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Abstract

We propose an efficient technique for the detection
of errors in cryptographic circuits introduced by strong
adversaries. Previously a number of linear and non-
linear error detection schemes were proposed. Linear
codes provide protection only against primitive adver-
saries which no longer represents practice. On the
other hand non-linear codes provide protection against
strong adversaries, but at the price of high overhead.
Here we propose a movel error detection technique,
based on the random selection of linear codes. Under
mild assumptions the proposed construction achieves
near mon-linear code error detection performance at
much lower cost due to the fact that no non-linear op-
erations are needed for the encoder and decoder.

1. Introduction

Cryptography has matured to the point where the
biggest threat is due to attacks that directly target the
implementation. Side-channels such as the execution
time, power signature, accoustic and electromagnetic
emanations, [10, 9] leak dependent that may (and for
most cases does) allow the attacker to recover the se-
cret key. Even worse an attacker may inject faults into
the device forcing an error in the computation or forc-
ing the device into an undesired state. Due to their
active and adaptive nature, fault based attacks are one
of the most powerful types of side-channel attacks. For
instance the attack proposed by Boneh et al. in [1]
trivially recovers the RSA factors by introducing an
arbitrary fault in one of two RSA signature computa-
tions. One of the most efficient fault injection attacks
on AES-128, for example, requires only 2 faulty cipher-
texts to retrieve all 128-bits of the secret key [8]. With-
out proper protection architecture against fault injec-
tion attacks, the security of the cryptographic devices
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can never be guaranteed.

Tamper detection can be achieved by embedding
sensors into the device, covering the device with a pro-
tective coating [12, 13], secure key storage [11] or by
implementing error detection codes (EDCs). Among
these techniques, only EDC allows us to easily establish
a precise metric that measures the error detection per-
formance. Sensor integration and the protective coat-
ing approaches require significant changes in the man-
ufacturing process. The secure key storage technique
does not provide comprehensive protection.

There are numerous EDC proposals based on lin-
ear codes such as parity codes and Hamming codes in
the literature. Protection architectures based on lin-
ear codes concentrate their error detecting abilities on
errors with small multiplicities or errors of particular
types, e.g. byte errors or errors with odd multiplicities.
This will suffice if the adversary has limited temporal
and spatial resolution. However, in recent work it was
shown that an arbitary bit location in memory could be
modified via an optical induction attack [14]. Against
such capable attackers linear codes stand no chance.

In [5], algebraic robust codes were proposed as an
alternative to classical linear codes to protect crypto-
graphic devices implementing AES against fault injec-
tion attacks. In [3] and [7], robust arithmetic residue
codes were proposed which can be used to design fault
tolerant cryptographic devices performing arithmetic
operations. Instead of concentrating the error detect-
ing abilities on particular types of errors, robust codes
provide nearly equal protection against all error pat-
terns hence eliminate weaknesses that can be exploited
by attackers. The main disadvantage of robust codes
is the large hardware overhead of the encoding and de-
coding circuits due to the non-linear operations.

In this paper, we propose a new method to achieve
robustness. Instead of using non-linear functions to
generate the signature of the code, we randomly select
a linear code from a set of linear codes at each clock



cycle. For a given error e, the error masking probability
Q(e) is defined to be the fraction of codewords that
mask the error.
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We distinguish between two kinds of errors — errors
that are masked with probability 1 and errors that are
masked with probability less than 1 but larger than 0.
The former is called undetectable errors and the lat-
ter is called conditionally detectable errors. The
proposed method can achieve as small number of unde-
tectable errors as classical robust codes while requiring
much less hardware overhead.

2 Multilinear Algebraic Codes

For the remainder of this paper we denote by
{C;,1 <i<I1>2} the set of linear codes, where [ is
the number of different codes in the set. We first pro-
pose several methods of constructing linear algebraic
codes C;,2 < i <[ from C] in such a way that ran-
domly selecting C;, 1 < i <[ have much less or even no
undectable errors. For the randomization a standard
low-rate true random number generator is used, which
is available in most cryptographic devices.

