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Abstract

In this paper, we discuss definitions, features, and relationships of Reed-Muller transforms,
Reed-Muller codes and their generalizations to multiple-valued cases, and Reed-Muller decision di-
agrams. The novelty in this primarily review paper resides in putting together these concepts in the
same context and providing a uniform point of view to their definition in terms of a convolutionwise
multiplication. In particular, we point out that the Plotkin construction schemes for Reed-Muller
codes used in coding theory are a different notation for basic Reed-Muller transform matrices over
finite fields or can be alternatively viewed as decomposition rules used to define the Reed-Muller
decision diagrams.

1 Introduction

Professor Jaakko Astola started his research career in the area of coding theory where he found a
suitable subject for his PhD Thesis. Latter, he intensively studied and used spectral transforms as
a classical tool in signal and image processing and system design. In the last ten years Prof. Astola
has been efficiently using decision diagrams for representation of discrete signals. For that reason this
paper provides some remarks about these three subjects.

In the first part of the paper, we discuss some generalizations of Reed-Muller codes and extensions
to non-binary Reed-Muller codes with particular emphasis on methods to construct codes of larger
length from codes of the smaller length. We observe that these methods are actually defined by
referring to basic transform matrices that are used in spectral techniques to define the Reed-Muller
and related transforms.

In the second part, we point out that the generating matrices of non-binary Reed-Muller codes are
interpreted as kernels of certain spectral transform and studied from the point of view of functional
expressions for representation of discrete functions. Basic functions in terms of which these transforms
are defined can be used to define the Reed-Muller related codes.

The third part of the paper presents an approach to exploit spectral interpretation of decision
diagrams in an opposite manner. We define a method to construct various spectral transforms (local
and global) by assigning various basic transform matrices to nodes of decision diagrams. Some of these
basic transform matrices can be selected among generating matrices of certain non-binary codes. In
this way, codes will provide a basis to define spectral transforms. As a particular example we presented
a Haar-like transform defined in terms of the basic generator matrix for the octacode.



Notice that whenever there is no danger of ambiguities or misinterpretation, the term Reed-Muller
codes will be used in a general context to denote either the binary Reed-Muller code or its generaliza-
tions and extensions. We will use in the same way the terms Reed-Muller transforms and Reed-Muller
decision diagrams. When necessary, more specific terms will be used to denote some particular mem-
bers of these large families of codes, transforms, and decision diagrams.

2 Background and Related Work in Reed-Muller Codes

In this section, we briefly present some basic facts about Reed-Muller codes and their various gener-
alizations and extensions. We restrict the discussion to the topics most relevant to the presentations
in other sections as well as to some recent development in the area, in order to justify actuality of the
topic. In this context, the term generalized Reed-Muller codes refers to the Reed-Muller codes where
the domain is the same as for the classical binary Reed-Muller codes, i.e., Zn

2 . The term non-binary
Reed-Muller codes refers to codes defined over finite fields Fq, q > 2 or related algebraic structures.

2.1 Binary Reed-Muller codes

Binary Reed-Muller codes are both theoretically interesting and useful in practice for two main reasons,
optimality of their parameters and existence of fast decoding algorithms. For instance, there are such
algorithms that are based on Walsh transform in Hadamard ordering [25]. From the point of view
accepted for the presentations in this paper, derivation of such algorithms looks natural if we recall
tight relationships between the Reed-Muller codes and the Reed-Muller expressions. More precisely,
we notice that the Reed-Muller expressions can be derived from the Walsh expressions, if in the latter
the Walsh functions are expressed in terms of Boolean variables and then calculations of coefficients
are performed modulo 2, see, for instance, [36].

Binary Reed-Muller codes are defined in terms of Boolean functions f : Zn
2 → Z2, or when we

refer to finite fields as underlying algebraic structures, these codes can be viewed as codes over the
finite field F2. The generator matrix is defined by referring to the Reed-Muller matrix or some rows
of it selected according to the order of the code. Since permutation of rows of the generating matrix
produces identical codes, the order of rows of the Reed-Muller matrix when used for rows of the
generating matrix of the Reed-Muller codes can be different from the Hadamard ordering usually
preferred in study and applications of the Reed-Muller expressions and transform in switching theory
and logic design.

The binary Reed-Muller code RM(n, k) is generated by the componentwise logic AND (the wedge
product) of up to k binary variables xi viewed as trivial switching functions f(x1, . . . , xn) = xi and
represented as binary vectors xi of length 2n. In other words, the binary Reed-Muller are defined in
terms of monomials in Boolean variables. The notion will be illustrated by the following example.

