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Abstract In this paper we propose memory protec-
tion architectures based on nonlinear single-error-
correcting, double-error-detecting (SEC-DED) codes.
Linear SEC-DED codes widely used for design of re-
liable memories cannot detect and can miscorrect lots
of errors with large Hamming weights. This may be
a serious disadvantage for many modern technologies
when error distributions are hard to estimate and multi-
bit errors are highly probable. The proposed protec-
tion architectures have fewer undetectable errors and
fewer errors that are miscorrected by all codewords
than architectures based on linear codes with the same
dimension at the cost of a small increase in the latency
penalty, the area overhead and the power consumption.
The nonlinear SEC-DED codes are generalized from
the existing perfect nonlinear codes (Vasil’ev codes,
Probl Kibern 8:375-378, 1962; Phelps codes, SIAM
J Algebr Discrete Methods 4:398-403, 1983; and the
codes based on one switching constructions, Etzion and
Vardy, IEEE Trans Inf Theory 40:754-763, 1994). We
present the error correcting algorithms, investigate and
compare the error detection and correction capabilities
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of the proposed nonlinear SEC-DED codes to linear
extended Hamming codes and show that replacing lin-
ear extended Hamming codes by the proposed nonlin-
ear SEC-DED codes results in a drastic improvement
in the reliability of the memory systems in the case
of repeating errors or high multi-bit error rate. The
proposed approach can be applied to RAM, ROM,
FLASH and disk memories.
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1 Introduction

The reliability of memory is a crucial consideration
for today’s digital devices. For some designs as much
as 70% of the chip area is taken by the embedded
memory and this number is expected to reach 90% by
2011 [13, 30]. This large area of the chip is especially
vulnerable to single-event-upsets (SEUs) caused by
single, energetic particles like high-energy neutrons and
alpha particles. SEU temporarily alters the state of the
devices and results in soft errors. These errors are non-
destructive and appear as unwanted bit flips in memory
cells and registers. Continuing scaling of device features
and performance increases the likelihood of errors,
which makes the error models more unpredictable. As
the speed of the devices becomes higher the relative
size of the clock transition timing window increases and
this makes devices more sensitive to SEU [16]. Simi-
larly, decreased voltage levels for modern technologies
make bit inversions more likely to occur [9].
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The dangers of possible errors in memories resulting
from SEUs are often mitigated with the use of linear
single-error-correcting, double-error-detecting codes
(SEC-DED). These codes have minimum Hamming
distance four and are able to correct all single bit
errors and detect all double bit errors. In the presence
of multi-bit errors, however, the reliability of systems
utilizing error protection architectures based on these
codes may be questionable. For any linear SEC-DED
codes with k information bits, the number of unde-
tectable multi-bit errors is 2. In addition to this, a huge
number of multi-bit errors will be miscorrected. In the
case where SEU results in multi-bit distortions with
high probability, these codes may not be sufficient to
provide a high reliability. Anomalies of systems caused
by multi-bit upsets (MBU) have already been reported
[36, 37].

The increase of the MBU rate in deep submicron
technologies deteriorates the situation even further. In
65nm triple-well SRAMs with a thin cell architecture,
the rate of multi-bit errors caused by neutron induced
SEU increases by a factor of ten compared to that in
90 nm technologies—nearly 55% of the errors due to
neutron radiation were multi-bit errors [12]. Although
there are mechanisms like bit interleaving [27] that
can be used to minimize the error rate contribution
of multi-bit errors, whether it is enough under such
high MBU rate is still unknown. Moreover, the ad-
vantage of bit interleaving comes at a price of more
layout constraints, which may result in larger power
consumptions and longer access times. Thereby, mem-
ory protection architectures which can provide better
protection against multi-bit errors than that based on
classical linear codes are in demand.

Errors that are undetected (miscorrected) by some
but not all of the codewords are called conditionally
detectable (miscorrected) errors. Linear codes do not
have conditionally detectable (miscorrected) errors.
All errors are either 100% detected (corrected) or
not detected (corrected) at all, which is bad for the
detection (correction) of repeating errors, since an error
e will always be masked (miscorrected) as long as it
is masked (miscorrected) for one single message. Re-
peating errors can occur in many situations. In [25], it
was shown that transient faults lasting for more than
one clock cycle are possible for new technologies. If
a SEU lasts for several consecutive READ/WRITE
cycles, it is possible that different messages written into
the same memory cell are affected by the same error
pattern. Another example of repeating errors is a hard
error caused by a permanent fault in the device that is
unrecoverable by re-writing. These errors may repeat
themselves until the memory is replaced. For memories
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with repeating errors, more powerful error correcting
codes are required.

In this paper we analyze the limitations of exist-
ing error correcting architectures for memories and
show how nonlinear robust codes can be applied to
make memories more reliable in the presence of unpre-
dictable environments where the error distributions are
unknown or not stationary.

For any systematic code C, let f be the encoding
function mapping the information bits x in a code-
word onto redundant bits. C is nonlinear if there ex-
ists nonzero error vector e such that there is at least
one x satisfying f(x @ e) # f(x) ® f(e), where @ is the
binary addition operation. If such x exists for every
nonzero error vector e, C is a nonlinear robust code and
has no undetectable errors. Otherwise, C is a nonlinear
partially robust code, which has much smaller number
of undetectable errors but the same length and the
number of information bits as linear codes.

We propose several architectures based on nonlinear
SEC-DED partially robust codes, i.e. extended Vasil’ev
codes and extended Phelps codes, for single bit error
correction in memories. These codes have fewer un-
detectable errors and fewer multi-bit errors which are
always miscorrected while requiring a latency penalty,
hardware overhead and power consumption compa-
rable to that of the conventional linear SEC-DED
codes. Moreover, extended Vasil’ev codes and ex-
tended Phelps codes have conditionally detectable and
conditionally miscorrected errors. The detection or cor-
rection of these errors is message dependent. The more
messages the error affects, the smaller the error mask-
ing probability is. For memories with repeating errors,
extended Vasil’ev codes and extended Phelps codes
have more advantages over linear codes. We show
that linear extended Hamming codes can be replaced
by nonlinear extended Vasil’ev codes or nonlinear ex-
tended Phelps codes resulting in improved reliability in
the presence of multi-bit distortions or repeating errors.

The rest of the paper is organized as follows. In
Section 2, previous work on error correcting codes
for design of reliable memories is summarized. In
Section 3, we clarify the error model used in this paper.
In Section 4, we give the definition of robust codes,
partially robust codes, minimum distance robust and
partially robust codes and several bounds that can be
used to evaluate and compare the error detection capa-
bilities of the codes. In Section 5, several new construc-
tions of minimum distance robust and partially robust
codes are presented. The error detection kernels of
Hamming, Vasil’ev, Phelps and one switching codes are
shown and the advantages of Vasil’ev codes and Phelps
codes are demonstrated. In Section 6, we compare three
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memory architectures based on the linear extended
Hamming code, the extended Vasil’ev code and the
extended Phelps code and show the benefits of utilizing
the extended Vasil’ev code or the extended Phelps
code to protect memory devices. The error detection
and correction algorithms for the extended Vasil’ev
code and the extended Phelps code are given and the
latency penalty, the hardware overhead and the power
consumption of the three architectures are compared.
We conclude the paper in Section 7.

Our initial results on applications of SEC-DED non-
linear codes for design of reliable memories can be
found in [40].

2 Previous Work

Since the basic construction of SEC-DED codes was
presented by Hamming in 1950 [14], a number of
modifications have been proposed. In [15], a class
of optimal minimum odd-weight-column SEC-DED
codes was constructed for better performance, cost
and reliability. To further simplify the encoding and
decoding complexity, the author in [24] proposed a
coding technique requiring less ones in the parity
check matrix than the code presented in [15]. In [2],
a hardware efficient method was proposed to construct
SEC-DED-AUED systematic codes that can also
detect all unidirectional errors. For protecting byte
oriented memories, SEC-DED-SBD codes were pro-
posed in [5, 35] and [7]. These codes are known as
single-error-correcting, double-error detecting, single-
byte-error-detecting codes and are able to detect all
single byte errors. SEC-DED-SBD codes that are
also able to correct any odd number of erroneous bits
per byte were proposed in [31]. To enhance the error
correction capability of SEC-DED codes, the author in
[8] constructed single-error-correcting, double-error-
detecting, double-adjacent-error-correcting (SEC-
DED-DAEC) code by selectively avoiding certain
types of linear dependencies in the parity check matrix.
These codes use the same number of check bits and
the similar overhead to other known SEC-DED codes
and have the advantage that it can correct all adjacent
double errors. In [6], the author constructed single-
byte-error-correcting, double-byte-error-detecting codes
(SBC-DBD), which can provide complete single
byte error correction capabilities. In [23], double-
error-correcting and triple-error-detecting code was
proposed to correct all double bit errors. The well
known Reed-Solomon code, as another example, was
utilized in Hubble Space Telescope to protect 16 Mbit
DRAMs manufactured by IBM [42].

All the codes mentioned above are linear codes.
They concentrate their error detection and correction
capabilities on a specific type of errors (e.g. errors with
small multiplicities or belonging to the same byte).
The reliability of the memory systems based on these
codes can not be guaranteed when the MBU rate is
high.

Some memory protection architectures based on
nonlinear codes have also been proposed in the com-
munity. In [3], efficient single error correcting and
d(d > 2)-unidirectional error detecting codes were used
to protect memories. Another nonlinear error detecting
code—Berger code [1], was used to detect unidirec-
tional errors in flash memories. These existing protec-
tion architectures based on nonlinear codes, however,
were mainly designed for unidirectional error models.
In the presence of symmetric errors, the reliability of
the protected memory systems can not be guaranteed.

Nonlinear robust codes have been proposed as a
solution to the limitation of minimum distance linear
error detecting codes in the presence of multi-bit errors.
The nonlinear robust codes are designed to provide
equal protection against all errors thereby eliminating
possible weak areas in the protection. Several variants
of robust codes have been proposed. These variants
allow tradeoffs in terms of robustness and hardware
overhead for many architectures. Robust and partially
robust codes have been described in [11, 18, 19].
Robust and partially robust codes with minimum dis-
tance larger than two presented in this paper are able to
correct errors with small multiplicities and are promis-
ing alternatives to linear error correcting codes in ap-
plications where protection against multi-bit errors is
important. We will overview several constructions for
these codes in Section 5.