Construction 2.1 Let C; be a (n, k) linear code with
Hamming distance larger than 2. C;,2 <i <Il,l =k is
constructed by swapping the first and the iz, informa-
tion bits of Cy. If we randomly select C;,1 <i<l=k
to encode the original messages with equal probability,
the only undetectable error is the codeword of Cy with
all 1's in the information part. Errors that have the
same value for the first k — 1 information bits will be
masked with probability %, which s the maximum
conditional error masking probability.

Proof Undetectable errors are codewords that belong
to all of the | = k linear codes C1,Cy, - -+, C]. Because
the Hamming distance of C; is larger than 2, the in-
tersection of these codes contains only the vector (also
a codeword) with all 1’s information bits and the vec-
tor with all 0's information bits. Errors which have the
same value for the first £ — 1 information bits belong to
k—1 linear codes. So it will be masked with probability
% if we select the codes with equal probability. Ob-
viously, this is the maximum conditional error masking
probability. B

When implemented in hardware, the overhead of Con-
struction 2.1 may be excessive. To reduce the hard-
ware overhead, we can use only [,2 < | < k linear

codes. Generally speaking, when we randomly select
1,2 <1 < k linear codes to encode the messages, the
number of undetectable errors is 2¥~+1 (including the
all 0’s vector). The maximum error masking probabil-
ity for all conditionally detectable errors is l_Tl The
simplest case is to use only C; and Cs to encode the
messages, where C5 is built by swapping the first and
the second information bits of Cy. This method re-
quires only 2 more 2 : 1 multiplexer for the encoder
while the number of undetectable errors is reduced by
50% compared with the method using only Ci. All
conditionally detectable errors will be detected with
probability 0.5.

Another variation of Construction 2.1 is to swap the
redundant bits instead of the information bits of C;.
Suppose C;,2 < i < r is constructed by swapping the
first and the i;;, redundant bits of C;. Assume that all
2" binary vectors are possible for the redundant part
of Cy. If we randomly select 1,2 < [ < r linear codes
to encode the original messages with equal probabil-
ity, the number of undetectable errors is 2F7!+1. The
maximum error masking probability for conditionally
detectable errors is Z_Tl For this variation the smallest
possible number of undetectable errors is 2"+ which
is larger than that can be achieved by swapping infor-
mation bits due to the fact that only r different codes
can be constructed.

Example 2.1 We compare the hardware complexity
for the encoder and the number of undetectable er-
rors for the architectures that utilize different numbers
of linear codes constructed by swapping information
bits of the original code. Let Ci be a (39,32) Hsiao
code [17] whose parity check matriz is in the standard
form H = [I, P], where I is a 7 x 7 identity matriz
and P is a 7 x 32 predictor matriz defined as follows.
C;,2 <1 < 32 is constructed by swapping the first and
the i, information bits of Cy

11111111000000100001001010000011
00001001111111110010010010000100
00010000000100001111111100110110
P =] 00100010001001011000000011111111
01100101010010010000111101101000
10000110100011101111100000001000
11011000111100000100000101010001

The hardware complexity for the encoder, the num-
ber of undetectable errors and the maximum error
masking probability of conditionally detectable errors
for four schemes are shown in Table 1. The first col-
umn is the number of codes we randomly select to en-
code the messages. Row 1 corresponds to the case when
only Cy is used. 70 2-input gates and inverters are re-
quired to build the encoder. When randomly select 2



Table 1. Hardware complexity for the encoder, number of undetectable errors and maximum condi-
tional error masking probabilities for schemes using different number of codes from Construction

2.1 (n =39,k =32)

Number of Codes Number of Gates

Number of Unde-
tectable Errors

Maximum conditional er-
ror masking probability

1 70 232 -

2 7 231 0.5

4 96 229 0.75
8 153 225 0.875

linear codes, we only need 7 extra gates and the num-
ber of undetectable errors is reduced by 50% compared
with the case when only a single linear code is used. In-
creasing the number of codes can further decrease the
number of undetectable errors. However, this is at the
cost of larger hardware overhead and worse conditional
error masking probability.

Another simple way to construct C;,2 < i <[ from
C is to circularly shift the redundant bits of Cy as
outlined below.