Example 1 (Binary Reed-Muller codes)
If n = 3, we consider the field F 3

2 = {(0, 0, . . . , 0), (0, 0, . . . , 1), . . . , (1, 1, . . . , 1)}, the constant vector 1
of the length 23, and switching variables x1, x2, and x3. Thus,

1 = [11111111],
x1 = [00001111],
x2 = [00110011],
x3 = [01010101].



The RM(3, 1) code is generated by the set {1, x1, x2, x3}, or by the rows of the matrix

RM(3, 1) =




1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0
1 1 0 0 1 1 0 0
1 1 1 1 0 0 0 0




1
x3

x2

x1.

Notice again that the code is invariant to the permutation of rows of this matrix.
The RM(3, 2) code is generated by the set {1, x1, x2, x3, x1x2, x1x3, x2x3}, or by the rows of the

matrix

RM(3, 2) =




1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0
1 1 0 0 1 1 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0




1
x3

x2

x1

x2x3

x1x3

x1x2

The code RM(n, k) is linear, comprises 2

∑k

i=0

(
n
i

)

codewords, and has minimum Hamming (and
Lee) distance 2n−k.

In general, as noticed above, we can say that the binary Reed-Muller codes are defined in terms
of monomials in Boolean variables. In matrix notation these monomials are generated as

X =
n⊗

i=1

Xi(1), Xi(1) =
[

1 xi

]
, xi ∈ {0, 1}. (1)

Recall that in switching theory, the monomials defined above are called the Reed-Muller functions,
see, for instance, [4]. In other words, the Reed-Muller codes are generated by selecting subsets of the
Reed-Muller functions according to the order of the code. The Reed-Muller functions are a complete
set, thus, a basis in the space of all Boolean functions for a given number of variables. This basis is
used to express any Boolean function in the so-called Positive-polarity Reed-Muller expression (PPRM)
[31], also called the Žhegalkin polynomial [45]. Notice that a PPRM is also called algebraic normal
form, the notation most often used in coding theory [25].

2.2 Binary encoded Reed-Muller codes

Generalized or binary encoded Reed-Muller codes are defined in terms of generalized Boolean functions
f : Zn

2 → Zq, where q = 2h, h ∈ N , in a manner similar to that used to define the classical binary
Reed-Muller codes. Any generalized Boolean function can be uniquely represented by the generalized
PPRM, which consists of the same set of monomials as PPRM for Boolean functions, however, with
coefficients in Z2h instead of Z2 = {0, 1}.

There are several generalizations and the corresponding definitions of the Reed-Muller codes. For
example, in [7], generalized Reed-Muller codes are defined as follows.

Definition 1 (Binary encoded Reed-Muller codes) [7]
For h > 1 and 0 ≤ k ≤ n, the kth-order linear code RM2h(n, k) over Z2h of length 2n is generated by
the monomials in xi of degree at most k.



The thus defined RM2h(n, k) code generalizes the binary Reed-Muller code RM(n, k) from the
alphabet Z2 to the alphabet Z2h , involving it as the particular case for h = 1. The code contains

2
h
∑k

i=0

(
n
i

)

codewords.

Example 2 The generator matrix of the code RM2h(4, 1) is

RM2h(4, 1) =




1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1




1
x1

x2

x3

x4

This code contains 25h codewords for h ≥ 1.

Definition 2 (Binary encoded Reed-Muller codes of type ZRM) [7]
For h > 1 and 0 ≤ k ≤ n+1, the kth-order linear code ZRM2h(n, k) over Z2h of length 2n is generated
by the monomials in the xi of degree at most k− 1 together with two times the monomials in the xi of
degree r (with the convention that the monomials of the degree −1 and n + 1 are equal to zero).

This code is a generalization of the quaternary Reed-Muller code ZRM(n, k) defined in [14] from
the alphabet Z4 to the alphabet Z2h involving the previous as the particular case for h = 2. The code

contains 2
h
∑k

i=0

(
n
i

)

· 2
(h−1)

(
n
r

)

codewords.
Notice that these codes are sometimes mentioned in the literature also as Generalizer Reed-Muller

codes.