3 Error Model

In this paper we assume that faults (e.g. SEU, MBU,
stuck-at faults, pattern-sensitive faults, dynamic faults,
etc.) manifest themselves as additive errors at the out-
put of the memory. Let x be the non-distorted output,
e be the error vector and X be the distorted output.
Then ¥ = x ®e, where @ is the XOR operation. If
faults exist but do not manifest at the output of the
memory, e will be the all-zero vector and X = x. No
harm will be caused by the presence of these faults.
The reliability of the memory protection architecture
is estimated by analyzing the capabilities of detecting
or correcting the additive errors at the output of the
device. This error model is commonly used to analyze
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the performance of error control codes used for the
protection of memories (see references in Section 2).

4 Definitions
4.1 Robust and Partially Robust Codes

Throughout the whole paper we denote by “@” the
component-wise XOR and “-” the component-wise
AND operation of binary vectors. We denote by
(n, k, d) a code of length n, dimension k£ and minimum
distance d, Most of the results can be easily generalized
for g-ary case, where ¢ = p® and p is a prime.

Definition 1 (Kernels of the code) For any error cor-
recting code C € GF(2"), the detection kernel K is the
set of errors that are masked by all codewords.

Ky={ele®ce C VceCl (1)

It is easy to show that K is a linear subspace of C. If
C is linear, K; = C. Denote by A the error correction
algorithm for code C. Denote by E the set of errors
that A attempts to correct. The correction kernel K, is
defined as follows:

K.=lele¢ E\Nce C,3¢ € E,A(e®c)=A(e ®0)}.
(2)

Throughout this paper we denote by w, the dimension
of Kd.

The detection kernels of different codes will be
analyzed and compared in this section. The correc-
tion kernels, which are related to the error correction
algorithms, will be discussed in Section 6.

Example I (Kernels of Binary Linear Hamming
Codes) A (n,n — [log,(n+ 1)],3) linear Hamming
code C C GF(2") has minimum distance 3 and is
able to correct all single bit errors. Denote by H the
parity check matrix of C. An error e is undetectable
if and only if e is a codeword (He = 0). Thereby the
detection kernel K, of a Hamming code is C itself. For
single error correcting codes E = {e| lle|]| = 1}, where
[le|| is the multiplicity of the error. A multi-bit error
e, |le|]| > 1 will be miscorrected if and only if it has
the same syndrome as some single bit error. So the
correction kernel of Hamming code is {e|He = He;},
where e} is an error vector of Hamming weight one
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and He is the matrix multiplication in binary field.
Obviously, K; and K, are disjoint. For perfect linear
Hamming code, K;|J K. |J E = GF(2").

A main characteristic of traditional linear error
detecting codes is that they concentrate their error
detecting power on a small subset of errors which are
assumed to be the most likely to occur. Typically, such
codes concentrate their error detection on errors of
a small multiplicity. They are designed to guarantee
detection of all errors with a multiplicity less than d.
Error detection beyond the minimum distance of the
code is typically not a part of the design criteria and
can be unpredictable and ineffective. While for some
classes of errors the codes provide 100% protection, for
a very large class of errors linear codes offer no protec-
tion for all messages. For any linear systematic error
detecting code of length n and dimension k there are
2% undetectable errors. Linear codes have the largest
detection kernel K, (the set of undetectable errors) of
any class of systematic codes with the same n and k.

Robust codes are designed to provide guaranteed
level of detection against all errors. These codes are
characterized by their error masking probability Q(e),
which is the fraction of codewords that mask a given
error e.

l{clce C.copee Cl

C ®)

Qe) =

Definition 2 The code C is robust iff max,.o O(e) < 1,
or equivalently the detection kernel of the code con-
tains only the zero vector K; = {0}.

Robust codes are optimal when the maximum Q(e)
for all errors is minimized [20]. For a robust code the er-
ror masking probability is bounded for nonzero errors.
Most robust codes do not have a minimum distance
larger than one and do not guarantee 100% detection
probability for any subset of errors. A possible variant
of the robust codes is to include a minimum distance
into the design criteria.

Definition 3 Let ||e|| denote the multiplicity of an error
e. A robust code where Q(e) = 0 for all |le|]| < d,e #0
is a d-minimum distance robust code.

Example 2 Consider a 4-bit one hot code C = {0001,
0010, 0100, 1000}. It is easy to verify that for every
nonzero error e € GF(2%), there are at most two ¢ € C
satisfying ¢ @ e € C. Thereby, O(e) = % <0.5,
|Kq| = {0} and C is robust. Moreover, for any single bit



J Electron Test (2010) 26:559-580

563

error e, there is no ¢ € C satisfying ¢ @ e € C. The code
C is a 2-minimum distance robust code.

Minimum distance robust codes are robust codes
with a minimum distance larger than one. Since these
codes are robust they have no undetectable errors and
the worst case error masking probability is bounded
by max..o Q(e) < 1. However, unlike traditional robust
codes they also provide a guaranteed 100% probability
of detection of errors of small multiplicities (||e|| < d).
These codes can be useful for providing the highest
protection against the most likely or most dangerous
threat while maintaining a detection guarantee in case
of an unexpected behavior.

For some applications the error characteristics of ro-
bust codes can be considered too pessimistic. Partially
robust codes and minimum distance partially robust
codes (see Definition 4) allow for a tradeoff among
robustness, decoding complexity and overheard, which
fill the gap between the optimistic linear codes and pes-
simistic robust codes. Several constructions of optimal
or nearly optimal minimum distance partially robust
codes are given in Section 5.2.

Definition 4 A (n, k, d) code with a detection kernel
smaller than 2% is a partially robust code. If the code also
has a minimum distance greater than one it is referred
to as a minimum distance partially robust code.

Example 3 The code C={(x, (Px)*)} where x € GF(2%?),
P is a 32 by 6 encoding matrix of a shortened (38, 32)
Hamming code, and the cubing operation is over
GF(2%), is a binary partially robust code with w; = 26
and max.¢x, Q(e) = 273, C has the same number of re-
dundant bits as the (38, 32) shortened Hamming codes
but much less undetectable errors. (For the (38, 32)
shortened Hamming code, w; = 32.)

Partially robust codes reduce the number of un-
detectable errors while preserving some structures of
linear codes which can be exploited to build efficient
prediction hardware that generates redundant bits of
a message. Like linear codes, partially robust codes
still have undetectable errors (hence they are not com-
pletely robust). The number of undetectable errors is
reduced by many orders of magnitude compared to
that of the linear codes. For practical partially robust
constructions, the number of undetectable errors can
be reduced from 2% to 2" compared to a linear (n, k, d)
code [17]. The probability of masking for the errors that
are detectable is bounded by
Ome = max Qfe). 4)

{ele¢ Kq}

For memory applications, we are mostly interested
in minimum distance robust or partially robust codes
that can be used for error corrections. Compared to
traditional linear error correcting codes, the advantage
of these codes is that they can provide better protection
against multi-bit errors and repeating errors due to the
fact that they have less undetectable and miscorrected
errors.

4.2 Optimality of Systematic Minimum Distance
Robust and Partially Robust Codes

In this section, we present an exact upper bound for
the size of the systematic minimum distance robust and
partially robust codes in terms of Q,,, n, k, d and the
dimension of the detection kernel w,.

The redundant bits of a systematic code are gen-
erated by an encoding function f: GF(2¥) — GF(2"),
r =n — k. In order to simplify the analysis, we distin-
guish between the encoding functions for linear and
nonlinear redundant bits. Denote by r; and ry the
number of linear and nonlinear redundant bits respec-
tively. r =r; +ry. We represent a codeword c of a
systematic code in the following format.

c=(x, fL(0), fn(), (5)

where f; : GF(2¥) — GF(2'*) s the encoding function
for linear redundant bits which can be implemented
using only XOR gates, fy: GF(2K) — GF(2'V) is the
encoding function for nonlinear redundant bits which
cannot be implemented using only XOR gates.

Theorem 1 Denote by r(d, n) the smallest possible num-
ber of redundant bits for a systematic code with min-
imum Hamming distance d and length n. For any
(n, k,d) code C,

2 < Que(2" =252 4 (2K =202 427, (6)

where wy is the dimension of the detection kernel of C
and ch = MaX{ele¢ K ) Q(e)

Proof Let e = (e, €2, €3) be the error vector, where
e1 € GF(2%),e, € GF(2't),e3 € GF(2¥). We divide
the errors into two classes as stated below.

1. ey # fr(er). These errors will be detected by the
linear redundant bits of the code and are never
masked. The number of errors in this class is
2k@re=1yprw
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2. ey = fr(e;). In this case an error e = (e, e, €3)
is masked by a codeword ¢ = (xy, x;, x3) iff there
exists another codeword ¢’ = (x}, x5, x3) such that

X1 x5 =ey;
v @ fv (xh) = es.

Equivalently, fy(x; @ e;) @ fy(x1) = e3. Errors in
this class can be further divided into two classes.

(a) If e € Ky, it will be masked by all codewords
of the code. The number of errors in this class
is 24,

(b) If we can find an error ¢ = (e}, ¢, ¢€;) in
K, such that e; = e}, e, = e, e3 # €5, e will
always be detected. The number of errors in
this class is 224 (2™ — 1).

(c) Allthe other errors will be masked by no more
than 2 Q,,,. codewords.

According to the above analysis, we have

2k = ch(zn — 2k(2r]“ — 1)2"\/ — 2“’d2’N) 4 owd
< Que(2 — 2K 2k —pe)2') 4 9,

]

The function r(d, n) can be estimated using existing
bounds for error control codes that are extensively
studied in the community. For example, the Hamming
bound and the Singleton bound [26]. When r(d, n) is de-
rived from the Hamming bound, Eq. 6 is equivalent to

S

< Qe [ 226 Y ('Z>+(zk—2wd)2’N 420 (7)

i=0

Definition 5 A systematic minimum distance robust or
partially robust code (n, k, d) satisfying the equality in
Eq. 6 is perfect.