Construction 2.2 Let C; be a (n, k) linear code with
r =n—k <k redundant bits. Denote by H = [I, P| the
parity check matrixz of Cy, where I is a r X r identity
matriz and P is a r X k predictor matriz. Assume that
the rank of P is r. Construct Cs by circularly shift-
ing the redundant part of Cy by 1 bit. If we randomly
select C1 and Cy to encode the original messages with
equal probability, the number of undetectable errors is
2k=r+1 " In addition, there are 28t — 2F=m+2 epporg
which will be detected with probability 0.5.

Proof Denote by x = (21,2, -, x,) the codeword of
a (n, k) linear code and assume that the first r bits are
redundant bits. If (z1, 22, -+, &, Tpi1, -, Tp) belongs
to both C7 and Cs, then from the construction method
of Cy we know that (xe,x3, -, Tr, T1,Tri1, ", Tn)
also belongs to Cy. Hence the sum (z; + 29,29 +
x3,+,Tp+21,0,---,0) is another codeword of Co. Be-
cause the information part is all 0’s, the redundant part
should also be all 0's. Thereby x1 + 29 = 0,25 + 3 =
0, ,xr+x1 =0. Sox; =29 = - =z, € {0,1}.
Given the assumption that the rank of the predictor
matrix P is r, all 2" values are possible for the redun-
dant part of the code. There are 25~ codewords that
can generate each value of the redundant part. Hence
the number of undetectable errors is equal to the size
of the intersection of the two code which is 2¥~7+1. B

Example 2.2 (z,(Pxz)?) is a partially robust code,
where x € GF(2%), P is a r x k matriz in GF(2),

Pxr € GF(2") and y3*(y = Px) is a cube operation
in Galois Field GF(2") [6]. The number of unde-
tectable errors of (z,(Px)®) code is 28", All condi-
tionally detectable errors are masked with probability
2=t Compared with (x,(Pxz)3) code, Construction
2.2 has nearly the same order of the number of unde-
tectable errors but requires much less hardware over-
head to implement. As an illustrative example, Table 2
compares the hardware overhead for the encoder, num-
ber of undetectable errors as well as the maximum con-
ditional error masking probability for these two codes
when n = 39,k = 32. P is selected to be the same ma-
trixz as in Example 2.1. Only 95 2-input gates and in-
verters are required for the encoder of circularly shifting
method while (x, (Px)) needs 514. The gap will become
even larger when r increases.

Construction 2.2 can be further improved to reduce
the maximum conditional error masking probability.
Let Cy be a (n, k) linear code. Assume that we can find
m numbers s;,1 <7 <m < r =n—k, such that s;,1 <
i < m and r are mutually prime. C;,2 <7< m+1is
constructed by circularly shifting the redundant part of
C1 by s;_1 bits. If we randomly select C;,1 < i < m+1
to encode the original messages with equal probability,
the number of undetectable errors is 28"+, assuming
the rank of the predictor matrix of C' is r. In addition,
(m + 1) - (28 — 2k=7+1) errors will be detected with
probability ﬁ“

When r is prime, s; can be any integer in the range
of [1,7—1]. In this case the maximum conditional error
masking probability is %

Example 2.3 Let Cy be a (7,4) linear perfect Ham-
ming code. T n—k 3 is prime. Construct
C;,2 < i < 3 by circularly shifting the redundant part
of C1 by i — 1 bits. Figure 1 shows the experimental
error masking properties for all 27 — 1 nonzero errors.
For each error we encode 2000 arbitrarily selected mes-
sages. A C; is randomly chosen to encode each of the
message. As we can see from Figure 1, 28-7T1 =4 er-
rors are undetectable (including the all 0's vector). All



Table 2. Comparison of (z, (Px)3) code and Construction 2.2
Codes Number of Gates Number of Unde- | Maximum conditional er-
tectable Errors ror masking probability
(z, (Px)3) 514 225 276
Construction 2.2 95 226 0.5
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Figure 1. Error detection properties of cir-
cularly shifting and randomly selecting (7,4)
Hamming code

the conditionally detectable errors are masked by about
660 codewords, which means they are masked with prob-
ability % = %

The more codes we randomly select from, the better
the error detection ability we can achieve. Randomly
selecting more codes can result in either less unde-
tectable errors (Example 2.1) or smaller maximum con-
ditional error masking probability (Example 2.3). On
the other hand, randomly selecting more linear codes
means more complicated encoding and decoding strate-
gies which may result in larger hardware overhead. An
apparent question is how to randomly select codes to
optimize either the number of undetectable errors or
the maximum conditional error masking probability.
If we randomly select [ different linear codes, the best
conditional error masking probability is % which can
be achieved when there are no errors belonging to more
than one code except for the undetectable errors. The
conditions for minimizing the number of undetectable
errors when randomly selecting I < | %]+1 linear codes
is derived as follows.

