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Abstract

For many devices and circuits even single faults can result in errors of a large Hamming weight at the output of

a device complicating the task of error detection and correction. Traditional error detection and correction techniques

are based on classical linear error detecting codes that are designed to detect or correct errors of a small multiplicity

or burst errors. We present codes and architectures suitable for both on-line and off-line error detection and correction

which can detect and correct any error of any multiplicity by exploiting the laziness of error manifestation. Faults

in many combinational circuits can lead to “lazy” or repeating errors at the outputs of a device to be protected. The

proposed decoding algorithms can correct any error of any Hamming weight if the same error affects at least three

different consecutive distorted output vectors of a protected device for binary algebraic errors. Likewise, the proposed

decoding algorithms can correct any error of any Hamming weight if the same error affects two different output

vectors of a protected device for arithmetic errors.

I. INTRODUCTION

Faults in combinational circuits can be problematic for traditional error detection methods based on classical

linear codes. Single faults in combinational circuits can lead to errors of a large Hamming weight at the output of

a device which cannot be corrected by the linear codes used for protection [1].

Classical linear error detecting codes typically used in hardware devices (i.e. Hamming, parity, BCH) concentrate

their error detecting power on errors of a small multiplicity and are characterized by their minimum distance d.

Codes with a minimum distance d are guaranteed to detect all errors of Hamming weight less than d or correct all

errors with Hamming weight less or equal to d(d−1)/2e. Errors with a larger Hamming weight are not guaranteed

to be detected and can often be miscorrected. Codes used for concurrent error detection or correction in hardware

devices are typically limited to a small minimum distance codes (typically d = 2, 3 or 4 for most implementations).

Due to the possible large Hamming weight of output errors in combinational circuits resulting from faults in

the internal components, techniques based on traditional designs are limited in their error correction ability, often

resulting in more data corruption than correction. While a redesign of a combinational circuit to minimize the

Hamming weight of errors due to faults is possible, such techniques can be costly in hardware and are not effective

when multiple faults are considered [2].
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In this paper we present codes capable of detecting and/or correcting any error, of any multiplicity by exploiting

the laziness of errors resulting from faults within combination circuits. The codes can correct any error provided

that the error repeats for at least two or three outputs. They can be applied for correction of algebraic and arithmetic

errors and are efficient when errors have a high “laziness” or a high probability of repeating. Such lazy errors can

be found in many combinational circuits for various fault models. The constructions of the error correcting codes

used in this paper are based on systematic robust error detecting codes [3] [4] and have efficient encoding and

decoding procedures and specific assumptions on error distributions are required for the proposed error correction

method.

The rest of the paper is organized as follows. First we define robust error correction and discuss lazy errors. General

constructions of robust error correcting codes are discussed next and we show that constructions of previously known

robust error detecting codes also results in robust error correcting codes. We next show that these codes have efficient

decoding algorithms. Finally, we present two case studies and applications followed by conclusions.

II. ROBUST ERROR CORRECTING CODES

R-robust error-correcting codes are codes which can correct any error if the same error affects at-least R different

codewords. Let A = (a1, a2, ..., aM ) be an ordered set of M q-ary n-dimensional vectors, and Ae be the translate

of A by an element e, Ae := (a1 + e, a2 + e, . . . , aM + e).

Definition 1. (Robust Error-Correcting Code (R-RECC) ) Let C ⊂ GF (qn) be a code and let A be an ordered

set whose elements are a subset of C where N = |A|. If any ordered set A, where N ≥ R can be uniquely

determined from Ae (knowing C) for any e ∈ GF (qn) then C is a R-robust error-correcting code (GF (qn) is the

field of q-ary n-dimensional vectors where q is a power of a prime). A R-robust error-correcting code is called

strong if the order of the elements in the original set A can be correctly determined and is called weak if the

elements of A but not their order can be determined.

We will say that a code C ⊂ GF (qn) with |C| = M is a (n,M)q code.

Remark 1. As we will see later a code can be a weak R-robust error-correcting code but a strong (R+ 1)-robust

error-correcting code.

Example 1. Consider a binary code C ⊂ GF (26), C = {000000, 001001, 010011, 011100, 100101, 101110, 110111,

111010}. Any pair of codewords has a unique difference (componentwise XOR) which can be used to identify the

pair. The difference of the elements A = {000000, 001001} for example is 001001. It can be verified that no other

two codewords of C have the same difference. This difference or signature of the two codewords remains constant

even if set A is translated by an error and hence the error can be corrected since the original set of codewords

can be determined. Code C is a weak 2-robust error correcting code.

Robust error correcting codes can correct any error if several different codewords are distorted by the same error.

To be effective, such codes require repeating errors or errors with a high laziness.
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III. LAZINESS OF ERRORS

Definition 2. (Laziness) The laziness L(e) of an error e in a digital device is the conditional probability that if

an erroneous output w̃i was a result of an error e on the expected output wi, the next erroneous output w̃i+1 was

also the result of the same error on the expected output wi+1.

L(e) = Pr(e = w̃i+1 − wi+1; e = w̃i − wi), (1)

where wi 6= wi+1, e 6= 0.

Permanent stuck-at faults in linear networks consisting of XOR gates or fanout-free logic implementations will

result in internal faults manifesting themselves as repeating errors at the outputs of the devices and result in laziness

of one or close to one. Failures in interconnect networks such as busses also result in repeating errors since faults

can directly manifest themselves as errors. For such devices a single fault has a very high probability of manifesting

itself in a constant error pattern regardless of the data it distorts. Errors with L(e) ∼= 1 can also be a manifestations

of transient faults. For fine-grained asynchronous circuits, for example, transient faults can result in a stream of

erroneous data distorted by errors with L(e) = 1 [5].

Errors with high laziness can also occur in cryptographic devices where an adversary is the cause of the

malfunctions. It has been shown that the erroneous outputs resulting from faults in cryptographic devices can be

used for cryptanalysis [6]. The fault injection methods of an attacker are typically much slower than the operation

of the device often causing a single fault to affect several cycles of data. The slow fault injection mechanism can

result in several outputs of the device to be distorted by the same error. The devices where errors have a high

laziness can be viewed as a special case of channels with memory [7].

