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Abstract—In this paper we consider the problem of construct- (a,b,¢) if (a,b) and (b,c) are edges inG anda # c. In
ing minimal cycle-breaking sets of turns for graphs that mocel  an undirected graph, turria, b, ¢) and(c, b, a) are considered
communication networks, as a method to prevent deadlocks in to be the same turn. This undirected graph is a model of an

the networks. We present a new cycle-breaking algorithm céd . - .
Simple Cycle-Breaking or SCB algorithm that is consideraby interconnection network where nodes are computing elesnent

simpler than earlier algorithms. The SCB algorithm guarantees and routers, and undirected edges correspond to full duplex
that the fraction of prohibited turns does not exceed 1/3. Ex communication channels between computing elements. If the
perimental simulation results for the SCB algorithm are shavn. degree (number of neighbors) of nogles dj, the total number
of tusT(G) in G is given byT(G) = Y3, (). A path
P = (vo,v1,...,v5-1,vr) Of length L, L > 1, from node
a to nodeb in G is a sequence of nodes € V such that,
Due to the availability of low cost workstations with netw, = a, v;, = b and every two consecutive nodes are connected
work interface adapters that offer high-performance commby an edge. Subsequences of the farm,v;, vy, v;, ... are
nications using wormhole techniques, clusters of worlstat not permitted in a path. Nodes and edges in the path are not
are emerging as preferred computing environments [1], [2lecessarily all different. Patk = (v, v, va, . .., vk, vo, v1)
[3], [4]. However, as wormhole routed messages hold netwoikk ¢ is called acycle Set F(G) of prohibited turns in
resources while requesting others, as they traverse theriet ¢ is called cycle-breaking and connectivity preserving if
towards the destination, wormhole routing is prone to deagvery cycle inG includes at least one turn frofi(G), and
locks under heavy network loads [5], [6], [7], [1], [3]. Dead G remains connected. If a turn is prohibited, the paths that
locks have been shown to occur due to the presence of "cydigslude this turn cannot be used for routing. The minimum
of edges” in the graph representing the network [8]. Sintar cardinality setF(G) for a given graphG is denoted by
spanning tree approaches [9], prohibiting a carefullytet® Z(G) and the fraction of prohibited turns is denoted by
set of the turns in the network, provides deadlock freeddm [&(G) = Z(G)/T(G).
[10], [4], [11], [3], [12], [13]. However, unlike the spammy  The following lower bounds were proven in [12] and are
tree based approaches, the cycle-breaking approach albwsresented here for completeness. Given a connected gfaph
communication links in the network to be used. The onlyith minimum node degreé, the total numbe? of cycles
restriction is that some pairs of communication links, ngthein G, and the maximum number of cycles covered by the
those that form the prohibited turns, are prevented fromdeisame turn, the number of prohibited turd$G) and fraction
used sequentially. The motivation for seeking the minimak prohibited turns:(G) satisfy the following inequalities:
fraction of prohibited turns is due to Glass and Ni [11]. They

I. INTRODUCTION

have found that reduction in the number of prohibited turns Z(G)=M—-N+1, (1)
results in a decrease of average path length and the average R
message delivery time, thereby increasing the throughput. 2(G) = "T(G)’ (2)

After Glass and Ni showed it for regular topologies such

as meshes and tori, this conclusion was confirmed by ot S—1

authors [4], [3] for irregular topologies as well. Experimia! Z(G)> M — N + ( 9 ) +1,0>2. 3)
data [12] show that there is a gain of approximately 7% - 8%

in the maximum sustainable throughput in the network, for In this paper, we present a new turn prohibition algorithm,
each percentage point reduction in the fraction of proéibitthe Simple Cycle Breaking (SCB) algorithm and prove its

turns. properties and compare it with other deadlock preventing
Let us consider an undirected regular grapfi/, £'), with  algorithms in Section Il. Distance dilation caused by SCB
N = |V]| vertices, denoted by, b,..., and M = |E| edges, is considered in Section Ill. Our experimental results are

denoted by(a,b), etc. Aturn in G is a triplet of nodes presented in Section IV, and conclusions in Section V.