For the design of systematic minimum distance ro-
bust and partially robust codes, the best codes should
have the maximum k given all the other parameters.
When perfect codes are not available, the codes with
maximum possible k when other parameters are fixed
are called optimum systematic minimum distance robust
(partially robust) codes.

Definition 6 A (n, k, d) code which has the maximum
possible k for given n, Q,,., w; and d with respect to
Eq. 6 is called optimum. For optimum codes increasing
k will violate bound Eq. 6.
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Remark I The optimality of minimum distance robust
and partially robust codes that achieve the equality in
bound Eq. 6 are twofold. First, it is perfect in a sense
that it has the minimum number of redundant bits
among all codes with distance d and length n. Second, it
is perfect in a sense that it achieves the highest possible
robustness with a given number of nonlinear redundant
bits rny. To be perfect in terms of bound Eq. 6, the
following two conditions must be satisfied.

1. The total number of redundant bits r =r; +ry =
r(d, n);
2. fn(x)is a perfect nonlinear function.

The nonlinearity of a function fy:GFQ2%) —
GF(2'V) can be measured using derivatives D, fx(x) =
fn(x®a)® fy(x). The nonlinearity can be defined

by [4]

Pr(Dy fn(x) = b), ®)

Py = max max
0#£acGF(2x) beGF(2'N)

where Pr(E) denotes the probability of occurrence of
event E. The smaller the value of Py,, the higher the
corresponding nonlinearity of fy. fw is a perfect non-
linear function when Py, = 27"V,

Example 4

1. The nonlinear function fy: GF2*) — GF(2")
defined by fy(x) =X ex, D Xx30X4D - D Xp5_1 @
X5, Where x; € GF(2"),1 < i < 2s and e is the mul-
tiplication in G F(2") is a perfect nonlinear function
with PfN =27 [4]

2. Let fn(x) : GF(2") — GF(2") be anonlinear func-
tion defined by fy(x) = x°, where x* is the cubing
operation in GF(2"). For everya,b € GF(2"),a #
0, there are at most two x satisfying D, fy(x) = b.
Thereby Py, =27"*!. fy is not a perfect nonlinear
function because Py, > 277, However, it has the
smallest possible Py, among functions mapping
G F(2") to itself and is called almost perfect nonlin-
ear (APN) [4].

3. For and (n, k, d) linear systematic code C, let x
be the information bits of the codeword and H =
[P|I] be the r x n parity check matrix in standard
form, where [ is the r x r identity matrix. The
encoding function f;(x) = Px is linear and has
P; =1

More constructions of perfect and almost perfect
nonlinear functions can be found in [4].
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The characteristics and error detection capabilities
of systematic robust and partially robust codes are
strongly related to the corresponding nonlinear encod-
ing functions. For a nonlinear robust code C composed
of all vectors {(x, f(x))}, where x € GF(2*) is the infor-
mation part and f: GF(2%¥) — GF(2") is the nonlinear
encoding function with nonlinearity Py, an error e =
(ex, €y), ex € GF(2%), e, € GF(2") is masked iff f(x&®
ex) = f(x)®e,. Ife,=0ande, #0, f(x) # f(x) De,.
If e, # 0, according to the definition of Py, P.(f(x &
ex) = f(x) ®e,) < Py. Thereby, every nonzero error is
masked by C with a probability of at most Py.

In the next section we will present several construc-
tions of optimum or perfect minimum distance robust
and partially robust codes. The optimality of these
codes are summarized in Table 2.

5 Constructions of Codes
5.1 Minimum Distance Robust Codes

The simplest way to construct minimum distance robust
codes is to append extra nonlinear redundant bits to
codewords of an existing code with given distance d.

Theorem 2 Let C be a (n, k, d) linear systematic code
and let f: GF(2*) — GF(2") be a nonlinear function
with nonlinearity Py. The code

C' ={(x, ¢(x), fF))|(x, p(x)) € C}, Q)

where ¢ is the encoding function for code C, is a
(n +r, k, d) minimum distance robust code with Q,,. =
Pf and wq = 0.

Proof Appending extra nonlinear bits does not change
the minimum distance of the code. Any error which
will affect only the redundant bits of C will clearly be
immediately detected. Any other error will be detected
by the robust code. Q,,. of the code follows from the
definition of Py. o

Example 5 (Shortened Robust Hamming) Let C =
{(x, Px)} be a (38,32,3) shortened Hamming code,
where x € GF(2%?), P is a 6 x 32 encoding matrix and
Px e GF(2%. Let f: GF(2**) — GF(2) be a perfect
nonlinear function defined by f(x = (xy, X2, ..., X32)) =
X1 X2 ®X3-X4D ... D x31 - X35 [21]. Then the code C' =
{(x, Px, f(x))}is a robust code with minimum distance

three. For this code, w; =0, Q(e) =0 when ||e|| < 3
and Q(e) < 0.5 when ||e|| > 3. It is easy to verify that
C’ is not perfect because the equality in Eq. 6 is not
satisfied. However, C’ is optimal since increasing k
will violate Eq. 6, assuming that other parameters are
unchanged.

5.2 Minimum Distance Partially Robust Codes

Many known constructions of nonlinear codes are min-
imum distance partially robust codes. They have a min-
imum distance larger than one and have much fewer
undetectable errors than linear codes. Such codes can
even be perfect with respect to the classical Hamming
bound [26].

5.2.1 Vasil’ev Codes and Their Generalizations

The first perfect nonlinear Hamming code was con-
structed by Vasil’ev in [39] and was generalized by
Mollard in [29]. We first review the basic construction
of the Vasil’ev code.

Theorem 3 (Vasil’ev Code [39]) For u e GF(2™"), let
p(u) be the linear parity check of u. Let V be a perfect
not necessarily linear Hamming code of length m=2"—1
with ky = m —r information bits. Let f:V — {0, 1}
be an arbitrary nonlinear mapping such that f(0) =0,
0c GFQ2™) and f)® f(v)# fv®v) for some
v,v" € V. The code C defined by

C={uudv, pw) & f()|lue GF2™),veV} (10)
is a perfect nonlinear Hamming code.

Corollary 1 Vasil’ev code is a 2m + 1,2m —r, 3) par-
tially robust code with wg = m and Q,,c = Py where Py
is the nonlinearity of f. The code is perfect with respect
to bound Eq. 6.

Proof Let H be the check matrix of V. An error
e = (e}, ez, e3) where e1,e, € GF(2™) and e; € GF(2)
is masked if and only if H(e; ® e;) =0 and f(v e &
e) ® f(v) ® ple;) @ ez =0. The errors can be divided
into four classes as follows.

1. ey =e; and p(e;) = e3, the error will always be
masked. The number of errors in this class is 2;

2. e} = e; but p(e;) # es, the error will always be de-
tected. There are 2™ errors belonging to this class;
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3. H(e; @ e;) = 0bute; # ey, the error masking prob-
ability depends on the nonlinear function f; In
the worst case, a specific error will be masked by
P x |C| codewords. The number of errors in this
class is 271" — 1);

4. H(e; ®ey) #0. The error in this class will always
be detected. The number of errors is 27127 —
20m=n)y, ]

Vasil’ev codes are perfect single error correct-
ing codes and have the same parameters as linear
Hamming codes. The basic construction of Vasil’ev
code can be further generalized as follows. The follow-
ing theorem can be proved in a similar way to the proof
for Theorem 3 and Corollary 1.

Theorem 4 (Generalized Vasil’ev Code) For ue
GF(2%), let p(u) be the linear parity check of u. Let V be
a (m, ky, 3) not necessarily linear Hamming code with
r =m — ky redundant bits. without loss of generality,
assume that the first ky bits in any codeword of V are in-
formation bits. Denote by v = (y,z), y € GFQ2K), z €
GF(2") the codewords of V. Select f:GF2") —
GF(Q2) to be an arbitrary mapping such that f(0) =0
and f(y) ® f(y) # f(y®y) forsomey,y € GFQ").
The code C defined by

C={ w0)ev,pw e fy)}. (11)
where ue GF2",0c GF2" ", 0<a<m,veV is
a(a+m+1,a+ ky,3) code with wg=a and Q= Py.
C is optimum with respect to bound Eq. 6. Adding
one more overall linear parity bit to C will result in a
nonlinear SEC-DED code with the same w; and Q.
as C and minimum distance four, which we call the
extended Vasil’ev code.

The significance of Theorem 4 is twofold. First, it can
generate robust SEC-DED codes of arbitrary lengths.
These codes have the same number of redundant bits
as the best linear SEC-DED codes in terms of the
number of redundant bits but much smaller number
of undetectable multi-bit errors and are more suit-
able for applications where the MBU rate is high.
Second, it allows a tradeoff between robustness and
hardware overhead. Generally speaking, smaller a re-
sults in increased robustness of the code but requires
more hardware for the encoder. By carefully selecting
a and m, we can construct codes for situations that have
different requirements for robustness and the hardware
overhead.
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Example 6

1. Let a=16 and V be a (21,16,3) shortened
Hamming code. Select f to be the same nonrepet-
itive quadratic function as in Example 5. The ex-
tended Vasil’ev code constructed by adding one
more overall parity bit to the generalized Vasil’ev
construction described in Theorem 4 is a (39, 32, 4)
partially robust code with Q,,. = 0.5 and w; = 16.

2. Alternativelyleta = 6 and V be a (31, 26, 3) perfect
Hamming code. In this case we can construct a
(39, 32, 4) partially robust code with Q,,. = 0.5 and
wgq = 6 at the price of larger hardware overhead for
the encoder.

3. For applications where hardware overhead is more
critical, we can select a =18 and V to be a
(19, 14, 3) shortened Hamming code. The resulting
partially robust code will have w; = 18, which is the
biggest of the 3 discussed variants. However, the
hardware overhead for the encoder of this imple-
mentation will be the smallest.