It is important to note that the laziness of errors does not imply a continuous error. An error might only repeat

when the fault generating the error manifests itself at the outputs of the device, but the manifestation of an error

can be separated by long blocks of non-erroneous data.

Example 2. (Laziness of errors in combinational networks from single stuck-at faults)
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Fig. 1. A nonlinear circuit with lazy errors from stuck-at faults.
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TABLE I

LAZINESS OF ERRORS L(e) FOR CIRCUIT FROM FIGURE 1

Laziness of error e=

fault location 001 010 011 100 101 110 111

1 - - - - - 0.333 0.333

2 - - - - - 0.333 0.333

3 - 0.333 0.333 - - - -

4 1 - - - - - -

5 1 - - - - - -

6 - - - - - 1 -

7 - 1 - - - - -

8 1 - - - - - -

total L(e) 1 0.666 0.333 - - 0.555 0.333

Consider the circuit in Figure 1. In the presence of single stuck-at-zero faults the errors at the output of the

circuit can exhibit high laziness and the errors are not limited to single bit distortions. The calculated laziness of

all the errors in the presence of single stuck-at-zero faults at each of the possible eight locations is shown in Table

I where all inputs to the circuit are assumed equiprobable. The first eight rows in Table I show the L(e) for each

error when a single stuck-at-zero fault affects the corresponding location in the circuit. For each fault location

some errors exhibit very high laziness while other errors do not appear for the specific fault (represented by a dash

in the table). For example, for a stuck-at-zero fault at location 1 and input (ABC) = (100) we have e = (110).

Out of remaining 3 inputs (101), (110) and (111) only one, namely (110) results in the same error (110). Thus

the laziness of (110) for this fault is 0.333. The final row shows the laziness of each error if any of the single

stuck-at-zero faults and all input vectors are equiprobable. When any of the single stuck-at-zero faults can occur,

for example, if the error 110 is observed at the output there is a 1
3 (1 + 0.33 + 0.33) = 55.5% probability that the

next erroneous output will be distorted by the same error.

As the example motivates, there can be many instances for which faults can result in errors of a large Hamming

weight making them uncorrectable by classical minimum distance codes or by using several copies of the device.

These errors, however, can have a high laziness. Although the example above used a small circuit of the analysis

of laziness, as we will shown with a case study in Section VIII, large laziness of errors can also be observed in

larger nonlinear circuits. This laziness of errors can be exploited to improve the error correction properties with the

use of robust error correcting codes.
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IV. CONSTRUCTIONS

A. General Design

The multiset of differences of the ordered set A is the ordered set of pairwise differences of all the elements

4A := (ai − aj ; ai, aj ∈ A, ai 6= aj). For a set A with elements in GF (qn)

4A = 4Ae (2)

for any e. The ordered multisets of differences of an ordered set A are the same for all translations of A.

If any subset A of R or more elements (codewords) of a code (valid outputs of the protected device) has a

unique multiset of differences then the multiset can be used to identify A. Since translation does not change the

multiset of differences, the set A can be uniquely identified even when affected by an error. If A can be uniquely

identified irrespectively of the translation then the error is corrected.

Theorem 1. A code C ⊂ GF (qn) is strong R-robust error correcting if for any ordered sets A,B whose elements

are a subset of C and |A| = |B| = N,N ≥ R their ordered multisets of differences are different 4A 6= 4B.

Proof The construction of a robust error correcting code based on the uniqueness of a multiset of differences

follows from the above discussion. In order for the code to be strong the code must be able to restore the order of

elements in an ordered set. The code is strong if also all permutations of the elements in an ordered set A result

in different ordered multiset 4A. �

Example 3. The code C = {(0|0), (1|1), (2|4), (3|4), (4|1)}, where (x|y) denoted concatenation of elements x, y ∈

GF (5) is a strong non-binary 2-robust error correcting code. Any ordered subset of two codewords has a unique

multiset of differences. For example, the ordered set of two codewords A = ((0|0), (1|1)) has a unique ordered

multiset of differences4A = ((4|4)), (1|1)) which can be used to identify A. Moreover the ordered set of differences

is unique for every permutation of the order of elements of A so the code is a strong 2-robust error correcting

code since each ordered set of at least two codewords has a unique multiset of differences.

Robust error correcting codes based on the uniqueness of the multiset of differences can be constructed using

known constructions of robust error detecting codes [3] [4]. In the next section we summarize some of the properties

of the robust error detecting codes and show that they are also robust error correcting due to the properties of

Theorem 1.

B. Robust Error Detecting Codes

Systematic robust error detecting codes were first presented in [3]. These codes can provide for almost uniform

error detection against all errors and they have no undetectable errors [8].

Definition 3. (R-robust error detecting code (R-REDC)) A code C ⊂ GF (qn) with R =: max06=e∈GF (qn) |{w|w ∈

C,w + e ∈ C}| is called a R-robust error detecting code.
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There are two main properties of the robust error detecting codes that make them different from classical error

detecting codes. Robust error detecting codes have no undetectable errors and their error detection is data dependent

which results in a high probability of detection for repeating errors. For a R-robust error detecting code there are

at most R out of |C| = M codewords which can potentially mask an error.

Good robust error detecting codes are those that achieve the lowest possible robustness R for a given size of a

code M = |C|. For binary robust codes with q = 2, the smallest possible R is 2. For q-ary codes where q > 2

minimum R is 1. In both cases, systematic codes achieving R = 2 or R = 1 for binary and non-binary codes

respectively have a rate of one-half. Three constructions of such robust error detecting codes are summarized below

(from [3] [4]).

Construction 1. (Binary Cubic Robust Duplication Code) Let w = (x|y), x, y ∈ GF (2k) where (x|y) denoted

concatenation of x and y. The robust duplication code C contains all vectors w which satisfy x3 = y, where all

the computations are in GF (2k). The code is a (2k, 2k) 2-robust error detecting code.

Example 4. The code from Example 1 is binary cubic robust duplication code with k = 3 and n = 6 where the

primitive polynomial used for construction of GF (23) is α3 + α+ 1.