It is easy to show that the smallest possible dimen-
sion of the intersection of | < [%] 4 1 different (n, k)
linear codes is k—(I—1)r, where r = n—k is the number
of redundant bits. For linear codes, every single redun-
dant bit can be written as a seperate function of the

information bits. Denote by f; ; the encoding function
for the 74y, code to generate the j;, redundant bit, where
1<i<I,1<j<r. The errors belonging to the in-
tersection of all [ linear codes should satisfy the follow-
ing equations: fi; = fo; = --- = fi1; or equivalently
Jrj+ i =0, f15+ fa; =0 f1;+ fi,; = 0 where
j=1,2,...,r. There are in total (I—1)r equations and
k unknowns (information bits of the code). The small-
est possible dimension of the intersection is k — (I —1)r
which can be achieved when all these (I —1)r equations
are linearly independent. We next give a construction
which can optimize the number of undetectable errors
for any given | < L%J + 1.

Construction 2.3 Suppose we want to construct | <
L%J +1 linear systematic codes such that the dimension
of the intersection of these codes is minimum. Denote
by H; the parity check matrix of the iy, linear code.
Without loss of generality, assume that the first r bits
of any codeword are the redundant bits and the par-
ity check matrices are in standard form H; = [I,., P;],
where I, is a v X r identity matriz and P; is a r X k
predictor matriz. Given Py, P; 2 < i <[ can be con-
structed as follows.

P2 - Pl ¥ [Irv Or,k—r}
P3 = Pl S [Or,m IT7 Ov‘,k—Qr]
P = Pio0nq-2)r, I, Or (k—1=1)r)]

where I is a v X r identity matriz and 0, ; s a 1 X j
all zero matrix.

Example 2.4 In this example, we construct 2 [10,5]
linear systematic codes such that the intersection of the
two codes contains only the 0's vector. We select the
first code C1 to be a shortened Hamming code with the
following parity check matriz.

1000010101
0100011111
0010011011
0001000111
0000100101

H,y



According to Construction 2.3, the parity check matriz
of the second code can be computed as follows:

1000010101 0000010000
0100011111 0000001000
Hy, = 0010011011 | + | 0000000100
0001000111 0000000010
0000100101 0000000001

It is easy to verify that the dimension of the intersec-
tion is k —r = 0. The only vector belonging to both
codes is the all 0's vector.

In Construction 2.3, P;,2 < i <[ is built by flipping
r bits of r columns in the original predictor matrix
Py, one bit for each column. Generally speaking, this
method cannot guarantee that all the linear codes have
the same distance as the original code C;. In the above
example, the distance of C} is 2 instead of 3. However,
by carefully selecting the parity check matrix for C; or
adjusting the flipping positions, it is possible to make
the other linear codes have the same distance as C;.
For instance, we can construct another (10,5) linear
code C3 with the parity check matrix computed as fol-
lows. The minimum distance of C5 becomes 3 in this
case while the intersection of 'y and C3 still contains
only the all 0’s vector.

1000010101 0000010000
0100011111 0000000010
H; = 0010011011 | 4 | 0000000100
0001000111 0000001000
0000100101 0000000001

3 General Analysis of Fault Detecion
Ability of Multilinear Codes

A big difference between linear codes and the pro-
posed constructions based on randomly selecting mul-
tiple linear codes is that our method has conditionally
detectable errors. The detection of errors is message
dependent. If the error is masked by one codeword,
it is still possible that it will be detected by another
codeword of a different code at the next moment. The
longer the same error stays, the higher the detection
probability is. Thereby in channels where errors tend
to repeat themselves, our method has higher error de-
tection ability than classical linear codes.

For applications utilizing cryptographic devices, we
are more concerned about the fault detection ability of
the code. The same fault may manifest itself as differ-
ent error patterns at the output of the devices. When
the same fault stays for ¢ consecutive clock cycles, a
general analysis of the fault detection abilities of the
proposed method is shown in the next theorem.