Il. GENERAL ALGORITHM FOR CONSTRUCTION OF
MINIMAL CYCLE-BREAKING SETS OFTURNS

Denote byG\ H the graph obtained by deletion from graph

G all nodes of subgrapl/. A nodea € V in a graphG is a
cut-node if its deletion disconnects:.

Lemma 1. If a connected grapt¥ has cut nodes, then there
exists a connected subgragti which consists of non-cut
nodes only of the original grapt¥ and is connected to the

rest of G via only one cut node: € G\H (i.e., if a € H,
b€ G\H, and P(a,b) is a path from node to nodeb, then
¢ € P(a,b)).
Note that any path fronH{ to G\ H includes this cut node
c. Of course, it can, in general, include more cut nodes.
Proof: SupposeG has cut nodes. Lef; be the set of

connected components @f obtained by deleting cut node

ci(i = 1,2,...) from G. Consider the unionJ;—,S;. Let

H € U;—1S; be the connected component with the smallest
number of nodes. This component does not include any cut3)
nodes from the original graph (otherwise it would not be the
smallest component). Thus, i is obtained by deleting cut

1) If |V] = 2, label the nodes by the smallest unused
natural numbers, select and delete the node with label
¢= N —1 and return set$'(G) and A(G). Otherwise,
go to step 2

2) Select a non-cut nodeof the minimum degred, such

that
d

2(‘;) < (- 1),

i=1

(®)

whered; are the degrees of the neighborsaof{nodes
adjacent taz). The existence of such a node is guaran-
teed by Lemma 2. Prohibit all turns at he selected node
a of the form(b, a, ¢) (nodesh andc are neighbors of)

and include them irF'(G). Permit all turns of the form

(a, b, d) (noded is neighbor of nodé) and include them

in A(G). Labela by the smallest unused natural number
l(a).

Delete node: to obtain graphG’
1 for G'.

Note that at the stage of the algorithm when nadés

G\ a and go to step

nodec from grath, then H is a connected Subgraph Whichselected, all other undeleted nodes are unlabeled. Inthﬁy,

is connected td@7\ H via one cut node only. [ |

will be labeled later. As a result, tuifd, a, ¢) is prohibitediff

Lemma 2 In any connected grapf, there exists a non-cut (@) < £(b) and£(a) < £(c).

nodea of degreed, such that
d

2(5) < ot -

=1

(4)

whered; (i = 1,2,...,d are the degrees of the neighbors o

a (nodes adjacent ta).
Proof: Using Lemma 1, consider a subgraph that consi

of non-cut nodes and at most one cut node, connecting t
subgraph to the remaining part of the graph. Select a non-guUt ivions to step 2. At this step
node ¢ of the minimum degreel among all non-cut nodes ' '

in this subgraph. Ifa is not adjacent to the cut node, the

inequality (4) is obviously satisfied. Suppose now that aal b, f
nodes with minimum degreé are adjacent to the cut node.. .’

with degreel’ < d. Then the selected nodehas at most’ —1
neighbors of degreé, while at leas{d—1)—(d'—1) = d—d’
of its neighbors have degrees at ledst 1. Thus,

d

o) = D (di-1)
=1
> (d—-1)(d=1)+(d—-d)d+(d —1)
- =2(2).

In Fig. 1 we show a simple graph demonstrating the
operation of the SCB algorithm. Graph has two degree 3 cut-
nodesc ande, and one degree 2 cut-node

The original graph is shown in Fig. 1(a). Since there are
nodes the completion of the algorithm would involvetages.
Before the algorithm begins to execute, the two $&t§) and
A(G) are initialized to be empty and thabel is initialized to