Construction 2. (Binary Inverse Robust Duplication Code) Let w = (x|y), x, y ∈ GF (2k). The robust duplication

code C contains all vectors w which satisfy x−1 = y, where 0−1 = 0 and all the computations are in GF (2k).

The code is a (2k, 2k) 2-robust error detecting code.

Construction 3. (Non-Binary Quadratic Robust Duplication Code) Let w = (x|y), x, y ∈ GF (qk), q > 2. The

robust duplication code C contains all vectors w which satisfy x2 = y where all the computations are in GF (qk).

The code is a (2k, qk)q 1-robust error detecting code.

These codes can detect any error if the error affects in the same way at least three different codewords for the

binary codes and at least two different codewords for the non-binary code. Other constructions and variants of

robust codes with larger R can be found in [3] , [4], [8]. Although not explored in detail in this paper, some robust

error detecting codes correspond to difference sets and can be generated by many classical combinatorial structures

such as projective planes [4].

Example 5. The code from Example 3 is a non-binary 1-robust quadratic duplication error detecting code where

codewords are in the form of C = {(x|x2 (mod 5)} Any error e = (x|y) where x, y ∈ GF (5) is masked for at

most 1 codeword. The error e = (1|1), for example, is masked only for the codeword w = (0|0) since w+e = (1|1)

is also a codeword of C. Addition of the error with any other codeword results in a vector that does not satisfy

(x|x2 (mod 5)). (see [3] for a general proof of robustness for quadratic codes)

In the next section we will show that robust error detecting codes can also be used for error correction of repeating

errors. The binary robust duplication codes can correct any error if it affects at least three different codewords and
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the non-binary robust duplication code can correct any error if it affects at least two different codewords.

C. Robust Error Detecting Codes are also Robust Correcting

Robust error-correcting codes for which subsets of N ≥ R codewords have unique multisets of differences of

codewords are equivalent to robust error-detecting codes and offer robust error detection in addition to correction.

Any method used to construct robust error-detecting codes can also be used to construct robust error-correcting

codes. To show this we first start with a basic result about differences of elements of a set.

Lemma 1. For ordered sets A and B whose elements are subsets of GF (qn) where A 6= B, |A| = |B|, and

4A = 4B, there exists a unique e ∈ GF (qn) such that Ae = B.

Proof Let A = (a1, a2, . . . , aN ) be an ordered set. The ordered multiset of differences of a set, 4A, can be

uniquely represented by the differences di, 1 < i ≤ N where

a1 − ai = di.

The resulting ordered set of di, call it 5A = (d2, d3, . . . , dN ), uniquely represents 4A as all code differences can

be generated from 5A . There are (
qn − 1
N − 1

)
(N − 1)!

different possible ordered multisets of differences of N elements. For each multiset 4A there exists the corre-

sponding set A. Since 4A = 4Ae there are at least qn different ordered sets Ae that can generate each of the

distinct ordered multisets of differences. There are thus(
qn − 1
N − 1

)
(N − 1)!qn =

(
qn

N

)
N !

unique sets and their translates which have unique ordered multisets of differences . Since there are at total of(
qn

N

)
N ! unique ordered sets of N elements, there cannot exist two different N element ordered sets which have

the same multiset of differences but are not translates of each other. �

Remark 2. A R-robust error correcting code C ⊂ GF (qn) is strong if for any ordered set A = (a1, a2, ..., aN )

where ai ∈ C and N ≥ R, A 6= Ae for any e 6= 0, e ∈ GF (qn)

Theorem 2. A R-robust error-detecting code is also a strong (R+ 1)-robust error-correcting code.

Proof Let C ⊂ GF (qn) be a R-robust error-detecting code and let A be an ordered set whose elements are a subset

of C where |A| ≥ R+1 . Any such A has a unique 4A which can be used to identify A. If there was ordered set

B such that its elements are a subset of C and 4A = 4B then from Lemma 1 there must exist an e ∈ GF (qn)

such that Ae = B. From the definition of a R-robust error detecting code it easy to see that, ∀e 6= 0, |Ce ∩C| ≤ R

thus there are no two different ordered R+ 1 sets A and B whose elements are from C where there exists e such

that Ae = B. Clearly 4A = 4Ae and thus 4A can be used to uniquely identify the set A. �
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Example 6. (Strong correction with non-binary codes) Consider the non-binary quadratic code of Example 5.

The code is a 1-robust error detecting code and by Theorem 2 is a strong 2-robust error correcting code.

Theorem 3. A R-robust error-detecting code over a field of characteristic two is a weak R-robust error-correcting

code.

Proof Any R codewords have a unique multiset of differences but different permutations of the ordered set of R

different codewords can have the same ordered multiset of differences. We prove this by contradiction. Assume

first that the multiset of differences 4A of a subset of R (unordered) codewords A ⊂ C, A = {a1, a2, . . . , aR} of

a R-robust error detecting code is not unique. There must therefore be another set B ⊂ C, B = {b1, b2, . . . , bR}

with the same set of differences where 4A = 4B, A 6= B. Since these two sets have to be translates of each

other ( Lemma 1) we can therefore write

a1 + ai = di, b1 + bi = di, (3)

where 1 < i ≤ R. Therefore

a1 + b1 = ai + bi, (4)

where 1 < i ≤ R and + is componentwise addition modulo two.

The two sets A,B cannot be disjoint since that would imply that the original robust error-detecting code was

2R-robust. To be distinct the two sets can have at most R−2 elements in common where clearly a1 6= b1. Hence if

there is another set with the same set of differences there must be at least d(R−1)/2e+1 pairs of codewords with

the same difference and hence that would imply that the original error detecting code is more than R-robust, which

is a contradiction. Thus every unordered subset of R codewords of a binary R-robust error detecting code has a

unique multiset of differences. The code, however is not strong since by definition of a R-robust error detecting

code there exists a R element subset A of C where A = Ae for some nonzero e ∈ GF (2n). �

The three construction of robust error detection codes described in Section IV-B can be used for robust error

correction. In addition to their error detecting properties, the binary codes are 2-robust weak correcting and 3-robust

strong correcting. The non-binary quadratic codes are strong 2-robust error correcting.