5.2.2 Phelps Codes and Their Generalizations

We next review the basic construction of Phelps Codes
that was proposed in [32], analyze its detection kernel
and conditional error masking properties and general-
ize the construction.

Theorem 5 (Phelps Code [32]) Let C, B be two per-
fect linear Hamming codes of length n =2 — 1. Let
{C: Co, Cl, C2, e, Cn}, {B = B(), Bl, Bz, ey, Bn} be
two partitions of GF(2") with |C| = |C;| = |B| = |B;| =
2" sych that the minimum distance between any two
vectors in the same coset C; (B;) is three. Let a be any
permutation of GF(2™) such that «(0) = 0. Represent
each coset C; (B;) by a m-bit vector which is called
the coset vector of C; (B;). Denote by [x] € GF(2™)
the coset vector of the coset that x belongs to. The
coset vector can always be selected in such a way that
xX1® [yl =[x D yl, x, y € GF(2"). Define the extended
Phelps code C' as follows:

(¢, p(©), b, p(b)) € C' if and only if a([c]) = [b],

where p : GF(2") — GF(2) is the linear parity function.
Deleting any coordinate of C' will result in a perfect non-
linear Hamming code with d =3 and length 2" — 1
which is called Phelps code.

Corollary 2 Let P, be the nonlinearity of «. Phelps
codeis a

(2m+l _ l, 2m+1 —m— 2’ 3)
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perfect nonlinear Hamming code with Q,,. = P, and
wg = 2" — 2m — 2, which is optimum with respect to
bound Eq. 6. The extended Phelps code has d = 4 and
the same Q. and wy as the Phelps code.

Proof We first analyze the error masking properties for
the extended Phelps code C’ constructed in Theorem 5.
The codewords of C' can be written in the following
format:

C = ()C], X2, X3, X4),

where x1, x3 € GF(2"), xa=p(x1) € GF(2), x4=p(x3) €
GF(2) and [x3] = a([x1]). Denote by e = (ey, ez, €3, e4)
the error vector,e; € GF(2"),es € GF(2),e3 € GF(2"),
ey € GF(2). If ey # p(ey) or ey # p(e3), the error will
never be masked. If e, = p(e;) and e4 = p(e3), the error
e will be masked by a codeword ¢ = (xy, x2, x3, x4) if
and only if

[x3] = a([x1D;
[ ® es] = a([x1 @ er]).

The errors can be further divided into the following
classes.

1. e € C,e3 € B. Then x; and x; & e; belong to the
same coset. x3 and x3 @ e3 belong to the same coset.
In this case the above two equations are always
satisfied. Errors in this class form the detection
kernel of C’ and will be masked by all codewords.
The number of these errors is 22" ~2m-2,

2. e € C,ez ¢ B.In this case x; and x; @ e, belong to
the same coset. x3 and x3 @ e; belong to different
cosets. Errors in this class will never be masked.

3. e ¢ C,e3 € B.Similar to the last case, errors in this
class will never be masked.

4. e ¢ C, es € B. The error masking equations are
equivalent to:

a(lxi] @ [e1]) ® alxy] = [e3]. (12)

« is a nonlinear function from G F(2™) to GF(2")

with nonlinearity P,. The number of [x,] satisfying

the above equation is no more than P, x 2. There
are at most P, x 22"~ codewords that mask the
error e = (ey, ez, €3, e4). Thereby the error will be

masked by a probability no larger than P,.

Without loss of generality, we assume that the parity
check bit x4 is deleted for all codewords. The resulting

code is a perfect nonlinear Hamming code with mini-
mum distance 3. It is easy to show that this code has the
same Q,,. and w, as C’" and is optimum with respect to
bound Eq. 6. O

Remark 2

1. Codes C and B do not have to be linear Hamming
codes. Generally speaking, w; of the Phelps code
is equal to the sum of the dimension of K, for C
and B.

2. To optimize Q,,., P, should be as small as possible.
The best nonlinear function with the smallest P,
from GF(2™) to GF(™) has P, =2""*! and is
called almost perfect nonlinear function [4]. One
example is x* [28], which is based on the cube
operation in GF(2™).

Example 7 Let C=B be a (7,4,3) perfect linear
Hamming code defined by the parity check matrix

1001011
0101110
0010111

H =

GF(2") can be partitioned into eight cosets of the
perfect Hamming code as it is shown in Table 1. The
coset vectors [x] € GF(2?) are assigned in such a way
that [x]® [yl =[x® yl,x,y € GF(27). For example,
suppose x = 0000001 and y = 0010000. We have [x] =
001, [y]=111and [x & y]=[0010001]. Since H(x & y) =
100 = hy, where h; is the first column of H, x ® y € C;
and [x ® y] = 110 = [x] & [y].

Let ao([x]) = [x]® with P, =27+ = 1 (Example 4).
According to Corollary 2, the resulting Phelps code has
wg =221 —2x3-2=8and Q. = P, = 1.

Theorem 5 can be further generalized to generate
partially robust codes with Hamming distance three
and four for any given length.

Table 1 Cosets of the (7, 4, 3) linear Hamming code

Coset leader x Coset vector [x]

Co=C (By = B) 0000000 000
Ci (B)) 0000001 001
C, (B) 0000010 010
Cs (B3) 0000100 100
Cy (By) 0001000 101
Cs (Bs) 0010000 111
Cs (Bs) 0100000 011
Cy (B7) 1000000 110
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Theorem 6 (Generalized Phelps Code) Let C be a
(ny1, k1, 3) linear code and B be a (n», k>, 3) linear code.
Without loss of generality, assume that ry = ny, — k, >
ry=n; —ky. Let{Cy = C,Cy, ---, Cy_1} be a partition
of GF2") and {By = B, By, ---, By»_1} be a partition
of GF(2™), where |C;| =2%,0 <i < 2" — 1 and | B;| =
2% 0 <i < 2" — 1. Represent each coset C; by a r,-bit
coset vector and each coset B; by a ry-bit coset vector.
The coset vector can always be selected in such a way
that [x] & [yl = [x ® y], where x,y are vectors in the
same field and [x] is the coset vector of the coset that
x belongs to. Let o be any permutation of GF(2"") such
that «(0) = 0. Define C' as

(¢, p(e). b, p(b)) € C'if and only if (0, a([c])) = [b].

where ¢ € GF(2"), b € GF(2™) and p is the linear
parity function. C'is a (ny + ny + 2, ny + ky, 4) partially
robust code with Q,,c = P, and wg = k| + k,. Deleting
any coordinate from every codeword of C' will result in
a partially robust code with minimum distance three and
the same value of Qe and wy as C'.

Theorem 6 can be proved in a similar way to
Theorem 5 and Corollary 2.

Example 8 Let C be a (15,10, 3) linear code whose
parity check matrix is:

100001001011001
010000100101100
001001011001111
000100101100111
000010010110011

Let B be a (22, 17, 3) shortened Hamming code whose
parity check matrix is:

1000010010110011111000
0100001001011001111100
0010010110011111000110
0001001011001111100011
0000100101100111110001

Let a([x]) = [x]* with P, = &, where [x] € GF(2°).
Construct C’" as described in Theorem 6. Then C’ is
a (39,32,4) partially robust code with w; =27 and

1
chzPazl_-

5.2.3 One Switching Constructions
and Their Generalizations

Vasil’ev codes and Phelps codes usually have w; > 1.
Another important construction is the switching con-
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struction, which can generate nonlinear codes with
wq = 1. We first review the basic switching construc-
tions presented by T. Etzion and A. Vardy in [10].

Theorem 7 (The Switching Code [10]) Let C be a per-
fect linear Hamming code of length n = 2" — 1. Refer
to the codewords of Hamming weight three as triples.
Denote by T; the subspace spanned by the triples that
have one at the iy bit. Let {C @ e}} be a translate of
C, where ef € GF(2") and has one at position i and
zero elsewhere. Assume {T; ® z} € C for somez € C. A
switch is a process of replacing the coset {T; @ z} with
the coset {T; ® z @ e}}. The resulting one switching code
C' defined by

C={O\Tie}|J{Tiezoe} (13)
for someie{l,2,---, n}is a perfect nonlinear Hamming
code of lengthn =2" — 1.

Corollary 3 The one switching code C' is a partially
robust code with wg =2"~' — 1. In addition, 2%~ —
227'=1 errors are masked with probability 1 — 272 147
and 2¥ ='=" — 2271 errors are masked with probability
2727 The code is optimum with respect to bound
Eq. 6.

Proof Without loss of generality, we assume that
z =0. (' is constructed by replacing 7; with the coset
{T; ® e}}. The errors can be divided into four classes as
stated below.

1. e e T;. Since T; is a linear subspace, we have

coec{Tideliffce (T ®ef};
c®ee{C\T}iff c € {C\T}.

Hence c® e € C' for every c € C'. Errors in this
class form the detection kernel of the code and
will always be masked. The dimension of T; is ”T’l
[33] Th;:'r_flzbly the number of errors in this class is
27 =27 7.

2. ee{C\T;}. lfce{T;®e}, cde € T; and the error
will be detected. If ce(T;®ef}, cDec{T;®
e’ @ e}, again the error will be detected. All the
other codewords c e C',c € {T; @ e}, c ¢ {T; ® €]}
will mask the error. Thereby errors in this class

will be masked by a probability % =1-

_or=1 . . .
2727414 The number of errors in this class is
|Cl = |T;l.
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3. ec{{C\Ti}®e}. If ce{li®e}, chec{C\T}}
and the error will be masked. If c € {T; ® e ® €]},
c®e e {T;®e;}. The error will be masked. For all
the other codewords the error will be detected.
Thereby errors in this class will be masked by a
probability % = 272714 The number of errors
in this class is |C| — | T;].

Errors that do not belong to the above three cases
will always be detected. ]

Example 9 Let C be a (15,11,3) perfect linear
Hamming code with the following parity check matrix

100010011010111
010011010111100
001001101011110
000100110101111

There are ”—;1 = 7 codewords of Hamming weight three
with the first bit equal to one, which are

100100000000001,
100000000001100,
101000001000000,
100000010100000, .
100000100000010,
100001000010000,
110010000000000.