Example 3 The generator matrix of the code ZRM2h(4, 2) is

RM2h(4, 2) =




1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2
0 0 0 0 0 0 0 0 0 0 2 2 0 0 2 2
0 0 0 0 0 0 0 0 0 2 0 2 0 2 0 2
0 0 0 0 0 0 2 2 0 0 0 0 0 0 2 2
0 0 0 0 0 2 0 2 0 0 0 0 0 2 0 2
0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 2




1
x1

x2

x3

x4

2x1x2

2x1x3

2x1x4

2x2x3

2x2x4

2x3x4

The code contains 25h · 26(h−1) codewords.

A further generalization of the Reed-Muller codes over the alphabet Z2h has recently been presented
in [32] as follows.

Definition 3 [32]
For h > p and k ≥ p we define the code ZRMp

2h(n, k) as the set of all vectors of length 2n that can be
associated with a generalized Boolean function Zn

2 → Z2h comprising the monomials of order at most
k − p and 2i times the monomials of order k − p + i with i = 1, 2, . . . , p.



In this definition, for p = 0 we get the generalized Reed-Muller code RM2h(n, k) and for p = 1
the code ZRM2h(n, k). For p ≥ 1 this definition produces new generalized Reed-Muller codes which
appear convenient for applications in Orthogonal Frequency Division Multiplexing (OFDM) [32] with
respect to the peak-to-mean envelope power ratio (PMEPR).

2.3 Non-binary Reed-Muller codes

Many authors refer to [8], [19], and [26] as sources of initial considerations of non-binary Reed-Muller
codes. The concept of non-binary Reed-Muller codes will be introduced by the following example.

Example 4 (Quoternary Reed-Muller codes) [2]
For instance, the Reed-Muller codes for q = 4 and n = 2, RM4(2, 1), are defined by the generator
matrix

RM4(2, 1) =




0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1


 .

Besides the constant 1 in the last row of the matrix, the first and the second row correspond to the
quaternary variables x1 and x2.

The Pascal transform defined in terms of entries of the Pascal triangle written as the Pascal matrix
has recently received a lot of attention, see for instance [1], [13], [12], [33], [34], [35], [46], and references
therein. Referring to this transform is a direct and simple way to observe strong relationships between
Reed-Muller codes and spectral transforms for either binary and non-binary cases.

In [26], it was observed that monomials that are used to define classical Binary Reed-Muller codes
can be viewed as functions in matrix notation represented by columns of the Pascal matrix whose
entries are calculated modulo 2. Therefore, the generator matrix of the classical binary Reed-Muller
codes is defined by referring to the Pascal matrix modulo 2. This provides a straightforward way
to generalization of the Reed-Muller codes over finite fields Fq of different modules. Such codes are
defined by the generating matrices obtained from the Pascal matrix after calculation of its entries
modulo q.

Example 5 First 8 rows of the Pascal matrix are

L(9×9) =




1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 2 1 0 0 0 0 0
1 3 3 1 0 0 0 0
1 4 6 4 1 0 0 0
1 5 10 10 5 1 0 0
1 6 15 20 15 6 1 0
1 7 21 35 35 21 7 1




.

When entries are calculated modulo 2, we get the Reed-Muller matrix that can be defined alterna-
tively as

R(n) =
n⊗

i=0

R(1), R(1) =

[
1 0
1 1

]
.



Table 1: Basic generating matrices of non-binary Reed-Muller codes for q = 3, 4, 5.

G3 =




1 0 0
1 1 0
1 2 1


 G4 =




1 0 0 0
1 1 0 0
1 2 1 0
1 3 3 1


 G5 =




1 0 0 0 0
1 1 0 0 0
1 2 1 0 0
1 3 3 1 0
1 4 1 4 1




Table 2: The Plotkin construction schemes for non-binary Reed-Muller codes for q = 3, 4, 5.

q Construction scheme
3 (u + v + w | 2u + v | u)
4 (u + v + w + x | 3u + 2v + w | 3u + v | u)
5 (u + v + w + x + y | 4u + 3v + 2w + x | u + 3v + w | 4u + v | u)

The matrix X(1) in (1) can be viewed as the symbolic notation for R(1), and then from there the
direct link to the definition of the Reed-Muller codes in terms of monomials in Boolean variables.

It is not difficult to realize that the Plotkin constructions [27] for the binary Reed-Muller codes
follows from R(1) since

[
v u

] [
1 0
1 1

]
=

[
u + v | u

]
.

This example explains the way of defining non-binary Reed-Muller codes as suggested in [26], see
also [22]. It also suggests that the following remark can be given.