Example 7. (Correction with binary cubic codes) The code from Example 1 is a binary cubic robust duplication

code where the primitive polynomial for GF (23) is α3 + α + 1. It is a 2-robust error detecting code. As shown

in Example 1 it is a weak 2-robust error correcting code. It is also a strong 3-robust error correcting code. Any

ordered set of 3 or more different codewords has a unique ordered multiset of differences of codewords.

In the next section we analyze decoding methods for robust error correcting based on unique multisets of

differences.
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V. BLOCK DECODING

The decoding of robust error-correcting codes based on unique multiset of differences of codewords is in the

general form computationally prohibitive but more efficient methods which use the algebraic structure of the code

are also possible for some codes. We start by analyzing the more general list decoding method. Efficient algebraic

algorithms for codes from Constructions 1, 2, and 3 are also presented.

A. General List Decoding

The general list decoding method for strong error correction is based on a precomputed set of valid multisets

of differences for all possible ordered N -element subsets of codewords. Prior to decoding the algorithm requires

a setup phase where all the multisets of differences of all possible ordered N codeword subsets of the code are

precomputed. When an ordered set A of N erroneous outputs is received the set of differences is computed and

compared to each precomputed set of possible multisets of differences. If there is a match then the set associated

with the matching precomputed multiset of differences is determined to be the set of intended outputs. If there are

no matches the algorithm assumes an inconsistent error (i.e. an error which was not the same for all N outputs)

and refuses to decode.

Correct decoding only occurs iff all of the N outputs of a protected device are distorted by the same error. The

probability of correct decoding is equal to the probability of having N consecutive equal error patterns and depends

on the properties (such as the laziness) of the errors. When the errors are not all the same the general algorithm will

either continue decoding and decode incorrectly or determine an inconsistency in the errors and refuse to decode.

For a (n,M)q strong R-robust error-correcting code which uses N ≥ R outputs for decoding there are qnN

possible distortions to the Nn q-ary digit stream. Using list decoding the code can correct all errors which repeat

for all of the outputs. The code can therefore correct qn distortions to the Nn digit stream.

Wrong correction will occur when an error will distort the set of outputs to an another set which has a different,

(but valid) multiset of differences of codewords. Sets which have a valid multiset of differences are any N subset

of the codewords and any of their translates (see Lemma 1).

Using list decoding based on multisets of differences of codewords the fraction of distortions which will result

in wrong correction can be made arbitrarily small by increasing the number of outputs N used for decoding or by

increasing the dimension (number of digits) n in each output. The ratio β of refusal to decode to wrong correction

is

β =
qnN −

(
M
N

)
qnN !(

M
N

)
qnN !− qn

,

which increases exponentially with respect to both N and n. The codes and decoding methods based on multiset

of differences of codewords can have arbitrarily small probabilities of miss-correction allowing correction even

when errors are not completely lazy. For strong decoding using N = 3 distorted outputs the binary cubic robust

duplication codes where the dimension of the codes is 2k the ratio β ' 2k for large k.
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The list search for the correct value is computationally intensive and clearly not practical for real applications.

The algebraic structure of a code can be used to decrease the complexity of decoding while achieving the same

detection and correction parameters.

B. Algebraic Decoding of Binary Duplication Cubic Codes

Robust codes which have a well defined algebraic structure can be decoded using a much simpler algorithm than

list decoding. Robust correction for the binary cubic error detecting codes, for example, can be done efficiently

while maintaining the same properties with respect to miscorrection as in list decoding. We next outline algebraic

methods for decoding for both binary and arithmetic (non-binary) errors. Algorithm 1 presented in this section refers

to decoding for binary codes where errors are modeled as componentwiese modulo 2 additions with the codewords.

Algorithm 2 presented in the next section refers to decoding for non-binary arithmetic robust codes where errors

are modeled additive in the respective field.

Let C = {w1, w2, . . . , wM} be a code where wi = (xi|yi = x3
i ), xi, yi ∈ GF (2k). Let error e = (ex|ey) ∈

GF (22k); ex, ey ∈ GF (2k), e 6= 0. Since the code is based on a binary 2-robust error detecting code, by Theorem

2 and Theorem 3 it is a weak 2-robust error-correcting code as well as a strong 3-robust error-correcting code.

If an error e affects two different codewords the relationship between the correct and erroneous outputs w̃i =

(x̃i|ỹi) is

x1 + ex = x̃1, (5)

x3
1 + ey = ỹ1, (6)

x2 + ex = x̃2, (7)

x3
2 + ey = ỹ2. (8)

where + is componentwise XOR. The value of x1 from (5) can be substituted into (6) and likewise the value

of x2 from (7) can be substituted into (8). The two resulting equations after substitution can be summed and after

algebraic manipulation we have

x2
2 + x2(x̃1 + x̃2) + (x̃2

2 + x̃2
1) +

ỹ1 + ỹ2
x̃1 + x̃2

= 0. (9)

Equation (9) is a quadratic equation in GF (2k) with respect to x2, hence there can be at most two solutions which

correspond to the correct outputs, x1 and x2 (if x1 6= x2). However, with only two distorted outputs, unless there

are further restrictions on the messages, it is not possible to determine their order. Solving the quadratic equation

is thus decoding (weak correction) of the robust codes. Since the order of the codewords cannot be determined

the method provides only for weak correction. The quadratic equation can have zero or two solutions. When the

quadratic has no solutions it is the indication that the multiset of differences was not consistent with any valid set

of two codewords and should be interpreted as a refusal to decode.
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For strong correction by Theorem 2 three distorted outputs are necessary and the same error must affect all three

to be correctable. With three distorted outputs the decoding can be simplified to solving a linear equation since

Equations (5) to (9) can be repeated taking the second and third distorted codewords which will produce another

quadratic equation

x2
2 + x2(x̃2 + x̃3) + (x̃2

2 + x̃2
3) +

ỹ2 + ỹ3
x̃2 + x̃3

= 0. (10)