T, is the subspace spanned by the above seven code-
words. The dimension of 7 is seven. Construct C’ by

replacing T with {T ® e]}, where e} has one at the
first bit and zero elsewhere. C’ is a prefect nonlinear
Hamming code with w; = 7. There are 2!' — 27 errors
that are masked by probability 7 and 2'' —27 errors
that are masked by probability %

Another generalization of Theorem 7 was shown in
[33], which indicated that perfect nonlinear Hamming
codes with ws =1 could be constructed by switching
linear Hamming codes for multiple times.

Theorem 8 [33] Let C be a linear Hamming code of
length n =2" — 1,r > 4, there exists z;,1 <i <r such
that the code

cofoftredo

is a perfect nonlinear code with wg = 1.

k
U Ti®zi®ef
i=1

| o

To end the section we summarize the optimality of
different robust and partially robust codes with respect
to bound Eq. 6 in Table 2 for the case when r(d, n)
is derived from the Hamming bound. The best candi-
dates for protecting memories in channels with high
MBU rate or laziness are generalized Vasil’ev codes
and generalized Phelps codes. One switching code is
better than linear Hamming code but worse than the
above two candidates due to its larger Q,,.. We note
that the multiple switching construction (Theorem 8)

Table 2 Optimality of robust and partially robust codes with respect to bound Eq. 6

n k wy Ome d N Perfect  Optimum
Vasil’ev codes (Theorem 3) 27 —1 2 —1—r 2711 05 3 1 V4 -
Generalized Vasil’ev code a+m+1 a+ky a 0.5 3 1 - Vv
(Theorem 4)
Phelps code (Theorem 5) 2r—1 2" —1—r 2"=2r P, 3 r—1 - J
Generalized extended Phelps code 39 32 28 % 4 6 — —
(Example 8)
One switching code (Theorem 7) 2r—1 21— 2l 122 3 1 - J
(x, (Px)3) [17] k+r k k—r 27+l 1,22 r - -
Quadratic systematic code® [20] 2s+ Dr 2sr 0 2-r 1 r - J
Robust Hamming code® [22] 2" 2"—1—-r 0O 0.5 3 1 - N

r(d, n) is derived from the Hamming bound
4The distance of the code depends on r

PThe codeword of the quadratic systematic code is in the format of (xy, xp, - - - X25, X25+1), Where x; € GF(2"), 1 <i <2s+ l and xp541 =
X1 ex) Dx30x4 DD Xxps_1 @ Xp5. @ is the multiplication in GF(2") [21]

¢The codeword of the robust Hamming code is in the format of (x, Px, f(x)), where (x, Px) is the codeword of a (2" — 1,2" — 1 —r,3
perfect linear Hamming code and f : GF(2¥) — GF(2) is a nonlinear function. When f is a perfect nonlinear function, Q,,c = 0.5
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can generate robust codes with w; = 1. However, its
high encoding and decoding complexities and high Q.
make the code not a viable alternative for memory
protection.

The constructions of minimum distance robust and
partially robust codes presented in this section can be
easily generalized for nonbinary case.

6 Architectures of Reliable Memory Systems Based
on Nonlinear SEC-DED Codes

To demonstrate the advantage of utilizing nonlinear
minimum distance partially robust codes to protect
memories, we compare the error correction properties,
the hardware overhead and the power consumption
for the (39, 32, 4) extended Vasil’ev code with Q,,. =
0.5 and w,; = 6 (Example 6), the (39, 32, 4) extended
Phelps code with Q,,. = % and oy = 27 (Example 8)
and the linear (39, 32, 4) extended Hamming code used
in [38] to protect double data rate DIMM memory in a
Virtex-1I Pro device .

Figure 1 shows the general memory architecture with
error correction function based on systematic error cor-
recting codes. During a WRITE operation, the redun-
dant bits of the code are generated by the encoder and
saved in the redundant memory block. Duringa READ
operation, the ECC block computes the syndrome of
the retrieved data and executes the error correction

DATA IN

DATA OUT

Fig. 1 General memory architecture with ECC
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algorithm. If uncorrectable errors occur, ERR will be
asserted and no correction will be attempted.

6.1 Memory Protection Architecture Based
on the Extended Hamming Code

For linear SEC-DED codes, the encoder performs ma-
trix multiplication over GF(2) between the k-bit data
and the encoding matrix P of the selected code. The
parity check matrix used to generate the (39,32, 4)
extended Hamming code C in [38] is in standard form
H = [P|I], where L is the 7 x 7 identity matrix and

01010110101010101010110101011011
10011011001100110011011001101101
11100011110000111100011110001110
P =] 00000011111111000000011111110000
00000011111111001111100000000000
11111100000000000000000000000000
INRREERRR R RERERRRRERRRERRanNey!

The last redundant bit of the design in [38] is equal to
the parity of the information bits. C is only able to de-
tect double bit errors occurring in the information part
of the code. If at least one bit of the double bit error is
in the redundant portion of C, the code may miscor-
rect it as a single bit error. To make C a SEC-DED
code, we compute the last parity bit based on all bits
of the codeword.

The redundant bits are generated and written in the
memory along with the associated 32-bit data. During
the READ stage, the data and the redundant bits are
read simultaneously. Syndromes S = HX, where X €
GF(2¥) is a possibly distorted output of the memory,
are calculated and used to identify the error type and
locate the error. A 32-bit correction mask is created
to correct single bit errors occurring to the information
part of the code. When a single bit error is detected, the
original data is XORed with the mask and the distorted
bit is reversed. When there are no errors or multi-
bit errors, all the mask bits are zeros and the data go
through the ECC block without any changes.

The disadvantage of memory protection architecture
based on linear SEC-DED codes is the large number of
undetectable and miscorrected multi-bit errors. For any
linear systematic code, K; = C and wy = k. Thereby
the number of undetectable errors for a (39, 32, 4) ex-
tended Hamming code is 2*2. All undetectable errors
correspond to distortions of more than three bits.

It is easy to prove that any (n, k, d) linear systematic
error correcting code C is able to correct up to 2% — 1
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errors. If N errors are corrected, 0 < N < 2" % — 1, the
number of miscorrected errors is N(2¥ — 1).

For example, for the approach described in [38], only
single errors occurring to the information part of the
code will be corrected. Thereby N =32. The number of
miscorrected multi-bit errors for this code is 32(232—1).

6.2 Memory Protection Architecture Based
on the Extended Phelps Code

6.2.1 Error Correction Algorithm

Let C be a (ny, k1, 3) linear code and B be a (n,, k>, 3)
linear code. Without loss of generality, assume that
ri=n; —k; <rp, =n, —k,. Denote by Hc and Hp
the parity check matrix for C and B respectively.
Denote by ¢’ = (x1, x2, x3, x4) a codeword of C’, where
x1 € GF2"),x, = p(x)) € GF(2),x3 € GF2™), x4 =
p(x3) € GF(2). Let o be any permutation of GF(2")
such that «(0) = 0. Denote by [x;]([x3]) the coset vector
of the coset which x;(x3) belongs to, [x;] € GF(2™"),
[x3]€ GF(2™). The codewords of the extended Phelps
code C’ constructed as in Theorem 6 satisfy [x3] =
0, x([x1])), where 0 € GF(2»™). C'is a (n] + ny + 2,
ny + k,,4) SEC-DED code and is able to correct all
single bit errors and simultaneously detect all double
bit errors.

Denote by e = (ey, €2, e3,e4) the error vector and
¢ = (X1, X», X3, X4) the distorted codeword, in which
Xi=x;®e;, 1 <i<4. The syndrome of the code that
can be used to detect and locate errors are defined as
S = (S[, Sz, S3, S4), where

S =X, (15)
Sy = p(X1) @ p(X2) = ple1) ® ey, (16)
S = ¥, 17)

S4 = p(X3) ® p(X4) = p(e3) D ey. (18)

The correction algorithm is as described below. For
the purpose of comparing the error correction abil-
ities of extended Phelps codes and linear extended
Hamming codes presented before, in this algorithm
only single bit errors occurring to the information part
will be corrected.

1. Compute by Eq. 15 to Eq. 18 the syndrome of
the code S = (54, 53, 83, S4), where S| € GF(2™"),
S3 € GF(2™) and S,, S4 € GF(2).

2. IfS; =84 =0and[S3] = (0, x([S{])), no errors are
detected.

3. If $5=S8,=0 and [S3] # (0, a([S])), multi-bit
errors are detected and ERR will be asserted.

4. If §; =1, S4 = 0, multi-bit errors occur or a single
bit error occurs to the first or the second part of the
codeword.

(a) If[S3] > 2", multi-bit errors are detected and
ERR will be asserted.
(b) If[S3] < 2", then
i. If[S3] = (0, x([S1])), the single bit error is
in X2.
ii. If[S3] # (0, «([S1])), multi-bit errors occur
or a single bit error occurs to x;. Let o™ ! :
GFQ2") - GFQ™) be the inverse func-
tion of . Denote by efs,) and ¢, the
coset leaders of the cosets whose coset
vectors are [S;] and o~} ([S3](r,—1:0)), Wwhere
[S3]¢—1:00 € GF(2™) is the rightmost r
bits of [S3]. e; is the coset leader of the
coset whose coset vector is [egs,) D e -
If ||e;]] > 1, multi-bit errors are detected.
If ||e;|| = 1, correct the single bit error by
adding e; to x;.

5. If §, =0, S4 = 1, multi-bit errors occur or a single
bit error occurs to the third or the forth part of the
codeword.

(a) If [S3]1=(0,«([S1]), the single bit error is
n xy.

(b) If[S3] # (0, ([S1])), multi-bit errors occur or
the single bit error is in x3. Denote by es,)
and €s, the coset leaders of the cosets whose
coset vectors are [S3] and (0, «([S1])). e3 is the
coset leader of the coset whose coset vector
is [es,) @ el Without loss of generality, as-
sume the first k, bits of any codewords in B
are the information bits. If ez = €}, 1 <i < k,
where e has one at position i and zero else-
where, correct the single bit error by adding e3
to x3. If e3 = e}, ky < i < ny, single bit errors
occur to the redundant bits. No corrections
will be attempted. If ||e3|| > 1, multi-bit errors
are detected.