Remark 1 (Reed-Muller codes and spectral transforms)
The Plotkin construction method for Reed-Muller codes is an alternative way to express the Kronecker
product structure of the Reed-Muller transform and the same interpretation extends to non-binary
cases.

Table 1 shows the generating matrices for non-binary Reed-Muller codes for q = 3, 4, 5. Codes of
higher dimensions can be defined by using the Plotkin construction schemes that are shown in Table 2.

In [26], it has been remarked as an important feature of the binary Reed-Muller matrix that it
is a self-inverse matrix, with a reference to the work of Preparata [28] for applications of this matrix
in switching theory. This feature of self-inverseness is lost in generalizations to q-valued case as the
generalizations done in [26] for non-binary Reed-Muller codes.

We observe that columns of the Pascal matrix of order (g× g) can be generated as integer powers
of the constant function W (x) ≡ 1, for all x = 0, 1, 2, . . . , g − 1, under the exponentiation performed
as the convolutionwise (Gibbs) multiplication defined as 1

(fg)(0) = 0, (2)
1Notice that W (x) ≡ 1, is a vector of the length g whose all entries have the value 1 (the first column in the Pascal

matrix) and its integer powers in terms of the convolutionwise (Gibbs) multiplication are also vectors that determine
other columns of the Pascal matrix.



Table 3: Basic RMF-matrices for q = 3, 4, 5.

R3,RMF (1) =




1 0 0
1 2 0
1 1 1


 R4,RMF (1) =




1 0 0 0
1 3 0 0
1 2 1 0
1 1 3 3


 R5,RMF (1) =




1 0 0 0 0
1 4 0 0 0
1 3 1 0 0
1 2 3 4 0
1 1 1 1 1




Table 4: The Plotkin constructions schemes for the RMF-codes for q = 3, 4, 5.

q = 3 (u + v + w | u + 2v | u)
q = 4 (u + v + w + x | u + 2v + 3w | 3u + v | 3u)
q = 5 (u + v + w + x + y | u + 2v + 3w + 4x | u + 3v + w | u + 4v | u)

(fg)(x) =
σ(x)−1∑

s=0

f(σ(x)− 1− s)g(s), ∀x = 0, 1, . . . g − 1, x 6= 0.

where σ is a q-adic contraction defined as

σ(x) =
n∑

i=1

xiq
n−i.

We further observe that the property of self-inverseness can be regained if instead of the constant
function 1, we take the function W (x) ≡ q−1, as it has been done in defining the Reed-Muller-Fourier
(RMF) transforms [42]. The basic RMF-transform matrices can be used to define the Reed-Muller-
Fourier codes modulo q in the same manner as it was done in [26].

Table 3 and Table 4 show the basic RMF-transform matrices for q = 3, 4, 5, and the corresponding
Plotkin construction schemes.

Notice that symbolic notation of columns of RMF-matrices in terms of q-valued variables and their
integer powers with respect to the convolutionwise (Gibbs) multiplication lead to the q-ary monomials
that can be used to define the RMF-codes in the same manner as discussed for the generalized Reed-
Muller codes in Subsection 2.2. This approach will be discussed in more details in the example of
ternary RMF-codes in Section 4 after presenting some basic facts on RMF-expressions (Section 3) in
terms of these ternary monomials.

2.4 Quantum Reed-Muller codes

For the actuality of the topic, in this section we provide few remarks about the quantum Reed-Muller
codes which recently attract a lot of attention due to the interest in quantum computing and related
areas. Moreover, besides applications in OFDM, most of the recent work on non-binary Reed-Muller
codes is related to error-correcting problems in quantum computing.

Quantum computing is based on quantum mechanical phenomena, such as superposition and
entanglement to perform operation on data, by exploiting quantum properties to represent data and
perform operations on them.



Table 5: Truth-table for ternary functions of n = 2 variables.

x1, x2 f(x1, x2)
0. 00 f(0, 0)
1. 01 f(0, 1)
2. 02 f(0, 2)
3. 10 f(1, 0)
4. 11 f(1, 1)
5. 12 f(1, 2)
6. 20 f(2, 0)
7. 21 f(2, 1)
8. 22 f(2, 2)

Quantum information is physical information that is contained in the state of a quantum system,
and main task is to protect this information from interaction with environment, which can be ex-
pressed in terms of errors as decoherence (the mechanism by which quantum systems interact with
their environments to exhibit probabilistically additive behaviour) and quantum noise. In that order
quantum error-correcting codes are defined. Most widely used are the so-called binary stabilizer codes
[6], [21], primarily due to their relationships with classical coding theory which permit to use known
methods to construct good codes. Non-binary stabilizer codes have been introduced in late 90s, and
their theory is quite incomplete.