From (9) and (10) we can obtain a linear equation

x2(x̃1 + x̃3) + (x̃2
1 + x̃2

3) +
ỹ2 + ỹ3
x̃2 + x̃3

+
ỹ1 + ỹ2
x̃1 + x̃2

= 0, (11)

which has one unique solution for x2. Similar equations can be written for x1 and x3:

x1(x̃2 + x̃3) + (x̃2
2 + x̃2

3) +
ỹ1 + ỹ3
x̃1 + x̃3

+
ỹ1 + ỹ2
x̃1 + x̃2

= 0, (12)

x3(x̃1 + x̃2) + (x̃2
1 + x̃2

2) +
ỹ2 + ỹ3
x̃2 + x̃3

+
ỹ1 + ỹ3
x̃1 + x̃3

= 0. (13)

By computing the three correct outputs x1, x2, x3 the respective errors can also be computed. If all three errors

are consistent (all the same) then the decoded outputs are returned. Inconsistencies in the computed errors signify

a non-constant error which resulted in an invalid multiset of differences. This is indicated by the refusal to decode.

The algebraic decoding method for the binary cubic codes is summarized in Algorithm 1. For a set of different

N distorted outputs received, the algorithm solves the linear Equations (11)-(13) for all
(
N
3

)
triples of erroneous

outputs. Calculating the expected outputs allows the calculation of the error. A consistent error pattern for all of

the distorted outputs is taken as the error. Refusal to decode occurs when any of the received outputs are equal, an

error is not detected in more than two outputs, and when the computed error is not consistent for all outputs.

C. Algebraic Decoding of Binary Duplication Inversion Codes

Similarly to the binary cubic codes, the codes binary inversion codes can also be efficiently decoded. Following

the same analysis procedure as for the cubic codes it can be shown that for weak correction using two outputs

decoding involves solving a quadratic equation shown below.

x2
2(ỹ1 + ỹ2) + x2(ỹ1 + ỹ2)(x̃1 + x̃2) + (x̃1 + x̃2) = 0. (14)

For strong correction three distorted outputs are necessary and the same error must affect all three to be correctable.

With three outputs the decoding can be simplified to solving a linear equations. For the inversion codes those linear

equations are listed below.

x2(x̃1 + x̃3) +
x̃1 + x̃2

ỹ1 + ỹ2
+
x̃2 + x̃3

ỹ2 + ỹ3
= 0, (15)
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Algorithm 1 Strong algebraic block decoding of a binary cubic robust code

Require: ordered set Ã = (w̃1, . . . , w̃N ) of distorted codewords,w̃i = (x̃i|ỹi) , |N | ≥ 3

Ensure: decoded set A of N outputs and error e or refusal to decode

1: if x̃3
i = ỹi for two or more w̃i then

2: return refuse to decode

3: else

4: for all triples of outputs solve Equations (11), (12), (13) and determine the respective errors

5: if the calculated errors for all triples are not all equal then

6: return refuse to decode

7: else

8: return for the consistent error, return Ãe, e

9: end if

10: end if

x1(x̃2 + x̃3) +
x̃1 + x̃2

ỹ1 + ỹ2
+
x̃1 + x̃3

ỹ1 + ỹ3
= 0, (16)

x3(x̃1 + x̃2) +
x̃2 + x̃3

ỹ2 + ỹ3
+
x̃1 + x̃3

ỹ1 + ỹ3
= 0. (17)

The algebraic decoding algorithm is the same as for the binary cubic codes summarized in Algorithm 1. For a

set of different N distorted outputs received the algorithm solves the linear equations above for all outputs triples

(Equations (15) (16) (17)). Calculating the expected outputs allows the calculation of the error.

D. Algebraic Decoding of Non-Binary Quadratic Duplication Codes for Arithmetic Errors

Efficient algebraic robust correction algorithm is also possible for arithmetic errors (which are typical errors for

arithmetical devices such as adders or multipliers [9]). We show that a similar decoding algorithm, as was shown

for the binary codes, is possible for non-binary quadratic codes defined by C = {(x|x2 mod q)} where x ∈ GF (q)

and q is a prime. These codes are systematic 1-robust error detecting codes and thus only two outputs are necessary

to perform the strong error correction.

Let C = {w1, w2, . . . , wM} be a code where wi = (xi|yi = x2
i mod q), xi, yi ∈ GF (q). Let error e = (ex|ey),

ex, ey ∈ GF (q), e 6= 0. A codeword w is distorted by an error e by modulo addition of the information and

redundant portions of the code w̃i = wi + e = (x̃ = xi + ex mod q|ỹ = yi + ey mod q). Such an error model

can be applicable to arithmetic devices since the hardware computing the information and redundant portions is

implemented disjointly.

If an error e affects two different codewords the relationships between the correct and distorted outputs (where

all operations are modq) are
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x1 + ex = x̃1, (18)

x2
1 + ey = ỹ1, (19)

x2 + ex = x̃2, (20)

x2
2 + ey = ỹ2. (21)

From Equation (18)-(21), (similarly as in for Equations(5)-(8)) we have

x2(2x̃1 − 2x̃2) + x̃2
1 + x̃2

2 − 2x̃1x̃2 − ỹ1 + ỹ2 = 0 mod q. (22)

Equation (22) is linear with respect to x2 which results in a unique solution for x2 resulting in strong correction

using only two distorted outputs.

The algebraic decoding method for the non-binary quadratic duplication codes and arithmetic errors is summarized

in Algorithm 2. A consistent error pattern for all of the outputs is taken as the error. Refusal to decode occurs when

any of the received outputs are equal, an error is not detected in more than one outputs, and when the computed

error is not consistent for all outputs.