6. If §» =S4 = 1, multi-bit errors occur. ERR will be
asserted and the data will go through ECC without
any correction.

Example 10 1In this example we show the error correc-
tion procedure for a (11, 6,4) extended Phelps code.
Let C be a (4,1, 3) linear code whose parity check
matrix is

1001
1010
0100

Hc =
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Table 3 Selected coset

Coset Coset

leaders and coset vectors leader vector
Co=C 0000 000
Cy 0001 001
C, 0010 010
Cs 1000 011
Cy 0100 100
Cs 1110 101
Ce 0110 110
Cy 1100 111
By=B 00000 000
B 00001 001
B> 00010 010
B3 01000 011
By 00100 100
Bs 11000 101
Bg 10000 110
B7 01100 111

Let B be a (5, 2,3) linear shortened Hamming code
with

01001
Hg =] 11010
10100
Let{Cy=C,Cy,---,Cq},|Cil =2,0 <i <7 be a parti-

tion of GF(2*) and {By = B, By, --- , B7}, |Bi| = 4,0 <
i <7 be a partition of GF(2°). The coset leaders and
coset vectors for C; and B; are selected as stated in
Table 3. It is easy to verify that [x @ y] = [x] @ [y] is
satisfied.

Let 011001 € GF(2°) be the message that needs to
be encoded. x; is the first four bits of the message: x; =
0110 € GF(2*%), which belongs to Cs whose coset vector
is 110. Let o ([x;]) = [x,]° where x; € GF(2%). Select the
primitive polynomial to be [x;]* + [x;] + 1 for GF(2?).
Then «(110) = 111. So x3 € B;. x3 is equal to the
vector in B; with 01 for the information bits, which
is 01100. x; = p(x;) =0, x4 = p(x3) = 0. So the en-
tire codeword is ¢ = 01100011000 € GF(2'"). Suppose
a single bit error occurs to the 6, bit of the codeword,
¢ =01100111000. Then S; =0110, [S;] =110, S, =
0, S35 =11100 and S; = 1. HgS; = Hp x 00001 = 100,
so S3 = X3 belongs to B; and [S3] = 001. Thereby
a([S1]) # [S3] and the error is in xs. ersy D e, =
00001 @© 01100 = 01101. So the error is the coset leader
of the coset that 01101 belongs to. Hg x 01101 = Hp x
10000, hence 01101 € Bg and e3 = 10000.

Theorem 9 Let C be a (ny, ki, 3) linear code and B be a
(2, ks, 3) linear code with r; = ry, 2"~ > max{n,, k»},
wherer; = n; — kyandry, = ny — ky. Assume that « is an
almost perfect nonlinear function with P, = 27"1%'. The
(ny+ny+2,n + ko, 4) extended generalized Phelps
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code C' constructed as in Theorem 6 has w; = k| + k».
The size of the correction kernel of the code is (ny + k»)
(2k1+k2 —1).

Proof We divide the errors into four classes as stated
below.

1. A nonzero error e = (e, es, €3, ¢4) is masked if
and only if it satisfies S, =0, 5S4 =0 and [S3] =
a([S1])- S2 = 0and S, = 0 are satisfied if and only if
e, = pler),eq = p(e3). If e, e Cand ez € B, [S3] =
a([S;1]) is always satisfied. These errors are unde-
tectable and form the detection kernel of the code.
The number of errors in this class is 2K1+% Ife; ¢ C
and e; ¢ B, errors will be conditionally detectable.
The number of these errors is (2 — 2k1) (22 — 2k2),
If e, eC,e5¢&€ B ore €C,e; € B, errors will al-
ways be detected.

2. If § =0,8,=0 and [S3] # «([S,]), multi-bit er-
rors are detected.

3. 85 =1,85;=0,[5;] =a([S5;]). We assume that a
single bit error occurs to x,. The error will be
detected but not corrected.

4. S=1,58,=0,[S3]#a([S;]). We assume that a sin-
gle bit error occurs to x;. S,=1 and S4=0 are
satisfied if and only if e; = p(e;) @ 1 and e4 = p(e3).

(a) Ife; €C,e; ¢ B, [S3]1 # a([S1]) is always sat-
isfied. In this case [x; @ e;] = [x1]. A multi-
bit error e is miscorrected as a single bit
error ef,1 <i<n; if and only if a([x;]®
[ef]) = a([x]) @ [e3]. For every e}, there are
at most 2" P, solutions for [x;]. Since P, =
27" and 27! > ny, for all n; possible e}, the
total number of solutions for [x;] satisfying
a([x;1® [ef]) = a(x]) @ [es3] is less than 2",
Thereby errors in this class are conditionally
miscorrected.

(b) Ife €C, e; € B, [S;]# a([S;]) is always sat-
isfied. In this case [x3 & e3] = [x3]. A multi-bit
error e is miscorrected as a single bit error
e, 1<i<n; if and only if a([x;]®[e;]D
[ef]) = a([x1]). If [ei] =[e]], errors will be
corrected as e} for all codewords. The number
of errors in this class is 72K 7%y, of them are
successfully corrected. The other n; (2K17%2 —1)
errors belong to Kc. If [e;] # [e]], the error
will be conditionally miscorrected.

(c) Ife, € C,e; ¢ B. A multi-bit error e is miscor-
rected as a single bit error e/, 1 <i < n; if and
only if a([x1] @ [e1] @ [e]]) = a([x1]) @ [e3]. If
[ei] =[], errors will be always detected.
If [e1] # [ef], errors will be conditionally
miscorrected.
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5. 8§ =0,8=1,[5]=a(S;]). We assume that a
single bit error occurs to x4. The error will be
detected but not corrected.

S, =0,8;, =1,[S3] # «a([S1]). We assume that a

single bit error occurs to x.

(a) Ife; €C,es & B, [S3] #a([S1]) is always sat-
isfied. In this case a multi-bit error will be
miscorrected as e, 1 <i < k, occurring to x3
if and only if a([xi]) = a([x1]) ® [e3] ® [e]].
Errors will be corrected as [e]] by all code-
words if [e3] = [¢]]. The number of these er-
rors is k,2K1% . k) of them are successfully
corrected. The other k,(26+% — 1) belong to
Kc. If [e3] # [e]], errors are always detected.
If e; € C,e3 € B, [S3] # a([S1]) is always sat-
isfied. In this case a multi-bit error will be
miscorrected as e}, 1 <i < k, occurring to x3
if and only if a([x;]® [e;]) = a([x]) @ [€]].
Following the same analysis as for 4.(a),
errors in this class will be conditionally
miscorrected.

If e, ¢ C, e5 ¢ B, a multi-bit error will be
miscorrected as ef,1 <i <k, occurring to
x3 if and only if a([x;]® [e1]) = a([x1]) B
[e3] @ [e]]. These errors will be conditionally
miscorrected.

(b)

(©)

S, =1, 8, = 1. In this case multi-bit errors occur
and no error correction will be attempted. The
number of errors in this class is 21172,
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From Theorem 9, it is easy to show that the (39, 32, 4)
extended Phelps code constructed in Example 8 has
wqg = ki + ko =54 22 = 27. The size of the correction
kernel is (n; + ky) (k1% — 1) = 32(2%7 — 1).

6.2.2 Hardware Implementation of the Encoder
and the Decoder for the Extended Phelps Code

The encoder for the extended Phelps code is mainly
composed of the following parts:

1. Syndrome computation unit for C;

2. Circuits to realize the nonlinear permutation «. In
our case « is the cube operation in G F(2").

3. Encoder for the linear Hamming code B;

4. Exclusive OR network to convert codewords of B
to vectors in other cosets;

5. Parity check generation unit.

The input to the encoder can be any n; + k, bits
binary vectors. The first n;-bit is x; and the left k,-bit is
the information part of x3. The syndrome computation
unit computes Hcx;, which is used to determine the
coset that x; belongs to. [x3] = [x]*. x3 is computed by
first derive the codeword in B and then mask it with
the coset leader of the coset which x3 belongs to. The
parity check generation unit computes the parity bits x,
and x4.

The architecture of the decoder for the extended
Phelps code is shown in Fig. 2. After receiving a
possibly distorted codeword ¢ = (X, X2, X3, X4), the

M;: Error mask for the case
when x; is distorted

M M;: Error mask for the case
3 when x, is distorted

00

Mask Gen

Qutput Registers

ERR

SEL G
en £l

ERR
Generation

Fig. 2 The decoder architecture for the (39, 32, 4) extended Phelps code
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syndrome S = (Sy, Sz, S3, S4) will be computed. S; and
S5 are used to determine the coset vectors of the coset
which %; and %3 belong to. Then whether [S3] = [S,]?
will be tested. To speed up the design, the possible error
vector e; and e; will be pre-computed and sent to a
MUX before the type of the error is known. If a single
bit error in x; or the first k, bits of x3 is detected, e,
or e3 will be XORed with the corresponding part of
the received data to recover the original message. If
multi-bit errors are detected, the ERR generation unit
will pull up the ERR signal. The received data will go
through the ECC module without any error correction.

The latency penalty, the hardware overhead and
the power consumption of the encoder and the non-
pipelined decoder for the extended Phelps code will be
shown in Section 6.4.2. We also note that the design
of the decoder for the extended Phelps code can be
pipelined to increase the throughput of the system. The
possible locations of the pipeline registers are shown
in Fig. 2.

6.3 Memory Protection Architecture Based
on the Extended Vasil’ev Code

6.3.1 Error Correction Algorithm

The codewords of a (a+m+2,a+ ky,4) extended
Vasil’ev code constructed as in Theorem 4 are in the
format of

(t, @, 0) ® v, pw) & f(y), p(w) & p(v) ® f()),

where u €e GF2%),0€ GFQ2" %), 0<a<m,veVis
the codeword of a (m, ky,3) Hamming code V, y €
GF (") are the information bits of v, f: GF(2") —
{0, 1} is a nonlinear mapping satisfying f(0) =0 and p
is the linear parity function. In order to simplify the
encoding and decoding complexities, we select V' to be
a linear Hamming code.