In this area, codes that have some resemblance to the binary Reed-Muller codes are related to
group character codes defined in [9]. Such codes have been extended in a quantum analogue of group
character codes in [20].

Binary quantum Reed-Muller codes and non-binary quantum Reed-Muller codes were defined in
[29] and [30], respectively. Non-binary quantum Reed-Muller codes are derived as a quantum analogue
of classical generalized Reed-Muller codes that have been introduced in [19].

3 Ternary Reed-Muller-Fourier Expressions

Ternary Reed-Muller-Fourier codes can be defined very simply in terms of ternary logic functions.
We want to define codes of length 3n and, therefore, we will consider n ternary variables x1, . . . , xn,
xi ∈ {0, 1, 2}. We assume that x = (x1, . . . , xn) range over the set of all ternary n-tuples V n. Any
function f(x) = f(x1, . . . , xn) which takes the values 0, 1, and 2 is called a ternary function. Such a
function can be specified by a ternary truth-table that shows the value of f at all its 3n arguments.

Example 6 (Ternary functions)
When n = 2, a ternary function is specified by the truth-table as in Table 5, where f(i) ∈ {0, 1, 2}.

It is clear that there are 33n
functions, since f(i) can take any of three values 0, 1, and 2. We

assume that rows of the truth-table are in natural (lexicographic) ordering as illustrated in Table 5.
The operations that can be applied to ternary logic functions in order to define the Reed-Muller-

Fourier transforms and codes are

1. Addition and multiplication modulo 3, that are for convenience specified by Table 6.



Table 6: Addition, multiplication, and Gibbs exponentiation modulo 3.

⊕ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

· 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

∗ 0 1 2
0 2 0 0
1 2 1 0
2 2 2 2

2. Exponentiation defined as x∗0 = −1 modulo 3, and for j > 0, x∗i is calculated in terms of
the convolutionwise (Gibbs) multiplication [11], which in the case of ternary functions can be
alternatively specified by the right-most entry in Table 6 [37], [41], [42].

Theorem 1 (Reed-Muller-Fourier expressions)
Any ternary function f(x1, . . . , xn) can be expanded in powers of xi as

f(x1, . . . , xn) = (−1)n
∑

a∈V n

q(a)xa1
1 · · ·xan

n ,

where q(a) ∈ {0, 1, 2}.

In matrix notation, we first define the set of monomials in terms of 3EXP as

X(n) =
n⊗

i=1

Xi(1),

where

Xi(1) =
[

x∗0i x∗1i x∗2i

]
=

[
2 xi x∗2i

]
. (3)

The coefficients q(a) written as entries of a vector Q = [q(0), . . . , q(3n)]T are calculated by using
a matrix that is inverse to X(n) when its columns written in terms of numeric values variables can
take. Thus,

Q = R(n)F =

(
n⊗

i=1

Ri(1)

)
F,

where

Ri(1) =




1 0 0
1 2 0
1 1 1


 ,

F is the function vector for f(x1, . . . , xn), and calculations are performed modulo 3.
The coefficients in Reed-Muller-Fourier expressions can be calculated by using FFT-like fast al-

gorithm, which can be implemented either over function vectors or Multiple-place decision diagrams
[44].



4 Ternary Reed-Muller-Fourier Codes

Ternary monomials defined by (3) can be used to define the ternary Reed-Muller-Fourier codes in the
same way as that has been discussed for the generalized Reed-Muller codes in Section 2.2.

Assume that x = (x1, . . . , xn) is a vector that ranges over the set of all ternary n-tuples V n and F
is a vector of length 3n specifying a ternary function f(x1, . . . , xn).

Definition 4 (RMF-codes)
The k-th order ternary Reed-Muller-Fourier (RMF) code RM(n, k) of length m = 3n for 0 ≤ k ≤ n
is the set of all vectors F specifying a function f(x1, . . . , xn) that is a ternary function which is a
RMF -polynomial of degree at most k.

Example 7 The first order RMF-code of length 9 consists of 27 codewords

a0 · 1 + a1x1 + a2x2, ai = 0, 1, 2.

These code words are shown in Table 7.

In general, the k-th order RMF-code consists of all linear combinations of the vectors corresponding
to the products in X(n), which therefore, form the basis for the code. There are

k = 1 +

(
n
1

)
+

(
n
2

)
+ · · ·+

(
n
r

)

such basic vectors, which are linearly independent. Therefore, k is the dimension of the code.