Algorithm 2 Algebraic block decoding of a non-binary quadratic duplication robust code

Require: ordered set Ã = (w̃1, . . . , w̃N ) of different distorted outputs,w̃i = (x̃i|ỹi) , |N | ≥ 2

Ensure: decoded set A of N outputs, refusal to decode

1: if x̃2
i = ỹi for one or more wi then

2: return refuse to decode

3: else

4: for all triples of outputs solve Equation (22), and determine the respective errors

5: if the calculated errors for all pairs are not all equal then

6: return refuse to decode

7: else

8: return for the consistent error, return Ãe, e

9: end if

10: end if

Example 8. Consider the non-binary quadratic code of Example 5. As shown in Example 3 the code is a strong

2-robust error correcting code for q = 5 and can be decoded using Algorithm 2. Assume the ordered set of

two codewords A = ((0|0), (1|1)) is distorted by an error e = (1|1) and results in a distorted ordered set

Ã = ((1|1), (2|2)). Solving Equation (22) with x̃1 = 1, x̃2 = 2, ỹ1 = 1, ỹ2 = 2 we obtain x2 = 1 and therefore

x1 = 1 and the decoder can correctly determine the error to be e = (1|1).



14

To conclude this section we note that the proposed nonlinear arithmetic codes can detect or correct all arithmetical

errors while the well-known linear AN-arithmetic codes [10] can be used only for specific classes of errors.

VI. DECODING OF STREAMED DATA

In practical implementations for hardware devices the decoding must be performed on a continuous stream of

data that is the output of a device. Two possible methods of processing the continuous data and their limitations

with the block decoding methods are outlined below.

A. Segmented Block Decoding

A continuous stream of distorted outputs can be processed with the algorithms presented in Section V by dividing

the stream into disjoint N element sets and performing block decoding (see Figure 2). Sequential block decoding

of non overlapping blocks is simple to implement, the method can result in inefficient decoding for non constant

errors even when they have a large span. Unless the length of the burst of identical errors will be exactly the width

of the decoder N , many of the errors will not be decoded properly without additional recovery procedures.

Decode 1 Decode 2 Decode 3

X X YXX YX Y Y

Fig. 2. Segmented block decoding where N = 3

To illustrate the potential limitation consider a block decoder for a strong 3-robust error-correcting code with

N = 3. Consider a burst of two errors depicted by “X” and “Y” in Figure 2. The bursts of errors can be decoded

correctly if each of the bursts of errors falls within exactly a complete decoding blocks. However, if the errors

change within a decoding block as in the block 2 in Figure 2 N = 3 distorted outputs will not be decoded.

B. Continuous Decoding

To reduce number of uncorrected outputs at error transitions a decoding procedure based on continuous decoding

can be adopted similar to decoding methods of convolution codes [11]. In the decoding procedure the block decoding

is performed in an overlapping fashion. The method allows for more consistency checks as decoding proceeds since

the effective block length of the procedure is increased.

The continuous decoding is based on the normal block decoding in overlapping blocks (see Figure 3). The

overlapping nature of the decoding can produce conflicting results at the output of the decoder. A computed error

of a following decoded block can be used to verify the error of the previous block. This continuous overlapping

decoding procedure reduces the chances of miscorrection without increasing the number of outputs in the individual

block decoding algorithm. In addition, it also allows efficient detection of a change of an error. Continuous decoding,

however, requires a factor of N − 1 more block decoding steps than block decoding
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Decode 1

Decode 2

X X YY Y

Decode 3

Decode 4

Decode 5

XX YX

Decode 7

Decode 6

Fig. 3. Continuous decoding where N = 3

C. Other Decoding Considerations

1) Correction on detected errors: Errors or manifestation of faults can be non continuous. Even in the case of

lazy errors, an error might only repeat when the fault causing the error manifest itself, but the manifestations can

be separated by a long block of non-erroneous outputs. For example, for the stuck-at fault model the errors, even

when constant, will not be continuous but separated by outputs with no errors.

For such non-continuous manifestations, one approach is to perform error detection first and do correction only

on the outputs found to be erroneous. A limitation of such an approach is that some outputs will not be corrected

even when a constant error affects all outputs. Any output can be distorted by an error that will map it to a

different codeword. Such distortions cannot be detected and would not be corrected by a scheme combined with

error detection.

2) Different Codewords: For successful decoding the algorithms presented require and assume at least R different

codewords to be affected by the same error. The requirement can be satisfied by additional counter bits appended to

each of the codewords to ensure that each N consecutive codewords are different. Such an approach would require

dlog2Ne additional bits. For correction based on only erroneous or non continuous errors the requirement is harder

to satisfy without additional restrictions.

VII. CASE STUDY: CORRECTION USING CUBIC ROBUST CODES FOR LAZY ERRORS

In this section we develop and analyze a decoding architecture based on the robust cubic error correcting codes

(Construction 1). We investigate the hardware requirements associated with decoding and the properties of the errors

for which the codes become efficient.

A. Decoding Architecture for Strong Correction

The structural representation of a decoder for N = 3 is shown in Figure 4. The architecture is based on a

continuous decoder for the cubic robust codes which assumes a continuous error blocks and performs correction

on all incoming outputs of a device.
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The architecture is composed of a shift register which buffers three n bit outputs of a device that are the inputs to

a block decoder. The block decoder implements Algorithm 1. The block decoder takes the three distorted codewords

of a robust code as input and outputs a computed error and/or a status tag depending on the outcome of the block

decoding procedure. The tag signifies one of two possible outputs of the decoder: correction, or refusal to decode.

The output of the block decoder passes through the block which enforces the decoding policy.

The decoding policy block implements rules for updating the errors in the error and tag shift registers depending

on the output of the block decoder. The details of the updating policies are mainly used to customize the way the

complete decoder deals with boundary conditions of change of errors. For the design when the output of the block

decoder results in correction the decoding block updates the tags and errors in the shift register that resulted from

refusal to decode by the block decoder. The decoding policy block can be implemented using comparators.

Depending on the left most tag of the lower shift register the output of the complete decoder is multiplexed

between either the original output or the corrected output. If the tag signifies that the error was a result of a refusal

to decode the original output is used as the output, and a corrected output is used otherwise. The corrected output

is simply the XOR of the original output and the computed error in the shift register.

The complete architecture consists of two shift registers, a multiplexer, comparators, XOR gates, and a block

decoding block. The block decoding block is the most hardware and computation intensive part of the decoder (see

Figure 4).

