2(1 + dx2y2), (13)

where the parameter c can be chosen as 1 without loss of generality. Addition
of two points P = (x1, y1) and Q = (x2, y2) in E(GF(p)) resulting in a third
point P +Q = (x3, y3) in E(GF(p)) can be computed as:

x3 =
x1y2 + y1x2

1 + dx1x2y1y2
(mod p) (14)

y3 =
y1y2 − x1x2

1− dx1x2y1y2
(mod p).

This equation is valid even if P = Q, and it never results in point at in-
finity. An Edwards elliptic curve defined as in (13) is converted to homoge-
neous projective coordinates as E(GF(p)) : X2 + Y 2=Z4 + dX2Y 2 where
X = xZ, Y = yZ. The following formulas compute the unified point addition
and doubling (15), and optimized doubling (16) operations with projective
coordinates [34]:

X3 = Z1Z2(X1Y2 + Y1X2)(Z2
1Z

2
2 − dX1X2Y1Y2) (mod p) (15)

Y3 = Z1Z2(Y1Y2 −X1X2)(Z2
1Z

2
2 + dX1X2Y1Y2) (mod p)

Z3 = (Z2
1Z

2
2 − dX1X2Y1Y2)(Z2

1Z
2
2 + dX1X2Y1Y2) (mod p)

X3 = 2X1Y1(X2
1 + Y 2

1 − 2Z2
1 ) (mod p) (16)

Y3 = (X2
1 − Y 2

1 )(X2
1 + Y 2

1 ) (mod p)
Z3 = (X2

1 + Y 2
1 )(X2

1 + Y 2
1 − 2Z2

1 ) (mod p).
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7.2 The Error Detection Technique

We mainly propose applying nonlinear codes to secure operations conducted
over elliptic curves, i.e. point addition and doubling operations against active
fault injection attacks. In this chapter, we are focusing on ECC structures
based on prime fields GF(p), yet a similar idea can be applied to protect
elliptic curves that are defined over binary fields as well.

The main idea is to encode the coordinates of elliptic curve points using
the systematic nonlinear (n, k)-code of Definition 5. This code essentially uses
redundancy for error detection. We define the following error check function
on a point coordinate X ∈ GF(p) to obtain a non-linear error check-sum

w = h(X) = X2 (mod p) ∈ GF (p). (17)

Consequently, the point coordinate X is encoded as (X,h(X)). We now for-
mally define a robust code by embedding the nonlinear code definition intro-
duced by Gaubatz et al. [14] into elliptic curves as follows.

Definition 7. [19] We define the prime field robust code (n, k) with r=n-k
redundant bits as C = {(x,w)|x ∈ GF (p), w = x2 (mod p) ∈ GF (p)} where
r=k, k ≥ dlog2 pe.

In the non-redundant case, a point P on an elliptic curve E is repre-
sented as P=(X,Y, Z) (assuming projective coordinates). However, with
the new robust code definition we have, each point will be represented as
P=(X,Xw, Y, Yw, Z, Zw), where subscript w is used to show the checksum
portions.

The following theorem establishes the security level provided by the non-
linear code described in Definition 7 for any elliptic curve E. The detailed
proof of this theorem can be found in [19].

Theorem 5. [19] For the nonlinear code C of Definition 7, the error masking
probability is upper bounded by max(4, 2k − p+ 1) · (p+ 1− 2

√
p)−1.

Example 4. Consider the NIST recommended prime field curve P-192. For this
curve, (2k − p + 1) = 18446744073709551618 ≈ 264. In this case, according
to Hasse’s theorem, the number of valid points on this curve will be at least
(p+1−2

√
p) ≈ 2192. As a result, minimum error detection capability proposed

by our scheme in this case will be 1− 264/2192=2−128.

