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Abstract

Linear SEC-DED codes used for protection of memories

cannot detect and also miscorrect many errors with large

Hamming weights. As multiple bit upsets become more

probable for new technologies the reliability of memories

protected by linear error correcting codes (ECC) can not

be guaranteed. In this paper we propose to protect mem-

ory devices using a class of nonlinear SEC-DED codes

called extended Vasil’ev codes. These nonlinear codes

have a minimum distance of four and have fewer unde-

tectable errors as well as errors that are always miscor-

rected than linear codes with the same parameters. The

extended Vasil’ev codes can provide for higher reliabil-

ity in the presence of repeating errors or high MBU rate

with relatively low hardware overhead. The proposed ap-

proach for design of reliable memories can be applied

to nearly all kinds of memories such as RAM, ROM,

FLASH and disk memories.

1 Introduction

Memories play an important role in today’s system-on-

chip(SOC) designs. According to [30] and [34], 70%

of the chip area in many of today’s processors is taken

by embedded memory and this number is expected to

reach 90% by 2011. As memory occupies a big per-

centage of the area on a chip, it is especially vulnerable

to single-event-upset (SEU) caused by single, energetic

particles like high-energy neutrons and alpha particles.

SEU temporarily alters the state of the devices and re-

sults in soft errors, which are non-destructive and appear

as unwanted bit flips in memory cells and registers. With

continuous scaling, SEU becomes more probable and the

soft error rate increases. As the speed of the devices be-

comes higher the relative size of the clock transition tim-

ing window increases, which makes devices more sensi-

tive to SEU [14]. The decrease of applied voltage also

raises the soft error rate because bit inversion is more

likely to occur when the electrical charge stored in the

memory cell is low due to an decrease in the voltage [8].

Linear single error correction, double error detection

codes (SEC-DED) are used in modern computer systems

as a countermeasure against soft errors to increase the

reliability of the system. These codes have Hamming

distance 4 and are able to correct all single bit errors and

detect all double bit errors. In the presense of multiple

errors, however, the reliability of systems utilizing error

protection schemes based on linear codes may be ques-

tionable. For any linear (n, k) SEC-DED error correcting

codes, the number of undetectable multiple errors is 2k.

In addition to this, a huge number of multiple errors will

be miscorrected as single bit errors. Since in many cases

SEU results in multiple bit distortions, these codes may

not be sufficient to provide for a high reliability.

In fact, anomaly of systems caused by multiple bit up-

set (MBU) was already reported. In [32], it was shown

that the Cassini Solid-State Recorder was experiencing a

very high rate of uncorrectable multiple bit errors. The

author concluded that the MBU rate was architecture de-

pendent and any architecture of DRAM-based designs

must be scrutinized carefully to avoid unexpected high

MBU rate. In [29], the reliability of systems protected by

two types of single error correcting codes was examined.

The error rate was reported and the author concluded that

conventional ECC may not be sufficient to protect de-

vices against multiple bit errors for certain configuration

patterns.

The increase of MBU rate in deep submicron tech-

nologies deteriorates the situation even further. In 65nm

triple-well SRAMs with a thin cell architecture, the rate

of multiple bit errors caused by neutron induced SEU in-

creases by a factor of 10 compared with that in 90nm

technologies – nearly 55% of the errors due to neutron

radiation were multiple bit errors [11]. Although there

are mechanisms like bit interleaving [21] that can be used

to minimize the error rate contribution of multiple bit er-

rors, whether it is enough under such high MBU rate is



still unknown. Moreover, the advantage of bit interleav-

ing comes at a price of more layout constrains, which

may result in larger power consumptions and longer ac-

cess times. Thereby, memory protection schemes which

can provide better protection against multiple bit errors

than that based on classical linear codes are in demand.

In this paper we propose a technique for design of re-

liable memories based on nonlinear SEC-DED partially

robust codes. These codes have fewer undetectable er-

rors and fewer multibit errors which are always miscor-

rected while requiring similar hardware overhead as the

conventional linear SEC-DED codes. We propose that

linear extended Hamming codes can be replaced by non-

linear extended Vasil’ev SEC-DED codes described in

Section 4 resulting in improved reliability in the presence

of multibit distortions.

The rest of the paper is organized as follows. In Sec-

tion 2, previous work on error correcting codes for mem-

ory protection will be summarized. In Section 3, defi-

nitions of robust codes are given. In Section 4, we de-

scribe the construction methods for robust and partially

robust codes with minimum distance. The error detection

kernels of different codes are compared and the reason

why the extended Vasil’ev code is selected is explained.

In Section 5, the architecture utilizing extended Vasil’ev

codes is described and the error correcting algorithm is

shown in detail. The hardware overhead and error cor-

recting and detecting properties of the extended Vasil’ev

code are compared with the extended Hamming codes to

demonstrate the advantage of the proposed approach.

2 Previous Work

Since the basic construction of SEC-DED codes was pre-

sented by Hamming in 1950 [12], a number of modi-

fications have been proposed. In [13], a class of opti-

mal minimum odd-weight-column SEC-DED codes was

constructed for better performance, cost and reliability.