2 1. At the first stage, step 1 determines that the number of

?naining nodes in the graph is not equa tand immediately
a minimum degree non-
cut node is selected. Since nodeis a cut node, it cannot

e selected. The minimum degree non cut nodes are nodes
and g. The criterion in (4) is applied and all of the
candidate nodes satisfy the inequality. For example, fateno
a, the left hand side of (4) evaluate to 2 and right hand side
of (4) evaluate to3, hence, node: is selected. As shown
in Fig. 1(b), one turn is prohibited, denoted by the arc, i.e.
(b, a,c), which is added to the sdt(G). Permitted turns at
this step are(a, b, ¢),(a,c,b), and (a, ¢, d) which are added
to the set of permitted turnsA(G). The node is assigned
the label 1, and transition is made to step 3. In Step 3, the
selected node is deleted to obtain the subgraph with 6 nodes
as shown in Fig. 1(c). The SCB algorithm begins executing
the stage 2. In this stage, degree 1 nbdeselected, no turns
are prohibited, but one turfb, ¢, d) is permitted, nodé is

We now describe the SCB Algorithm. Given a connected grapdbeled with2 as shown in Fig. 1(d). After deleting the node

G(V, E), the SCB algorithm creates two sets: the BE(Y)
of prohibited turns and the sed(G) of permitted turns. It
also labels all nodes by natural numbers starting with 1,

in step 3 we obtain the 5-node subgraph shown in Fig. 1(e),
and stage 3 of the algorithm begins. Since nodea degred
iode, it is selected, no turns are prohibited, one tind, e),

the order they are selected by the algorithm. In the beginnins permitted, node is labeled3 as shown in in Fig. 1(f) and

F(G) =0, A(G) =0, and all nodes are unlabeled.|If| =

N, the algorithm consists oV — 1 stages (recursive calls).

Each stage consists of 3 steps described below.

when nodec is deleted in step 3 we arrive at the 4 node

sub graph of in Fig. 1(g). In stage 4, nodds selected and
labeled as shown. In stage 5, all of the remaining nad¢gs



andg satisfy (4). Algorithm arbitrarily selects nodeprohibits
turn (f, e, g), permits two turns, namelye, f, g) and(e, g, f),

Theorem 1: The SCB algorithm has the following four
properties.

labels the node: as 5, and deletes it. Then stage 6 begins Property 1. Any cycle inG contains at least one turn from
executing. In this stage, step 1 of the algorithm labels agde F(G).

andg and the algorithm terminates. In Fig. 1(m) the graph is Property 2. SCB preserves connectivity; for any two nodes
shown with all of the prohibited turns and the node labels. it b € V, there exists a path betweenand b that does not

is clear that in all prohibited turn@:, v, w) the labels satisfy include turns fromF'(G).

L(v) < £(u) and £(v) < £(w). The stage-by-stage operation Property 3. The sef'(G) of prohibited turns generated by
of the algorithm is also shown in Table | in which each roCB algorithm isminimal (irreducible).

corresponds to a stage.

Fig. 1: Operation of the SCB algorithm on a simple grap
where prohibited turns are shown as arcs, yieldifg) =

2/11.
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Property 4. For any graplr, |F(G)| < T(G)/3, where
T(G) is the total number of turns i6r.

Proof of Property 1: Consider the noder with the
minimum labelé(a) in any cycleC in G. Then in the turn
(b,a,c) (bya,ce (), £(a) < £(b) and{(a) < ¢(c). Thus, turn
(b, a, c) is prohibited and cycl& is broken. [ |

Proof of Property 2: The proof is by induction. Consider
the first selected node ¢(a) = 1. Sincea is a non-cut node,
after all turns of the form(b, a,c) are prohibited and node
is deleted, there still exists a path from any naddéo any
nodey, wherex,y € G\a. Also, since all turns of the form
(a,b,c) are permitted, there exists a path franto any node
x € GG. Now assume that connectivity is preserved after the
first n stages of the algorithm, so that the next selected node
a has labelf{(a) = n + 1. Nodea is a non-cut node in the
graph that remains after deletion of the firsselected nodes.
Therefore, after prohibition of all turn(, a, c) there still exists
a path between any two unlabeled nodeandy. Consider
now paths from a labeled node /¢(u) < ¢(a) to another
previously labeled node, ¢(v) < {(a), or to an unlabeled
nodey. If such a pathP does not include a turn of the form
(b,a,c), whereb and ¢ are unlabeled, it remains permitted.
Now supposeP includes such a turn (Fig. 2). Then, letbe
the first unlabeled node in the path framto v or from u to