7.3 Proposed Point Addition/Doubling Construction

In this section, we provide the secure implementation of the unified point
addition/doubling operation for Edwards curves. This implementation utilizes
the error detection technique that is described in Section 7.2. The main idea
of the nonlinear error detection is to create two computation paths that are
nonlinear to each other. As the first step to achieve this, the coordinates of
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the input points in an operation (point addition or doubling) are encoded
using the nonlinear code described in Definition 7. One of the nonlinear paths
is the original non-redundant datapath. The second path, which is called the
“predictor” block, runs in parallel to the non-redundant path, and essentially
predicts the checksum of the results of the original computation. At this point,
it is important to note that we do not simply replicate the original hardware
to implement the predictor. For each datapath, the total operation count is
expressed in terms of multiplications, divisions and addition&subtractions,
where M stands for multiplication, D stands for division, and A stands for
addition or subtraction.
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Fig. 11. Secure Edwards projective unified point addition

For Edwards curves that are using projective coordinates, the unified point
addition operation computes the point P3=(X3, Y3, Z3) using the input points
P1=(X1, Y1, Z1) and P2=(X2, Y2, Z2). The explicit formula that implements
the point addition is shown in (15). In the following, we show how the predictor
block works. It mainly computes the expected X3w, Y3w, Z3w using the inputs
and their checksums. More specifically, the expected checksums should be

X3w = (X3)2 = [Z1Z2(X1Y2 + Y1X2)(Z2
1Z

2
2 − dX1X2Y1Y2)]2,

Y3w = (Y3)2 = [Z1Z2(Y1Y2 −X1X2)(Z2
1Z

2
2 + dX1X2Y1Y2)]2,

Z3w = (Z3)2 = [(Z2
1Z

2
2 − dX1X2Y1Y2)(Z2

1Z
2
2 + dX1X2Y1Y2)]2.
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Next, we express the terms on the right hand side as a function of the
inputs and their checksums. As an example, we show how to achieve this for
X3. The same method can also be applied to the Y and Z coordinates as well.

X3w = [Z1Z2(X1Y2 + Y1X2)(Z2
1Z

2
2 − dX1X2Y1Y2)]2

= Z2
1Z

2
2 (X2

1Y
2
2 + Y 2

1 X
2
2 + 2X1Y2Y1X2)(Z4

1Z
4
2 − 2Z2

1Z
2
2dX1X2Y1Y2 +

d2X2
1X

2
2Y

2
1 Y

2
2 )

= Z1wZ2w(X1wY2w + Y1wX2w + 2α)(Z2
1wZ

2
2w − 2Z1wZ2wdα+

d2X1wX2wY1wY2w),

where α=X1X2Y1Y2. After some algebra, we get the following equation ar-
ray for each coordinate of the resulting point P3. These equations mainly
represent the function implemented by the predictor unit in our design.

α = X1X2Y1Y2;
A = Z1wZ2w; B = X1wY2w; C = Y1wX2w; D = X1wX2w;
E = Y1wY2w; F = dα; G = B + C + 2α; H = D + E − 2α;
K = A2 + F 2; L = AF ; M = K − 2L; N = K + 2L;

X3w = AGM ; Y3w = AHN ; Z3w = MN ;

The total operation count for this predictor unit will be 14M + 7A. Note
that, all the operations in this setup are modulo p, where p is the prime that
generates the finite field the elliptic curve is defined over.

The hardware implementation of this technique is shown in Figure 11.
In this figure, the block on the left is the original, non-redundant datapath
that computes the unified point addition. The predictor block mainly imple-
ments the X3w, Y3w, and Z3w computations defined above. Next, the output
coordinates are squared to compute their checksums. Finally, the error de-
tection network (EDN) compares the results of these two paths. If all the
resuts match, this means that the conducted operation is fault free. However,
if there is a mismatch in any one of the coordinate comparisons, this points
to an injected fault. Hence, an error signal is asserted. Once the error signal
is asserted, either the secret can be flushed or the device can be reset. For
details on ECC security using nonlinear codes, the reader is referred to [19].

8 Conclusion

Nonlinear robust codes is one of the most effective solutions against active
fault injection attacks. In this chapter, we provided a profound analysis of
nonlinear codes by investigating various constructions and their applications.
More specifically, we discussed protection of the AES datapath, FSMs, and
ECCs using nonlinear robust codes.
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