Example 8 Basis vectors for the RMF-code of length 9 are given in Table 8.

4.0.1 Construction method

The RMF-code of length 3n+1 may be obtained from RMF-codes of length 3n using a ternary gen-
eralization of the Plotkin construction for binary Reed-Muller codes [27]. The method is derived by
referring to the basic RMF-matrix and by using considerations in [22] and [26].

It is known, see for instance [22], [25], that if U , V , and W are linear (n, kU ), (n, kV ), (n, kW )
codes with the generating matrices GU , GV , and GW , respectively, then the (3n, kUkV kW ) code
ϕ = (u + v + w | u + 2v | u), u ∈ U , v ∈ V , w ∈ W , is a linear code with the generator matrix

Gϕ =




GW 0 0
GV 2GV 0
GU GU GU


 ,

where 0 is the zero-matrix. The code ϕ has the distance d$ = min{3dU , 2dV , dW }, where dU , dV , and
dW are distances of U , V , and W , respectively.

The generation the RMF-codes is a particular case of this more general method in the same way as
generation of ternary Reed-Muller codes defined in [26] is another particular case of the same method.
Due to that observation, it can be shown that the RMF-codes can be generated recursively by using
the construction scheme (u + v + w | u + 2v | u). The method corresponds to that used in [22] to
generate ternary Reed-Muller codes defined in [26] and consists in the following.



Table 7: Code words in first order RMF-code of length 9.

Polynomial Code word
0 000000000
x1 000111222
2x1 000222111
x2 012012012
2x2 021021021
x1 + x2 012120201
2x1 + x2 012201120
x1 + 2x2 021102210
2x1 + 2x2 021210102
1 111111111
1 + x1 111222000
1 + 2x1 111000222
1 + x2 120120120
1 + 2x2 102102102
1 + x1 + x2 120201012
1 + 2x1 + x2 120012201
1 + x1 + 2x2 102210021
1 + 2x1 + 2x2 102021210
2 222222222
2 + x1 222000111
2 + 2x1 222111000
2 + x2 201201201
2 + 2x2 210210210
2 + x1 + x2 201012120
2 + 2x1 + x2 201120012
2 + x1 + 2x2 210021102
2 + 2x1 + 2x2 210102021

Table 8: Basis vectors for the RMF-code of length 9.

2 222222222
x2 012012012
x∗22 002002002
x1 000111222
x1x2 000021012
x1x

∗2
2 000001001

x∗21 000000222
x∗21 x2 000000012
x∗21 x∗22 000000002



Due to its Kronecker product structure, the RMF-matrix R3,RMF (n) can be defined recursively as

R3,RMF (n) =




R3,RMF (n− 1) 0(n− 1) 0(n− 1)
R3,RMF (n− 1) 2R3,RMF (n− 1) 0(n− 1)
R3,RMF (n− 1) R3,RMF (n− 1) R3,RMF (n− 1)


 .

By repeating the method used in [26], it can be shown that a code generated by some sub-
set of the rows of R3,RMF (n) having weights {w1, w2, . . . , wk} has a minimum distance equal to
min{w1, w2, . . . , wk}. Therefore, including all rows of R3,RMF (n) with weight w ≥ d yields a code
with minimum distance d. By repeating the method in [22] based on induction and exploiting of the re-
cursive definition of R3,RMF (n), it can be shown that any code generated from the rows of R3,RMF (n)
can be generated recursively using the construction scheme (u + v + w | u + 2v | u). The proof is
omitted since the construction of it is identical to that in [22] with a minor difference originating in
the structure of the matrix R3,RMF (n) compared to the generating matrices of ternary Reed-muller
codes in [26].

It should be noticed that RMF (n, n) contains all vectors of length 3n, RMF (n, n − 1) contains
all even weight vectors and RMF (n, 0) consists of the vectors 0,1, and 2.

The RMF-expressions are a generalization of the binary Reed-Muller expressions by replacing the
function W (x) ≡ 1 with W ≡ q − 1, q > 2. These expressions reduce to the binary Reed-Muller
expressions for q = 2. The same is for the Reed-Muller-Fourier codes, they become identical to the
classical binary Reed-Muller codes for q = 2.