, andt be the last unlabeled node in the path franto v.
ow we can replace the part éf from « to y, or from z to
t, respectively, by a path that does not includésuch a path
exists, since: is a non-cut node) and obtain a pdth. Let 2’
be the node already labeled that immediately precedasP
and inP*, andt’ be the labeled node that immediately follows

TABLE I: Stage-by-Stage Operation of the SCB algorithnt.in P and P* (in the case when such a node exists). Since all
In the last stage, stage 6, nodes f and g are labeled and tth@s (z', z, w) and (w, ¢,t') are permitted, patt®* does not
algorithm terminates

Selected| Node | Set of Set of
Node Label | Prohibited Turns| Permitted Turns
a 1 | {(ba,0)} {(a,b,¢), (a,c,b),
(a,c,d)}
b 2 [0 {(,c,d)}
c 3 [0 {(c,d,e)}
d 4 [0 {(d,e, f), (d,e,9)}
e 5 [{{(fie;9)} {(e; f,9), (e;9, )}
f 6 1] 1]
g 7 1] 0

contain prohibited turns, and connectivity is preservethat

(n = 1)th stage of the algorithm. Thus, Property 2 is proved

by induction. [ ]
Proof of Property 3: Consider a prohibited turfb, a, c).

Since connectivity is preserved ands a non-cut node, there

exists a permitted patl@p, P,¢) from b to ¢ that does not

includea. Adding edgega, b) and(c, a) to this path, we obtain

a cycleC = (a,b, P,c,a,b). Since turns of the fornfa, b, z)

and (a, c,y) are permitted, the only prohibited turn @ is

(b, a, c). By removing this turn fron¥'(G), we would create

a cycle inG and violate the cycle-breaking Property 1. Thus,

set F(G) is minimal. [ |
Proof of Property 4: At the stage of the algorithm when

node o is selected (recursive call(a)), all turns (b,a,c)



