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Abstract

t
We present optimal error-detecting codes for channels which distributions of

errors are not known. The characteristic functions of these c¢ode are

asymptotically bent. That is, for a given block size n and the number

of codewords | C {, these codes minimize Max Q{e) where Q{e} 1is the
| e=0

conditional error-masking probability given the error pattern e. The
codewords are blocks of n symbols from GF{q), where q = pS. We have the
following parameters associated with the quadratic codes; n = 2n, iC i =
@2n-l-gn-1  g(e) = (q2®2:qP-1l)jc |71, e»0. Since Qle) - g~ for all e»0
as n - «, the quadratic codes are asymptotically optimal with respect

to the minimax criterion on Q{e)}. In otherwords, the total error-masking

probability, Qiotal = E*Q{E}PIEEiE*G} = g1, is independent on an error

e=0

distribution Pr[e|e=0 ]
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Sumnary

We present a construction of error-detecting codes asymptotically satifying
the lower bound on maxima of the conditional error-masking probability. The
conditional error-masking probabilities for the code € given errors e,
(e=0), is defined as
gle} 2 | {(x,%) [&-x=e, x,2eC }|{C]|71=8le |c|,
4

where B{e) is the autocorrelation function for the characteristic functien
f{x} for the code €, £f(x)ef0,1), f(x}=1 ® xeC, moreover, B{0)={C| (1 L

Qur problem can be formulated in the following way: For a given code

rate R = n‘llcgqlcl [2] (codewords are blocks of g-ary symbols of length n},

construct codes based on Min Max Q(e) where Sy denotes the set of all codes
CeSq e+l

with the rate R.
Consider codes C defined in V, over GF{q}, q=p®. The maxima of the
conditional error-masking probabiltities given errors e, (e=0), Qle) 1is

lowerbounded by;

—— —_—
-

2| deldei-n . P =25
| € | 2 { g - 1)
Max Qfe)} > i - . L
g=0
_1_ ’C '( IC I" 1) ., p > 2.
AR (q" - 1)

For the codes € based on bent [1-11 ] functions, ({u,v)el & (u,v¥=g, W,V E
V, over GF(2), aeGF(2}, (< , > denotes inner product), the conditicnal
error-masking probabilities satisfy the lower bound. Unfortunately, in this

case Qf{e) 1s asymptotically equal to one half as n - =,




We will describe below the asymptotically optimal quadratic codes for wide

range of [C|, n and Max Qf{e}.
e #(

Let n =2m, u,v € Vyp over GF(q), ¢q=p%, that is, u = {ug, w1, ..., up-1),
and v = (vg, V1, ---, Vp-1), where wuj, vij € GF(q). The quadrafic cade C 1is
defined as; for a given o&GF{(q), {u,v)eC @ (u,vr=o.

For these codes with m>1 and o0 , we have for the autocorrelation

functions B(t,7) for the characteristic function for the codes f{u,v}),

qZEl"'l - qm"'l . t=T=G:
Bit, ) =
q2m-2 + p{a,T}qm'l, otherwise,
where T=<t, > and pl{e,T)e{l,-1}. For p=2, u{o,T}=1 1iff Trace(dT“1)=0, T+0.

For m>1 and o=0, we have

Bi{t,t} =
qu—z + qm‘l + BT'{q—Z}qm'l, otherwise,
where 8pc{0,1}, 8sp=0 1ff T=0.

For m=1 and ¢+0, C is defined as; {(u,v)eC & uv=¢, u,v,c € GF(q}). In this

case we have, Max Q(t,.1) = 4 . Moreover, for p=2
{t, t}=0 g -1
- 25-1, t=r=0;
Bi{t, 1) = 4 2, trace{ a{tr}'1}=0, tr=Q;
Q, otherwisa.

o

The above quadratic codes are nonlinear and nonsystematic. The block size
is given by n=2ms symbols over GF{(p). The transmission rate n~liogp {C| -1
as n - ® For m>l, the codes are asymptotically optimal as n - =, and we
have, Q(t,7) -~ p~® for all (t,7}=0. For m=1, o+0 and p=2, the codes are

optimal since the mimnimum value of maxima of Q{e} (e=0) is two.




We will describe below the asymptotically optimal quadratic codes for wide

. n and Max Qf{e).
e =0

range of |C

Let n =2m, u,v & Vy over GF{q), gq=p%, that is, u = {ug, uy, ..., up-3}.
and v = {vg, V1, ..., ¥p-1). where uj, vi € GF{q). The quadra£ic code C is
defined as; for a given o<GF{q), (un,v)eC & (u,v>=0.

For these codes wi&h m>1 and o¢+*0 , we have for the autocorrelation

functions B(t,r) for the characteristic function for the codes f{u,v),

i qzm"'l — qm_l , t=T=O:
B(t,T) = 4

| q2®=2 + u{o,T}q® 1, othervise,
where T=<t,v> and pfe,T)c{l,-1}. For p=2, ple,T)=1 1iff Trace (¢T"1)}=0, T=0.

For m>1 and o=0, we have

Bi{t, ) =
qén=2 4+ gi-1 ¢ BT'{q-Z}qm'i, otherwise,
where 6pe0,1}, &p=0 1ff T=0.

For m=1 and ¢#0, C is defined as; (u,v)e © uv=g, u,v,c¢ € GF{g). In this

2

c¢ase we have, Max Qf{t,7) = . Morecver, for p=2
{t,r)+0 g -1
[ 28-1, t=1=0:
B{t,7) = { 2, trace ( of{tr)"1)=0, tr+0;
g, otherwise.

-

The above quadratic codes are nonlinear and nonsystematic. The block size
is given by n=2ms symbols over GF{p). The transmission rate n'llngp lc| -1
as n - ®, ¥or m>l, the codes are asymptotically optimal as n - «®, and we
have, Q{t,t} ~ p™5 for all (t,v)#0. For m=1l, o~0 and p=2, the codes are

optimal since the mimnimum value of maxima of Q{e) (e=0} is two.




Let ¥

denote modified guadratic-codes defined as a union of p3-I
equivalent classes in Vypg over GF{p) induced by <u,v> = ¢, ocGF(pS).
Furthermore, for a given o~ € Vy over GF(p), (u,v}e™ & <u,v>e3, where

T & {og |a={u,u*}, vEVg—r}. {Z is a coordinate subspace in GF(p®} where last
r components are assigned to be o).

Then, for m>1 and ¢*+0, we have, | C* | = p2MS~Y-pMS~T apg the conditional
error-masking probability Qf(t,rl ~ p'r, as n - « for all (t,r}#0, thus,
modified codes are asymtatic#lly optimal.

The codes C and C* offer a viable alternative for error detection for

channels with unknown probability distribution of errors. As one see from

the faet that, the total error-masking probabllity Qtotal = z Q(e)Pr[e[e#ﬂ]

e=(

is independent on a distribution Pr[e]e*ﬁ].
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