The redundant portion of the extended Vasil’ev code
contains three parts. The first part is the redundant
bits of V which can be generated by a linear XOR
network performing matrix multiplication over GF(2).
The second and the third part are nonlinear. The en-
coder for these two parts needs to perform the linear
parity predictions p(u), p(v) as well as the nonlinear
mapping f: GF(2*) — {0, 1}. When ky is even, we
can select f to be the non-repetitive quadratic function
(Example 5) for the purpose of minimizing Q.

fW=v -1, ®v3- V4B Vs V6B -+ D Vg, —3

“Vky—2 D Vky—1 * Vky-
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Before we describe the error correction algorithm
for the extended Vasil’ev code, the syndrome § for lo-
cating and correcting errors need to be defined. Denote
by ¢ = (x1, x2, x3, x4) the codeword of the extended
Vasil’ev code, e = (eq, ey, €3, €4) the error vectors and
¢ = (X1, X2, X3, X4) the distorted codeword.

X1 = U,
Xy = (uv 0) @ v,
x3 = p) & f(y),

X4 =pw) ® p) & f(y).
Let H be the parity check matrix of the linear code

V and y be the distorted information bits of V. The
syndrome can be defined as S = (S, 52, S3), where

S = H((@1.0) ® %), (19)
S, = pG) @ f()) ® X3, (20)
S3 = p(X1) @ p(X2) ® p(X3) & p(x4). (21)

The error correction algorithm is as stated below. Sim-
ilar to the design described in [38], only single errors
in the information part of the code will be corrected.
If single errors in the redundant portion or multi-bit
errors are detected, ERR will be asserted but no cor-
rection will be attempted.

1. Compute by Egs. 19, 20, 21 the syndrome of the
code S = (S, S,, S3), where S, € GF(2Mg0m+DTy
and S, S5 € GF(2).

2. If Sis the all zero vector, then no error is detected.
Otherwise one or more errors are detected.

3. If S5 = 0 and at least one of S, S, is nonzero, errors
with even multiplicities are detected and ERR will
be raised. Errors in this class are uncorrectable
because all of them are multi-bit errors.

4. If S3=1 and S, =0, a single bit error occurs to
one of the last two redundant bits of the code.
ERR will be asserted and the data will go through
ECC without any correction because only single bit
errors in the information part need to be corrected.

5. If $3=1,85 #0 and S; does not match any
columns of the parity check matrix H, an uncor-
rectable multi-bit error of an odd multiplicity is
detected and ERR will be raised.

6. If S3 =1 and S; = h;, where A; is the iy, column
of H, a single bit error in the first two parts of
the code or multi-bit errors are detected. Without
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loss of generality, we assume that the first ky =
m — [log,(m + 1)1 bits of V are information bits.

(a) Ifa<ky and 1 <i <a, flip the iy bit of x,
recalculate S,. If S, = 0, the single error is at
the iy, bit of x; and is successfully corrected.
Otherwise the single error is at the i, bit of x;.

(b) Ifa<kyanda <i<ky flip the iy, bit of x;,
recalculate S,. If S, = 0, the single error is in
the iy, bit of x; and is successfully corrected.
Otherwise multi-bit errors with odd multiplic-
ities are detected.

(¢) If a <ky and i > ky, the error occurs to the
redundant bits of V and does not need to
be corrected. ERR will be asserted and no
correction will be attempted.

(d) Similar procedures can be applied to the case
when a > ky.

Example 11 In this example we show the encoding and
decoding procedure for a (39, 32, 4) extended Vasil’ev
code C with a=6. When a=6, ue GF2%,v =
(y,2) € GF(2*), ky = 26, where y € GF(2*°) are the
information bits and z € GF(2) are the redundant
bits. Let

11111001011011000110010111001111 € GF(2*?)

be the message that needs to be encoded. Then u =
111110 and p(u) = 1. y can be computed by XOR
(u, 0), 0 € GF(2'**vy with the other ky = 26 bits of the
message. Thus

y = 10100011000110010111001111 € GF(2°).

Let
1111101110110100111100000010000
1111011101101010100011100001000
H = 1110111011011001010010011000100

1101110111000111001001010100010
1011110000111111000100101100001

be the parity check matrix of V. Then the redundant
bits z of v e V are 00101 and p(v) =0. Let f be
the non-repetitive quadratic function as described in
Example 5, then f(y) =0. The last two nonlinear re-
dundant bits are 11. The entire codeword is

111110010110110001100101110011110010111 € GF(2*).

Suppose a single bit error occurs to the 9, bit of
the codeword. After receiving the distorted codeword,

S1, 52 and S3 can be computed according to Egs. 19,
20, 21. We have S; = h3 = 11101, S, =0, S5 = 1. The
3,4 bit of x; is flipped and S, is recomputed. The new
value of S, is one. So the error is at the 3,; bit of the x,,
1.e. 9, bit of the entire codeword.

The sizes of K; and K, for the extended Vasil’ev
code can be computed according to the next theorem.

Theorem 10 For (a+m+2,a+ky,4) extended Vasil’ev
codes, where ky =m—[log,(m + 1)1, let t = min{a, kv},
there are 2% undetectable errors and 2°1 2KV — 1) condi-
tionally detectable errors. If only errors occurring to the
information part of the code are corrected, the number of
miscorrected errors is 2t2% — 1) + (2! — D|a — ky|.
The number of conditionally miscorrected errors is 2|a —
ky|(2etkv — 20, The probability of error masking for
conditionally detectable errors and the probability of
miscorrection for conditionally miscorrected errors are
bounded by Py, which is the nonlinearity of f defined
by Eq. 4.

Proof The syndrome of the code can be re-written as
follows.

S) = H((%,0)® %) = H((e1. 0) ® e2),
S, =pE)® f(5) @ X

= fM) @ f(y) @ pler) ®es,
S3 = p(x1) & p(X2) ® p(X3) & p(Xa)

= p(e1) ® p(e2) ® p(e3) @ ples).

1. Ky={e|S;=0e€ GFQ2Mamtbl §, —§;=0c GF(2),
YceC}. Since Si=H((e1,0) D er)=0, (e,0) D ey
is a codeword of the linear code V. Because fis a
nonlinear function, the only possibility to guarantee
S, =0,Vc € C is that (e;,0) = ey, p(e)) = e3. S35 =
0, thus e; = e3 = p(ey). So the detection kernel of
the code contains all error vectors e = (ey, €2, €3, €4)
such that (e;, 0) = e,, e3 = e4 = p(e;). The number
of errors in this class is 2¢;

2. If (e1,0) @ e, is a nonzero codeword of V and e4 =
ple)) @ p(ex) @ p(e3), then §; =0,5; =0,Vce C.
S, can be either one or zero depending on the infor-
mation part of the code. These errors will be condi-
tionally detected. The error masking probability is
bounded by Py. If fis a perfect nonlinear function,
these errors will be detected with probability 0.5.
The number of errors in this class is 297! (2% — 1).
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3. Multi-bit error e will be miscorrected as single bit
errors occurring to the information part of the code
if and only if S5 =1,8, =h;, 1 <i <max{a, ky}.
Let t = min{a, ky}.

(a) If 1 <i<t e will always be miscorrected
as a single error in the iy bit of either x
or x,. The number of pairs of ey, e, satisfy-
il’lg Si=H({(e;,0)®De)=h;,1 <i<tistx
20tkv er can be either one or zero. es =
ple)) @ p(ex) ® p(ez) ® 1. So there are 2t x
20+kv errors that satisfy S3=1,8, =h;, 1 <
i <t. 2t of them are correctly corrected. The
number of miscorrected errors in this class is
20(20Fkv — 7).

(b) If t <i < max{a, ky}, the number of errors
satisfying S3 = 1, S| = h; is 2|a — ky| x 2¢+kv,
After flipping the iy, bit of either X; or X, S|
and S3 become zero. Denote by é;, é; the new
error vectors after flipping the bit for the first
two parts of the codewords.

i. If (é1,0) = é; and e3 = p(éy), S, is always
zero. The number of errors in this class
is 2! x |a — ky| and |a — ky| of them are
correctly corrected. The number of mis-
corrected errorsis (2 — 1)|a — ky/|.

ii. If (6;,0)=¢, and e3; # p(éy), S, is al-
ways one. Errors in this class are al-
ways detectable. The number of them is
2a — ky|.

iii. If (é1, 0) # é,, then S, can be either one or
zero depending on the information bits of
the code. Errors in this class will be condi-
tionally miscorrected. The probability of
miscorrection is bounded by Py. If fis a
perfect nonlinear function, the probability
of miscorrection is 0.5. The number of
errors in this class is 2|a—ky | (2475 —21).

O

The sizes of the detection and the correction kernel
are functions of a and m. For any extended Vasil’ev
codes with length n and number of information bits k,
we have

k=a+ky =a+m— [log,(m+ 1)],
n=a-+m-++?2,
a < m.

Hence n—2"*%2—1<a<|%*]. When n=39, k=
32, 6 < a < 18. Figure 3 shows the sizes of the de-
tection and the correction kernel for (39,32,4) ex-
tended Vasil’ev codes for different a. The minimum
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sizes of the detection and the correction kernel are 2°
and 12(2%? — 1) 4 20(2°% — 1) respectively, both of which
are achieved when a = 6. Different from traditional
linear error detecting codes, extended Vasil’ev codes
have conditionally undetectable or miscorrected errors.
For (39, 32, 4) extended Vasil’ev code with a = 6, the
numbers of errors which are masked or miscorrected
with probability 0.5 are 2(2°? —2°) and 40(2% — 29)
respectively.