u a earlier algorithms were more complicated than the SCB algo-
rithm. Indeed, every recursive call in TP and CB algorithms
involved as many as ten steps. In particular, at every sthige a
connected components that appear after a node removal had
to be identified, special edges had to be determined, nodes
had to be examined in order to be characterized as forcing or
delayed, a “halfloop” flag had to be examined and set, etc (for
detail, see [12]). In contrast, the SCB algorithm has ontg¢h
steps which are easier for implementation. The simplificati
is achieved by elimination of complexities of dealing with
cut nodes and is based on theoretical results described in
Lemma 1 and Lemma 2. Though the order of the worst-case
Fig. 2: Figure depicting the state of the graph aisymptotic complexity of SCB algorithm remains the same as
step n+l of the SCB algorithm. Patl® = (u,..., in previous works ([17], [12]), the practical implementatiis
.%'/,.I', ceey b, a,c,...,t, tl, R ,U) is prOhlblted due to the pro- Substantia”y Simp|er_
hibited turn at node. PathP* = (u,...,2",.@,... t,t',...,v)
is permitted since it does not involve any prohibited turns. I1l. DISTANCE DILATION
In this section we introduce the notion of dilation in a
network topology due to turn prohibitions. Paths that ineol
become prohibited, and all turr, b, ¢) become permitted, prohibited turns are themselves prohibited and are not used
wherel(a) < £(b) and{(a) < £(c). The number of prohibited for communication. Thus, one side effect of turn prohilitio
turns is () whered is the degree of node; the number of s that, prohibiting certain paths from being taken for rages
permitted turns istzl(di — 1), whered;, (i = 1,...,d) routing, may increase distances between some node pairs.
are degrees of all neighbors of By Lemma 2, it is always The net result of this is that the diameter and the average
possible to select a non cut-node such that inequality (4)d&tance of a network topology will increase. To facilitéde
satisfied. This means that the number of permitted turnsimvestigation of this phenomenon, we introduced the notion
larger than the number of prohibited turns by at least a factof distance dilation in a graph, which we define as the ratio
of two. Since this is true for each stage of the algorithm, df the average distance after turn prohibition to the awerag
follows that|F(G)| < T(G)/3. B distance without any turn prohibition. When the dilationlis
In general, the fraction of prohibited turns yielded by SCB would imply that the turn prohibition has not caused any
algorithm is considerably smaller than the upper bounti/8f lengthening of the average distance. For example in complet
The only class of graphs where the fraction is exatl$ is graphs the fraction of prohibited turns reaches the uppatho
the complete graph&,, with |V| =n and|E| =n(n—1)/2. but the dilation is 1. In Fig. 3 the distance dilation due to
Let us compare the SCB algorithm with other cycleSCB in wrap-around topologies (tori) is shown. Dilation is
breaking algorithms. A widely used algorithm of this sort ifarger in a ring than it is in a 2D torus of same number
the Up/Down algorithm [2]. Its complexity i© (M), which is  of nodes. In another set of experiments, we compared the
smaller than that of SCB (the worst-case complexity of SCéilation caused by the Up/Down and the SCB algorithms. In
is O(NM). This follows from the fact that it take®(M) these experiments, the topologies that were investigatzre w
time to determine all cut nodes ([14], Ch. 23, Problem 23-2)isection width constrained. Bisection width of a graphhis t
However, the Up/Down algorithm can turn out to be extremelyinimum number of edges whose deletion would disconnect
inefficient. There are examples where the fraction of pritéib the graph into two equal sized components. These were all
turns becomes arbitrarily close to 1 [15]. 64-node topologies with bisection widths @f... 26. In
Another turn-prohibition algorithm, the L-turn algorithmthese experiments the SCB introduced dilations were 5%;10%
[10], provides an improvement compared with Up/Down abnd those introduced by the Up/Down algorithm were 10%-
gorithm of about 6% in the number of prohibited turns and0%. Intuitively, we believe that prohibition algorithmisat
up to 30% in the throughput. However, the implementation @ftroduce smaller dilations would perform better in messag
the L-turn algorithm requires checking a substantial parti delivery latencies.
of all cycles in the network for a certain condition. Since th
number of cycles in a graph can grow super-exponentiallly wit
the number of nodes, the practicality of L-turn algorithmn fo In this section we present the results of our calculations
large networks is questionable. for the fraction of prohibited turns using the SCB algorithm
The earlier version of the turn prohibition algorithms (thand experiments involving message delivery simulations us
TP and CB algorithms [16], [17], [12]) have been shown tmng OPNET discrete event simulation tools. In all of our
outperform the Up/Down algorithm in terms of the fraction o€alculations and simulations, network topologies weret firs
prohibited turns (about 5%), average distance betweenspodgenerated using tools that we developed. All of the top@egi
and saturation load (up to 50%) (see [17], [12]). However theere represented by 64-node undirected graphs. Sinceysual

Graph at step n+1
with unlabeled nodes

IV. EXPERIMENTAL RESULTS
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Fig. 3: Dilation in 1-dimensional and 2-dimensional toriedu Fig. 4: Average fractions of prohibited turns resultingrirthe
to SCB. SCB algorithm in graphs with 64 nodes as a function of the
average degree.

the number of router ports is small compared to the size
the network, we assumed that the average degree of no
is small in comparison with the total number of nodes. W
constructed families of graphs of average degrees 3 throt
10. Each family consisted of 100 different randomly gerextat
graphs. In Fig. 4 we show the results of applications «
the SCB algorithm for 8 different families of topologies
each with a different average degree. In Fig. 5, the avera
distance versus the average node degree is plotted after
application of the SCB algorithm. Given a network topology
as turns are prohibited, the average distance may incréase.
increase is described in terms of the dilation introducethiey
turn prohibition. Results of dilation calculations are wimoin
Fig. 6, where we see that as the average degree increases
average dilation decreases, predicting a better perforentm
message delivery for topologies with larger degrees. Fig. 5: Average distance in graphs with 64 nodes as a function
In bisection-width constrained graphs with 64 nodes and tbé the average degree, after SCB turn prohibition.
given bisection width (2-26) we calculated the averagetivac
of prohibited turns and the dilation. For each family, cosg® TABLE II: Comparing the average fraction of prohibited tarn
of 100 different graphs, we calculated the average fraation (percentage) in bisection-width (2-26) constrained topigs.
prohibited turns and tabulated the results as shown in Table
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Average Node Degree