5 Reed-Muller-Fourier Decision Diagrams

From their spectral interpretation, decision diagrams can be viewed as graphical representations of
some functional (spectral) expressions [39]. In this way, the Reed-Muller-Fourier decision diagrams
(RMFDDs) are a subclass of functional decision diagrams for multiple-valued logic functions [38]. The
decomposition rule used at the nodes of a decision diagram related to the Reed-Muller transform is
derived from the basic Reed-Muller transform matrix. Therefore, the following remark which expresses
the relationships between the Reed-Muller codes and Reed-Muller diagrams is possible.

Remark 2 (Reed-Muller codes and diagrams)
The Plotkin construction scheme for Reed-Muller codes is a different expression of the expansion rules
used in definition of spectral transform decision diagrams related to the Reed-Muller transforms and
its generalizations to non-binary cases.

This remark will be illustrated by the following example.

Example 9 The Plotkin construction C for RMF-codes for q = 4 as shown in Table 4 is determined
as

C =
[

x w v u
]



1 0 0 0
1 3 0 0
1 2 1 0
1 1 3 3


 (4)

= (u + v + w + x | u + 2v + 3w | 3u + v | 3u).



In the notation commonly used in decision diagrams theory, the expansion rule corresponding to
the RMF-transform for q = 4 is defined as

f = 3
[

3 x x∗2 x∗3
]



1 0 0 0
1 3 0 0
1 2 1 0
1 1 3 3







f0

f1

f2

f3


 ,

where fi, i = 0, 1, 2, 3 are co-factors of f for x = i.
From there,

f = f0 ⊕ x(3f0 ⊕ f1)⊕ x∗2(3f0 ⊕ 2f1 ⊕ 3f2)⊕ x∗3(3f0 ⊕ 3f1 ⊕ f2 ⊕ f3) (5)

The equality (5) represents f in terms of its co-factors fi, i = 0, 1, 2, 3, and therefore can be
called the RMF-expansion rule for quaternary functions, by the analogy with similar expansion rules
in binary and multiple-valued logic [4], [39].

It is easy to realize that this expansion rule up to encoding directly corresponds to the Plotkin
construction scheme shown in Table 4. More precisely, assume that in the Plotkin construction scheme
for q = 4 in Table 4 we perform encoding u = 3, v = x, w = x∗2, and x = x∗3. Then, the Plotkin
construction scheme C is derived as in (4), yielding

C = (3 + x + x∗2 + z∗3 | 3x + 2x∗2 + x∗3 | x∗2 + 3x∗3 |3x∗3).

If the thus determined C is viewed as an (1 × 4) matrix and multiplied by the function vector
F = [f0, f1, f2, f3]T , it produces, after a simple recalculation and multiplication by the scalling factor
3, the functional expression (5). Thus, it is possible to write f = 3C · F.

When this expansion rule is performed recursively with respect to all the variables in an n-variable
function f , it yields to the RMF-expression for f . The RMFDDs are defined as graphical representa-
tions of RMF-expressions. Thus, at each node of the RMFDD, the expansion (5) is performed and the
values of constant nodes are the RMF-coefficients of a given function f . Each path from the root node
to a constant node corresponds to a column in the RMF-matrix and, therefore, labels at the edges are
denoted by 3, xi, x∗2i , x∗3i .

Fig. 1 shows the Reed-Muller-Fourier decision tree (RMFDT) for a two-variable quaternary func-
tion f(x1, x2), x1, x2 ∈ {0, 1, 2, 3}, specified by the vector F = [0, 0, 0, 0, 0, 1, 3, 2, 0, 3, 2, 1, 0, 2, 1, 3]T .
The RMF-spectrum of f is Sf,RMF = [0, 0, 0, 0, 0, 1, 3, 0, 0, 3, 2, 0, 0, 0, 0, 2]T . The spectrum is calculated
by using the (16×16) RMF-transform matrix that is the Kronecker product of the basic RMF-transform
matrix R4,RMF (1) in Table 3. Fig. 2 shows the Reed-Muller-Fourier decision diagram (RMFDD) for
f derived by the reduction of the decision tree by using the correspondingly generalized reduction rules
for decision diagrams [4]. Notice that reduction rules assume recalculation of labels at the edges of
deleted nodes 2. For instance, for this reason the label at the leftmost outgoing edge of the root node
is 3(3 + x2 + x∗22 + x∗3), and similar for other edges.

The edge-valued RMF-decision diagrams have been discussed in [40], and Haar-like RMF-diagrams
in [43].