Block Decoder

Input Messages

Decoding Policy

tag tag tag

adder

Shift register

Shift register

1
~w 2

~w 3
~w

1w

1e 2e 3e

Fig. 4. Continuous decoder with N = 3

The block decoder requires seven additions, four multiplications, and one multiplicative inversion over GF (2n/2)
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for each of the three linear equation the decoder solves. The complete block decoder requires 21 additions, 10

multiplications and one inversion operations over GF (2n/2).

B. Example of strong correction

Consider the stream of expected outputs A = ((1|1), (4|1), (2|4), (0|0), (1|1)) which are codewords of a non-

binary quadratic duplication code C = {(x|x2 mod 5)}, C = {(0|0), (1|1), (2|4), (3|4), (4|1)}. The expected outputs

are distorted by a stream of errors E = ((0|1), (0|1), (1|1), (1|1), (1|1)) such that the observed set of outputs is

Ã = A + E = ((1|2), (4|2), (3|0), (1|1), (2|2)). The decoding steps of the stream of erroneous outputs Ã using a

continuous strong decoder with N = 2 are summarized in Table II.

TABLE II

CONTINOUS DECODER EXAMPLE FOR NON-BINARY QUADRATIC DUPLICATION CODE WITH N = 2

decode Shift Reg. 1 Output of Block Decoder Shift Reg. 2 Output

1 ((1|2), (4|2)) (0|1) tag=(1, 1) e = ((0|1), (0|1)) (1|1)

2 ((4|2), (3|0)) (−|−) tag=(1, 0) e = ((0|1), (−|−)) (4|1)

3 ((3|0), (1|1)) (1|1) tag=(1, 1) e = ((1|1), (1|1)) (2|4)

4 ((1|1), (2|2)) (1|1) tag=(1, 1) e = ((1|1), (1|1)) (0|0)

5 ((2|2), (−|−)) (−|−) tag=(1,−) e = ((1|1), (−|−)) (1|1)

The decoding starts with shifting of the stream of erroneous outputs Ã into the first shift register. When the

first two erroneous outputs ((1|2) and (4|2)) are in the shift register the block decoder solves the linear Equation

(22) and outputs the calculated error for the two outputs in the shift register. For the first two outputs the error is

correctly calculated to be (0|1) which is stored in the lower shift register and used to correct the first output. Once

the first output is corrected the first shift register values are shifted and now contain the second and third erroneous

values which were distorted by two different errors. Solving Equation (22) the calculated error does not result in

two codewords and so the block decoder refuses to decode in the decode step 2 (refusal to decode is denoted

as (−|−)). The second erroneous output is corrected correctly since the error (0|1) from decode 1 (see Table II)

stored in the second shift register is used for correction. For decode 3 the two erroneous outputs are distorted by

the same error (1|1) and the decoder correctly determines the error and updates the unknown errors of the lower

shift register. As can be seen the decoder results in correct decoding of all of the erroneous outputs.

C. Decoding Performance for Lazy Errors

Simulations were performed to evaluate the performance and the required parameters for which the decoder

becomes efficient. The decoder was tested with respect to laziness of errors for various code parameters. For all

simulations and experiments random outputs were distorted with randomly selected errors of a fixed laziness L.

All errors were assumed to be equiprobable and assumed to have the same laziness.
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For the simulations a stream of 10,000 random codewords of the cubic robust codes (x, x3) were generated. The

outputs were then distorted with random errors of a fixed laziness L. The stream of erroneous outputs was the

input to the continuous decoder with N = 3 that was described above. The corrected outputs of the decoder were

compared with the error-free outputs to determine how many outputs were corrected correctly. The results for the

N = 3, n = 12 decoder are summarized by the dotted line in Figure 5.

As Figure 5 shows the performance of the decoder depends heavily on the laziness L of the errors. In order to

be correctable an error must have a span of at least three outputs. Errors with a span of less than three consecutive

outputs will be most often not decoded or in some instances miscorrected. The black solid line of Figure 5 shows

the percentage of errors which has a span longer or equal to three.
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Fig. 5. Percentage of errors corrected and miscorrected as a function error laziness (dotted and dashed lines respectively) and percentage of

correctable errors (solid line) for a robust decoder with N = 3, n = 12 using binary cubic duplication codes

The difference of the two lines (the dotted and solid lines) is the result of occasional miscorrection at a boundary

of two spans of different errors. This probability of miscorrection can be made arbitrarily small by increasing either

n or N of the block decoder. Increasing n will result in a larger width of components of the decoder. The value of

n is often fixed by the source of the stream such as a piece of original hardware that require protection and often

cannot be modified. Increasing the number of blocks, N , will likewise reduce the probability of miscorrection.

An increase in N , however will result in an increase of the decoding complexity as well as a reduction of the

percentage of correctable errors. An increase in N means that only errors of a span of at least N are correctable.

The effects of N on the percentage of corrected errors is shown in Figure 6. While N = 2 provides the maximum

percentage of correctable errors it only results in weak correction and has the highest probability of miscorrection.

As can be seen from the simulated curves, robust correction is best suited for the case when errors have a high

laziness or typically have a long span.
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Fig. 6. Percentage of errors corrected as a function of error laziness for various N using binary cubic duplication codes where n = 12 for

weak correction where N = 2 and strong otherwise.

VIII. CASE STUDY: STRONG CORRECTION USING INVERSION ROBUST CODES FOR FAULTS IN

COMBINATIONAL CIRCUITS

To test the feasibility of correction of errors due to faults in combinational devices a sample circuit was protected

with modified robust inversion duplication codes (Construction 2). The circuit was then simulated and correction on

the outputs of a faulty sample circuits was performed. To simplify the simulations only single stuck-at-zero faults

were considered.

A circuit implementing the substitution box (SBox) of the Advanced Encryption Standard (AES) was used in the

simulations [12]. The original unprotected circuit has and 8-bit input and an 8-bit output. The circuit implements

the multiplicative inverse (over GF (28)) followed by an affine transform D of the input. The circuit was chosen

for its nonlinearity to show that codes can be beneficial for a wide range of combinational circuits including those

implementing highly nonlinear functions.