Theorem 3.1 Let C1,Cy---Cp, be L different linear
(n, k) codes. Assume that single or multiple faults stay
fort =aL+b,a>0,0<b<L—1 consecutive clock
cycles and may manifest themsevles as s different er-
ror patterns e;, 1 < i < s < 2™ with probability p(e;)
respectively. (We assume e; may be the all 0's vector.)
P, = Zeiecj’lgigsp(ei),l < j < L is the probabil-
ity that faults manefest themselves as errors which are
codewords of C;. Denote by Wy the probability that
faults are not detected after t clock cycles. If we circu-
larly select Cy,Cs---Cp, to encode the message at ev-
ery clock cycle, Wy = ngng ij+17H(j7b71), where
H(j —b—1) is the unit step function. If we randomly
select the codes, Wy = (1 SE LB

Circularly selecting codes at each clock cycle is not
suitable for cryptography applications because the at-
tackers can circumvent the protection schemes if he
knows what codes are used at each clock cycle. The
advantage of circularly selecting, however, is that ev-
ery error staying for at least L consecutive clock cy-
cles can be 100% detected if the intersection of the L
codes contains only the all 0’s vector. When L = 2,
all nonzero errors can be detected after staying for at
most two clock cycles as long as C; and C5 are non-
overlapping and this is very useful for applications re-
lated to many communication channels and some com-
putational channels where errors tend to repeat them-
selves with high probability, e.g. linear computational
network consisting of XOR gates only.

To demomstrate the advantage of the proposed
method, we compare the fault masking probability af-
ter ¢t consecutive clock cycles for three error protection
schemes for linear networks. The first one is based on a
single (20, 15) shortened Hamming code. Denote it by
C1. The second one utilizes four (20,15) linear codes
C;,1 < i < 4 whose intersection contains only the all
0’s vector. For the construction of C;,2 < i < 4, please
refer to Construction 2.3. The third method is based
on the (z, (Pz)3) partially robust code. We can select
P to be the same predictor matrix as for Cj.

To simplify the analysis. We assume that a stuck
at fault occurs in the linear network. The fault man-
ifests itself as the same nonzero error e at the output
of the network with probability 0.5. If e is a codeword
of (', after t clock cycles the error will be masked
by the shortened Hamming code with probability 1.
For method 2, we randomly select C;,2 < i < 4 with
equal probability. If e belongs to the intersection of
3 codes, it will be masked with probability 0.875¢ af-
ter t clock cycles according to Theorem 3.1. If e only
belongs to one code, the error masking probability af-
ter ¢ clock cycles is 0.625!. The partially robust code



(z,(Px)?) has 2k~ = 210 undetectable errors. If e
is undetectable by (z, (Pxz)?), it will be masked with
probability 1 regardless of t. If e is conditionally de-
tectable by (z,(Px)3), the error masking probability
after ¢ clock cycles is (0.5 + 0.5 - 2771t

Figure 2 plots the fault masking probabilities after
10 clock cycles for the three alternatives. As expected,
when considering the worst case fault masking proba-
bilities, linear code is much worse than the other two.
The fault will be masked no matter how many clock cy-
cles it stays if it manifests as a codeword of the linear
code. The method based on multilinear codes is much
better than that based on single linear code. The per-
formance of multilinear codes also depends on how the
fault manifests itself. The less codes the manifested
error belongs to, the better the fault detection ability
is. One disadvantage of (z, (Px)?) code is that it still
has undetectalbe errors. Even if the manifested error is
conditionally detectable by (z, (Pz)?), the fault mask-
ing probability is only a bit smaller than the best fault
masking probability of multilinear codes. Given the
fact that (z, (Pr)3) code requires much more hardware
overhead to implement, we claim multilinear codes are
more promising alternatives in practice.

—&— Linear Codes, (x(Px)% Codes({Undetectable)
= -Multiinear Codes(Best Case)

"# | =+ Multllinear Codes(worst Case)
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Figure 2. Comparison of fault masking prob-
ability after ¢ clock cycles

4 Conclusion

We presented a new of class of error detection codes
against adversarial errors. Compared to robust codes
the proposed codes achieve similar error detection ca-
pabilities at much reduced cost due to their linearity.
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