6.3.2 Hardware Implementation of the Encoder
and the Decoder for the Extended Vasil’ev Codes

The encoder for the (39, 32, 4) extended Vasil’ev code
is similar to the encoder for the (39, 32, 4) extended
Hamming code. The main difference between them is
that the encoder for the extended Vasil’ev code needs
to realize one nonlinear function f, which requires
thirteen 2-input AND gates and twelve 2-input XOR
gates given the fact that ky = 26. The latency penalty,
the hardware overhead and the power consumption of
the encoder for the extended Vasil’ev code is compa-
rable to that of the linear extended Hamming code
(Table 6).

The architecture of the decoder for the extended
Vasil’ev code is shown in Fig. 4. After new data arrives,
the syndrome S = (S}, S, S3) is computed. If single
errors occurring to the information part of the code
is detected, we first assume that the error is in x, and
attempt to correct the error by flipping the erroneous
bit in x,. Then S, will be re-computed. If S, becomes
zero, then the error is successfully corrected. Otherwise
the error is in x;. The bit in x, will be flipped back and
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Fig. 4 The decoder architecture for the (39, 32, 4) extended Vasil’ev code

the distorted bit in x; will be corrected, which is done by
masking the output of the first exclusive OR network
with some mask pre-computed according to the value
of the syndrome.

Pipeline registers can be added to increase the
throughput of the system. Possible locations for the
pipeline registers are shown in Fig. 4. In Section 6.4.2,
the latency penalty, the hardware overhead and the
power consumption of the non-pipelined decoder for
the extended Vasil’ev code will be shown and compared
to that of the other two alternatives.

6.4 Comparison of Memory Architectures Based
on Extended Hamming Codes, Extended
Vasil’ev Codes and Extended Phelps Codes

6.4.1 Error Detection and Correction Capabilities

In Table 4 we summarize Q,,, the size of the detection
kernel K; and the size of the correction kernel K¢
of the (39,32,4) extended Hamming code, the (39,

Table 4 Detection and correction kernels of the (39, 32,4) ex-
tended Hamming code, the (39,32, 4) extended Vasil’ev code
with wg = 6, Ome = 0.5 and the (39, 32, 4) extended Phelps code
with wg = 27, Ome = 1%

Ome Size of K, Size of K¢
Hamming 1 232 32.2%2 ]
Vasil’ev 0.5 26 ~12-02 1)
1
Phelps T 227 32.(227 -1

32,4) extended Vasil’ev code with w =6, Q,,,c = 0.5
(Example 6) and the (39, 32, 4) extended Phelps code
with wg =27, Ome = 1z (Example 8). The extended
Hamming code has the largest size of K; and the largest
size of K¢ among the three alternatives. The extended
Vasil’ev code has only 2° undetectable errors. The size
of K¢ for the extended Vasil’ev code is nearly one third
of that for the extended Hamming code. The extended
Phelps code has the smallest Q,,. and the smallest size
of K¢. Its K, is larger than that of the extended Vasil’ev
code but is only % of the size of K, for the extended
Hamming code.

Table 5 shows the number of undetectable and mis-
corrected errors with multiplicities three to six for the
three alternatives. All the three codes have no unde-
tectable single, double and triple errors. Only errors
with odd multiplicities are miscorrected. The total num-
ber of miscorrected errors with multiplicities less or

Table 5 Number of undetectable and miscorrected errors with
multiplicities less or equal to six for the (39,32,4) extended
Hamming code, the (39,32,4) extended Vasil’ev code with
wg = 6, Ome = 0.5 and the (39, 32, 4) extended Phelps code with
®g =27, Ome = Tl6

Code llel|=3 llel[=4 llel|=5__llel|=6
|Kq4l  Ext. Hamming 0 1583 0 51744
Ext. Vasil’ev 0 21 0 0
Ext. Phelps 0 364 0 3362
|K.| Ext. Hamming 5176 0 254432 0
Ext. Vasil’ev 1635 0 108993 0
Ext. Phelps 2263 0 42692 0
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equal to six for the extended Vasil’ev code is less than
one half of the corresponding number for the extended
Hamming code. The number of miscorrected errors
with multiplicity three to six for the extended Phelps
code is the smallest of the three, which makes it a good
choice for error correction purpose.

We note that errors e = (e, e, €3, e4) in the detec-
tion kernel of the extended Phelps codes satisfy

er € C, ey =pler), ez € B, ey = ples).

Errors in the correction kernel of the extended Phelps
codes satisfy either

[e1] =lef]l.ea=ple) D 1,e3 € B, es = p(el),
or
e € C,er = pley), [es] = [e]], e4s = p(e3) ® 1.

Obviously, the number of undetectable triple errors
and miscorrected quadruple errors of the extended
Phelps codes can be further reduced by minimizing the
number of codewords of Hamming weight three and
four in codes C and B.

6.4.2 Area Overhead, Power Consumption and Latency

The encoder and the non-pipelined decoder for all the
three codes have been modeled in Verilog and synthe-
sized in Cadence Encounter RTL Compiler using the
Nangate 45nm Opencell library (http://www.nangate.
com). The designs were placed and routed using
Cadence Encounter.

The latency, area overhead and the power consump-
tion of the encoders and decoders for the memory
protection architectures based on the three alternatives
are shown in Table 6 and 7. The data is for the typical
operation condition assuming a supply voltage of 1.1 V
and a temperature of 25°C.

The encoder for the extended Vasil’ev code has
almost the same area overhead and power consumption
as that of the linear extended Hamming code. The
decoder for the extended Vasil’ev code requires 23%
more area overhead and consumes 17.15% more power
than that of the extended Hamming code. In terms of

Table 6 Latency, area overhead and power consumption for
the encoders for (39, 32,4) SEC-DED codes (voltage = 1.1 V,
temperature = 25°C)

Latency Area Power
(ns) (pm?) (mW)
Extended Hamming 0.290 2822 0.2898
Extended Vasil’ev 0.367 296.1 0.2916
Extended Phelps 0.429 383.0 0.4728
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Table 7 Latency, area overhead and power consumption for
the decoders for (39, 32,4) SEC-DED codes (voltage = 1.1 V,
temperature = 25°C)

Latency Area Power

(ns) (pm?) (mW)
Extended Hamming 0.538 620.3 0.7119
Extended Vasil’ev 0.652 763.2 0.8340
Extended Phelps 0.670 1,799.8 1.774

the latency, the architectures based on the extended
Vasil’ev code results in 21.2% more latency for the
decoder and 26.5% more latency for the encoder com-
pared to the extended Hamming code. We note that the
output of the memory can be directly forwarded to the
processors before it goes through the decoder. When
the decoder detects or corrects errors, the processor can
be stalled and the data can be re-fetched from either the
output of the decoder (error correction) or the memory
(error detection). In this case the latency penalty for
the decoder, which is the main factor that affects the
performance of the memory system, is only incurred
when there are errors.

For both the encoder and the decoder, the Phelps
code has the largest penalty in all the three aspects.
Compared to the extended Hamming code, the la-
tency penalty of the extended Phelps code is increased
by 47.9% for the encoder and increased by 24.5%
for the decoder. The area overhead and the power
consumption of the decoder for the extended Phelps
code is almost three times of that for the extended
Hamming code. However, for reliable memory systems
the area and power consumption overhead is mainly
contributed by the redundant memory cells, which is
determined by the number of redundant bits of the
error correcting code. Since all the three alternatives
have the same number of redundant bits, they have
similar area and power consumption overhead.

Thereby, compared to the extended Hamming code,
the extended Vasil’ev code and the extended Phelps
code can achieve better error detection and correction
capabilities at the cost of only a small penalty in latency,
area overhead and the power consumption.

6.5 Further Discussions

We note that errors in the decoders for the proposed
nonlinear SEC-DED codes may also compromise the
reliability of the memories. To protect the decoder
against errors caused by temporary faults like SEU
and MBU, a fault secure design is required. A circuit
is fault secure for a fault set € if every fault in € can
be detected as long as it manifests at the output of


http://www.nangate.com
http://www.nangate.com

J Electron Test (2010) 26:559-580

579

the circuit. The design of fault secure circuits is well
studied in the community (see e.g. [34]). Most of the
existing technologies of designing fault secure circuits
(e.g. methodologies based on duplication and two-rail
code checker [34]) can be directly applied to build fault
secure decoders for the nonlinear SEC-DED codes.
We also note that all the algorithms and architec-
tures proposed in this paper can be applied to memories
with larger word sizes (e.g. 64-bit or 128-bit). Moreover,
the extended Vasil’ev codes can be further generalized
to correct multi-bit errors. For more information about
nonlinear multi-bit error correcting codes, please re-
fer to [41], where a (8281, 8201, 11) nonlinear 5-error-
correcting code has been applied for the protection of
multi-level cell (MLC) NAND flash memories.

7 Conclusion

In this paper memory protection architectures based on
nonlinear SEC-DED codes are proposed. We general-
ize the constructions of the existing perfect nonlinear
Hamming codes to generate nonlinear partially robust
codes with any length. The optimality of the codes
is demonstrated. The error detection and correction
capabilities of these codes are analyzed and compared
to linear codes.

The two nonlinear SEC-DED codes generalized in
the paper — the extended Vasil’ev codes and the ex-
tended Phelps codes—are viable alternatives to re-
place the traditional linear extended Hamming codes
to protect memories for situations where the likelihood
of multi-bit errors is high or errors tend to repeat
themselves. We present error detecting and correct-
ing algorithms for these nonlinear codes and describe
their hardware implementation. The number of un-
detectable and miscorrected multi-bit errors for these
codes is much smaller than that for traditional lin-
ear error correcting codes. In the presence of multi-
bit distortion or in the case of repeating errors, these
codes can provide much better protection with a small
increase in latency, area overhead and the power con-
sumption. Different from linear codes, the nonlinear
SEC-DED codes have conditionally detectable (mis-
corrected) errors. The detection (correction) of these
errors is message-dependent. This makes these codes
useful to detect (correct) repeating errors, e.g. hard
errors caused by permanent faults.

The proposed protection architectures are not tar-
geted for any special memory architecture. They can be
applied to nearly all types of memories such as RAM,
ROM, FLASH and disk memories.

As far as we know, this paper and or previous
paper [40] are the only papers discussing applica-
tion of efficient nonlinear codes for design of reliable
memories.
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