To further simplify the encoding and decoding complex-

ity, the author in [27] proposed a coding technique re-

quiring less 1’s in the parity check matrix than the code

presented in [13]. In [2], a hardware efficient method

has been proposed to construct SEC-DED-AUED sys-

tematic codes that can also detect all unidirectional er-

rors. For protecting byte oriented memories, SEC-DED-

SBD codes are proposed in [28], [4] and [6]. These

codes are known as single-error-correcting, double-error

detecting, single-byte-error-detecting codes and are able

to detect all single byte errors. SEC-DED-SBD codes

that are also able to correct any odd number of erroneous

bits per byte were proposed in [23]. To enhance the er-

ror correction capability of SEC-DED codes, the author

in [7] constructed single-error-correcting, double-error-

detecting, double-adjacent-error-correcting (SEC-DED-

DAEC) code by selectively avoiding certain types of lin-

ear dependencies in the parity check matrix. These codes

use the same number of check bits and similar overhead

to the other SEC-DED codes and have the advantage

that it can correct all adjacent double errors. In [5], the

author constructed single-byte-error-correcting, double-

byte-error-detecting codes (SBC-DBD) which can pro-

vide complete single byte error correction capabilities. In

[20], double-error-correcting and triple-error-detecting

code was proposed to correct all double bit errors. The

well known Reed-Solomon code, as another example,

was utilized in Hubble Space Telescope to protect 16

Mbit DRAMs manufactured by IBM [36].

All the codes mentioned above are classical linear

codes. They concentrate their error detection and correc-

tion capabilities on a specific type of errors (i.e. errors

with small multiplicities or belonging to the same byte).

The reliability of the system can not be guaranteed when

MBU rate is high.

Robust codes have been proposed as solution to the

limitation of minimum distance linear error detecting

codes for detection of fault injection attacks [16]. These

nonlinear codes are designed to provide equal protection

against all errors thereby eliminating possible weak ar-

eas in the protection that can be exploited by an attacker.

Several variants of robust codes have been used to protect

both private and public cryptographic algorithms. These

variants allow several tradeoffs in terms of robustness

and hardware overhead for many architectures. Robust,

partially robust, and minimum distance partially robust

codes have been used for the protection for both private

[15] [16] and public key cryptosystems [10].

Robust and partially robust codes with minimum dis-

tance larger than 2 are able to correct errors with small

multiplicities and are promising alternatives to linear

error correcting codes in applications where protection

against multiple bit errors is important. These codes have

smaller number of undetectable and miscorrected multi-

ple errors than traditional linear error correcting codes

(Section 4 and Section 5.2). We will overview several

constructions for these codes in Section 4.

3 Definitions

Throughout the whole paper, we denote by “+” the com-

ponentwise addition of binary vectors.

Definition 3.1 (Kernels of the code) For any error cor-

recting code C ⊆ GF (2n), the detection kernel Kd is

the set of errors that are masked for all codewords.

Kd = {e|e + c ∈ C, ∀c ∈ C}. (1)

It is easy to show that Kd is a linear subcode of C and

if C is linear then Kd = C. Denote by A the correction
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algorithm for code C and E the set of errors that A at-

tempts to correct. The correction kernel Kc is the set of

errors outside E which have the same result of A as some

e
′

∈ E for all codewords.

Kc = {e|e 6∈ E, ∀c ∈ C, ∃e
′

∈ E, A(e, c) = A(e
′

, c)}.
(2)

The detection kernels of different codes will be ana-

lyzed and compared in this section. The correction ker-

nel, which is related to the error correction algorithms of

the code, will be discussed in Section 5.2.

Example 3.1 (Kernels of Linear Hamming Codes) A

(n, n − ⌈log2(n + 1)⌉, 3) linear Hamming code C ⊆
GF (2n) has minimum distance 3 and is able to correct

all single bit errors. Denote by H the parity check ma-

trix of C. An error e is undetectable if and only if e is a

codeword (He = 0). Thereby the detection kernel Kd of

a Hamming code is C itself. For single error correcting

codes E = {e
∣

∣ ||e|| = 1}, where ||e|| is the number of
ones in e. A multiple error e, ||e|| > 1 will be miscor-

rected if and only if it has the same syndrom as some sin-

gle bit error. So the correction kernel of Hamming code

is {e|He = Hei}, where ei is an error vector with only

one 1. Obviously, Kd and Kc are disjoint. For perfect

linear Hamming code, Kd

⋃

Kc

⋃

E = GF (2n).

A main characteristic of traditional linear error detect-

ing codes is that they concentrate their error detecting

power on a small subset of errors which are assumed to

be the most likely to occur. Typically, such codes con-

centrate their error detection on errors of a small multi-

plicity. They are designed to guarantee detection of all

errors with a multiplicity less than d. Error detection be-

yond the minimum distance of the code is typically not

a part of the design criteria and can be unpredictable and

ineffective. While for some classes of errors the codes

provide 100% protection, for a very large class of errors

linear codes offer no protection for all messages. In an-

other word, traditional linear error detecting codes have

large Kd.