The predictor generating the redundant bits of the extended output needed to provide the robust protection to the

circuit results in only a 7% hardware overhead. For the design the predictor for the circuit consisted of the same

affine transform used in the Sbox that can be constructed with 14 two-input gates. The complete circuit consists

of 207 two input gates. The output of the Sbox and the affine transform of the input results in a 16-bit extended

output that is a codeword of a robust error correcting code. The code consists of vectors in the form

C = {(x, y = D∗(Dx)−1)}, (23)

where D∗ is the inverse of the affine transform D over GF (2). The code C is a 2-robust error detecting code and

a strong 3-robust error correcting code.

To evaluate the feasibility and benefits of robust correction the device was simulated in the presence of single

stuck-at-zero faults. Stuck-at faults were inserted into the netlist of the complete circuit (including the predictor)

and kept constant for 100 random inputs. After 100 inputs another randomly selected gate output was modified to
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stuck-at zero and 100 more random inputs were simulated for the fault circuit. This was performed for a total of

10,000 random inputs for a total of 100 randomly selected stuck-at zero faults. The resulting 10,000 outputs were

saved and processed.

Out of 10,000 inputs for which one node in the circuit was stuck-at-zero, 4,498 resulted in an error at the output

of the device. A histogram showing the Hamming weight distribution of the errors at the 16-bit extended output

of the protected device is shown in Figure 7. As the Figure shows, even the single faults can results in errors of a

large Hamming weight. The Hamming weight of the errors is limited to 8 due to separation of hardware generating

the information and redundant bits, single fault can only propagate an error to either the information or redundant

bits.
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Fig. 7. Histogram for number of errors of a given Hamming weight resulting from single stuck-at-zero faults after 10,000 random inputs

The 10,000 outputs were used as an input to the robust error decoder with N = 3 for decoding based on the

inversion based duplication codes. Since the errors at the output of the circuit were non-continuous the decoder

performed decoding on outputs which were detected to be erroneous by the code.

Due to the robust error detection properties of the code all of the 4,498 erroneous outputs were detected by the

code and were used in error correction. Of the 4,498 erroneous outputs used in correction 1,916 were corrected

correctly (42.6%). Although the circuit implemented a highly nonlinear function, the average laziness of the errors

due to the single stuck-at-zero faults was about 0.45. Of the 2,582 erroneous outputs that were not corrected only 236

were miscorrected (5.25%), and the rest were refused to be decoded (see Table III). The 5.35% of miscorrections

can be in part attributed to the fact that no restrictions were placed that the outputs used for decoding are all

different.

The errors exhibited a relatively large laziness even when it was the faults that were injected. Had the laziness

of the errors been higher, correction would improve. Due to the structure of the circuit some of the errors exhibited

no laziness and did not repeat. Therefore, even though the protecting code is capable of correcting all errors of any

multiplicity since some errors did not repeat, they were uncorrectable in this implementation.

We note that to guarantee the same percentage (92.6%) of correct corrections as the proposed robust code, a
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TABLE III

PERFORMANCE OF ROBUST ERROR CORRECTION AND DETECTION (x, x3) CODES WITH n = 16 FOR SBOX OF AES

number percent

total errors 4,498 -

errors detected 4,498 100%

errors corrected 1,916 42.6%

errors miscorrected 236 5.25%

classical linear minimum distance BCH code would need to correct errors of Hamming weight up to 4 and thus

needs a minimum distance of at least 9. Such a code requires more than the eight redundant bits and would

require much more than the 7% overhead for the predictor than the robust code. Published implementations of the

circuit with protection based on Hamming codes (d=3), for example, require more than 50% hardware overhead

for encoding [8]. Alternatively, to achieve comparable protection triplication (TMR) may be used which requires a

200% overhead.

Furthermore, an additional benefit of the robust correction is its low percentage of miscorrection. Errors which

were not corrected are still identified as being erroneous and not falsely corrected.

IX. APPLICATION SCENARIOS

The proposed error correction methods are effective against repeating errors that exhibit laziness. For many

circuits encoding can be performed efficiently with relatively small overhead depending on the required robustness

of the code used for the protection of the original device. Error correction requires buffering of multiple outputs and

performing computations over a finite field and carry a significant processing or hardware requirement depending

on weather it is implemented in software or hardware.

The proposed error correction technique may be used to provide reliability to simple devices such as sensor

networks. Large networks of simple devices are deployed in an area which then wirelessly relay their data to a

central node or log their data to local memory. The devices are often deployed unattended or in non-easily accessible

areas prohibiting device replacement if the devices are faulty.

Such devices can be protected with the proposed robust error correcting codes. The logged streams of data

encoded with robust error correcting codes from the devices can then be processed off-line by a more powerful

central unit. By encoding the computations of the sensor nodes with codewords of robust codes erroneous outputs

due to faults that can cause repeating errors may be corrected. In the case when errors are not correctable, the

proposed robust codes can still provide for a very high level of error detection allowing discrimination of erroneous

and correct data.

X. CONCLUSION

A R-robust error correcting code can correct any error if the error affects in the same way at least R different

codewords. Efficient decoding is possible for binary robust codes based on the cubic construction and for non-
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binary codes based on the quadratic construction. The binary codes are strong 3-robust error correcting codes and

the non-binary codes are strong 2-robust error correcting codes for arithmetic errors. For these codes, the error

correction has been shown to be effective if the span of an error is at least 3 or 2 outputs respectively. As a results,

robust correction is most useful when errors have a high probability of repeating. The codes have a high probability

of error detection and can be used even when the error is non-continuous.

The robust correction becomes efficient when the laziness of the errors is more than 0.3 using two output decoding.

For correction using two outputs using the binary duplication codes (weak correction) the codes can correct almost

60% of the errors (see Figure 6). The probability of correction is practically independent of the Hamming weight

of the error or the error distribution. As it was shown in Section VIII circuits which implement highly nonlinear

functions can have high laziness of errors due to single stuck-at-zero faults where the correction can be effective

on almost half of the erroneous outputs achieving better performance than comparable minimum distance codes.
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