We see that the Up/Down algorithm not only has larger
fractions of prohibited turns but also have larger variance SCB Up/Down
Dilation calculations show a similar trend as presentechinld (percent) (percent)
M. 2 [ 18.364 £ 0.062 | 23.260 &+ 0.137
For our message delivery experiments we implemented 4 | 18320 40.065 | 23.226 £0.111
wormhole node models [12], [13] with 16 ports and a local 8 | 17.965+0.073 | 23.153 £0.135
) P 12 | 17.946 £ 0.068 | 23.387 £0.116
port. Messages, also known as worms, are generated at a 16 1 17.905 £0.058 | 23.295 £ 0.136
module attached to the local port at the node. All messages in 20 | 17.934 £0.060 | 23.221 £0.131
our simulations, 200 flits long, were generated using unifor 26 | 17.989 £+ 0.061 | 23.241 £ 0.123

traffic model with exponential inter-arrival times. As wasm
are injected into the network at the local channels, theerout

at the node, determines which output port to use to route thede are generated using the all-pairs shortest path ddgori
message using a routing table. If the output port is free,vitith an additional constraint that the selected shortetsigp@do

is immediately committed to the incoming message port foot include any prohibited turns. This way, both deadloctt an
the duration of the message, otherwise the message is bloclkee-lock conditions are proactively prevented from ocouy
until the output port is freed up. The routing tables at eaaturing the actual routing of messages.
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Fig. 6: The average dilation, defined as the ratio of the @eeraFig. 7: Saturation points, also known as the maximum sus-
distance in a topology after turn prohibitions to the averagainable message generation rate per second per node, as

distance in the topology without any turn prohibitions.

TABLE lll: Comparing the average dilations introduced by

function of the average degree in Hamiltonian topologies.

V. CONCLUSION

SCB and Up/Down algorithms, in bisection-width (2-26) con-

strained topologies.

SCB | Up/Down
2 1.122 1.098
4 1.139 1.139
8 1.112 1.170
12 | 1.107 1.189
16 | 1.104 1.192
20 | 1.104 1.195
26 | 1.101 1.191

In this paper we considered the problem of constructing
minimal cycle-breaking sets of turns for graphs that model
communication networks. This problem is important for mes-
sage routing in computer/communication networks for pre-
venting deadlock formation. We present a simple algorithm
called the Simple Cycle-Breaking or SCB algorithm which is
considerably simpler than those in [4], [12], [13] and has th
same performance and time complexity. Earlier cycle-trepk
algorithms were complicated, involving as many as ten steps
whereas the SCB algorithm has only three steps and is easy
to understand. The complexities of having to deal with cut
nodes have totally been eliminated in the SCB algorithm.
We also present our simulation results for the fraction of

TABLE IV: Comparing the average saturation load valugsrohibited turns, distance dilation, and the saturatioad®
(worms /(s.node)) due to SCB and Up/Down algorithms, ifworm generation rate at which the latency tends to infinity)

bisection-width (2-26) constrained topologies.

SCB Up/Down
(x10° worms/(s.node))| (x10° worms/(s.node))

2 42,74+ 0.5 46.3 + 0.5
4 547+ 1.1 57.5+0.8
8 84.0+ 1.2 70.8 1.0
12 101.0+1.1 73.7£0.9
16 109.0 £ 1.3 77T9+1.0
20 1120+ 1.3 799+1.0
26 118.0 £ 1.0 82.9+1.0

In Fig. 7 we show the results of average saturation points
for Hamiltonian topologies obtained during message dsglive
experiments. The results are in agreement with the antegipa
behaviors. Our results for the bisection width constraiiaead-
ilies of graphs are presented in Table 1V, again demonstati

the superior performance of the SCB algorithm.

for a number of family of graphs. In all of our experiments,
the performance of the SCB algorithm was superior to the
performance of the Up/Down algorithm.
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