In what follows, for an illustration of the general approach to spectral interpretation of decision
diagrams and links to the generating matrices of codes we will define the decision diagrams and
Haar-like decision diagrams in terms of basic transform matrices used to define the octacode.

2Addition of labels at the edges pointing to the same value and multiplication with the labels at the incoming edges
[39]
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Figure 3: The decision tree defined by using the decomposition rule derived from Y(1).

This code can be obtained by encoding pairs of binary values in the binary Nordstrom-Robinson
code by quaternary values as integers Z4 modulo 4, see for instance [5], [10] It is a self-dual code, and
can be defined by the generating matrix

G = [I4|P]

=




1 0 0 0 2 3 3 3
0 1 0 0 1 2 3 1
0 0 1 0 1 1 2 3
0 0 0 1 1 3 1 2


 .

We will select the matrix

Y(1) =




2 3 3 3
1 2 3 1
1 1 2 3
1 3 1 2


 , (6)

as a basic transform matrix to define a spectral transform. This matrix can be also used to derive
a decomposition rule that can be assigned to nodes of a quaternary decision tree. Fig. 3 shows the
decision tree defined in terms of this decomposition rule that is defined as

f = y0(2f0 + 3f1 + 3f2 + 3f3) + y1(f0 + 2f1 + 3f2 + f3) (7)
+ y2(f0 + f1 + 2f2 + 3f3) + y3(f0 + 3f1 + f2 + 2f3),

where yi, i = 0, 1, 2, 3 are functions specified by columns of the matrix Y(1). Values of constant nodes
are coefficients in the functional expression obtained by a recursive application of this decomposition
rule to the variables in a two-variable quaternary function f(x1, x2), x1, x2 ∈ {0, 1, 2, 3}.
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Figure 4: The decision tree defined by using the decomposition Y(1) and the generalized Shannon de-
composition I4.

In matrix notation, the spectral transform defined by the decision tree in Fig. 3 is specified by the
matrix

Y(2) = Y(1)⊗Y(1),

where ⊗ denotes the Kronecker product.
Fig. 4 shows a decision tree, where the decomposition rule (7) is assigned to the leftmost nodes at

a level in the decision tree, while the decomposition rule for all other nodes is the generalized Shannon
decomposition rule

f = x0
i f0 + x1

i f1 + x2
i f(2) + x3

i f(3),

where xi is a quaternary variable.
This decomposition rule is alternatively defined by the identity matrix matrix of order 4, I4, which

explains the label at the remaining non-terminal nodes in the decision tree in Fig. 4. This decision
tree defines a Haar-like transform, which in matrix notation is specified as

Yh(n) =




Yh(n− 1)⊗ yT
0

I(n− 1)⊗ yT
1

I(n− 1)⊗ yT
2

I(n− 1)⊗ yT
3


 ,

where yi, i = 0, 1, 2, 3, are columns of Y(1).

6 Closing Remarks

Reed-Muller codes are among the oldest and most widely understood concepts in coding theory.
There are many generalizations and extensions to non-binary cases. These codes and their non-binary



generalizations have been used in cryptography, in particular to design bent functions other perfect
nonlinear functions with flat autocorrelations [17], see also [18] For instance, codes with flat dyadic
autocorrelation related to the Reed-Muller codes and their generalizations to non-binary case for ap-
plications in robust data compressions of test responses have been proposed in [15], [16]. Applications
in cryptography and protection of cryptodevices against fault injection attacks have been presented in
[23] and [24]. Most of the recent work is related to quantum information transmitting and processing,
see for instance [3], [20].

Reed-Muller transforms and their various extensions to multiple-valued functions are a powerful
tool in switching theory for binary and multiple-valued logic functions. These transforms are tightly
related to the generating matrices of the Reed-Muller codes, and some of their varieties can be used
to define new codes with potentially useful features. In this paper we contemplated the Reed-Muller-
Fourier transform in this context.

Reed-Muller transforms can be efficiently calculated by fast calculation algorithms performed over
function vectors or decision diagrams. At the same time, these transforms can be used to define
various spectral transform decision diagrams. Conversely, decision diagrams specified by assigning to
their non-terminal nodes the decomposition rules derived from Reed-Muller transforms define various
new classes of spectral transforms. In this paper, we show an example of a Haar-like transform derived
from the quaternary Reed-Muller-Fourier transform.

There are again links to coding theory, since the Plotkin construction schemes for the Reed-Muller
codes can be interpreted as either different notation for the basic transform matrices or a description
of the decomposition rules in related decision diagrams.
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