Robust codes, on the other hand, are designed to pro-

vide for a guaranteed level of detection against all er-

rors. These codes are characterized by their error mask-

ing probability Q(e), which is the fraction of codewords

that mask each error.

Q(e) =
|{c|c ∈ C, c + e ∈ C}|

|C|
. (3)

Definition 3.2 The code C is robust if maxe6=0 Q(e) <

1 or equivalently the detection kernel of the code con-

tains only the zero vector Kd = {0} .

Robust codes have no undetectable errors. In general,

traditional robust codes do not have a minimum distance

larger than one and can not be used to do error correc-

tions. A possible variant of the traditional robust codes

is to include a minimum distance into the design criteria.

Definition 3.3 Let ||e|| denote the multiplicity of an er-

ror e. A robust code where Q(e) = 0 for all errors where

||e|| < d is a d-minimum distance robust code.

Minimum distance robust codes have no undetectable

errors and the worst case error masking probability is

bounded and predictable. Moreover, larger minimum

distance makes them able to guarantee 100% detection

for a predefined class of errors so that they can be use-

ful for providing the highest protection against the most

likely or most dangerous threat while maintaining a de-

tection guarantee in case of an unexpected behavior or

attack.

For some applications the error characteristics of ro-

bust codes can be considered too pessimistic. Variants

of robust codes which fill the gap between the optimistic

linear codes and pessimistic robust codes are possible.

Partially robust codes and minimum distance partially

robust codes allow for a trade off between robustness,

encoding complexity, and overheard.

Definition 3.4 A systematic (n, k) code with a detection
kernel smaller than 2k is a partially robust code. If the

code also has a minimum distance greater than one it is

referred to as aminimum distance partially robust code.

Partially robust codes reduce the number of unde-

tectable errors while preserving some structures of lin-

ear codes which can be exploited to build efficient pre-

diction hardware that generates redundant bits of a mes-

sage. Like linear codes, partially robust codes still have

undetectable errors (hence they are not completely ro-

bust). The number of undetectable errors is reduced by

many orders of magnitude. For practical partially robust

constructions the number of undetectable errors can be

reduced from 2k to 2k−r, r = n − k compared to a lin-

ear (n, k) code [18]. The probability of masking for the

errors that are detectable is bounded as in robust codes.

For memory applications, we are mostly interested in

minimum distance robust or partially robust codes that

can be used to do error corrections. Compared with

traditional linear error correcting codes, the advantage

of these codes is that they can provide better protection

against multiple errors due to the fact that they have less

undetectable/miscorrected errors. Several constructions

and examples of minimum distance robust/partially ro-

bust codes will be described in the next section.
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4 Constructions of Codes

4.1 Minimum Distance Robust Codes

Systematic robust and partially robust codes are highly

related to nonlinear functions. The nonlinearity of a

function f : GF (2k) → GF (2s) can be measured by

using derivatives Daf(x) = f(x + a) + f(x). The non-
linearity measure can be defined by (from [3])

Pf = max
06=a∈GF (2k)

max
b∈GF (2s)

Pr(Daf(x) = b), (4)

where Pr(E) denotes the probability of occurrence of

event E. The smaller the value of Pf , the higher the

corresponding nonlinearity of f . When Pf = 2−s, f is a

perfect nonlinear function

The simplest way to construct minimum distance ro-

bust codes is to append extra nonlinear redundant bits to

codewords of an existing code with given distance d.

Theorem 4.1 [19] Let V be a systematic (n, k, d) code
and let f : GF (2k) → GF (2s) be nonlinear function

with nonlinearity Pf . The code

C = {(x, φ(x), f(x))|(x, φ(x)) ∈ V }, (5)

where φ is the encoding function for code V , is a

(n + s, k, d) minimum distance robust code where

maxe6=0 Q(e) ≤ Pf .

Example 4.1 (Shortened Robust Hamming) Let C =
{(x, Px)} be a (38, 32, 3) shortended Hamming code,

where x ∈ GF (232), P is a (6×32) encodingmatrix and
Px ∈ GF (26). Let f : GF (232) → GF (2) be a perfect
nonlinear function defined by f(x = (x1, x2, ..., x32)) =
x1x2 +x3x4 + ...+x31x32 [3] (non-repetitive quadratic

function) . Then the code C = {(x, Px, f(x))} is a

robust code with minimum distance 3. For this code,

Q(e) = 0 when ||e|| < 3 andQ(e) ≤ 0.5 when ||e|| ≥ 3.

Shortened robust Hamming code has no undetectable

errors. The only element in Kd is the zero vector. It

is able to correct any single bit error and provide nearly

equal protection to most of the multiple errors. How-

ever, the advantage of shortened robust Hamming code

comes at the price of one more redundant bit. The code

has only minimum distance 3 although it needs the same

number of redundant bits as (39, 32) SEC-DED codes

which have minimum distance 4.

4.2 Minimum Distance Partially Robust

Codes

Many classical constructions of nonlinear codes are par-

tially robust minimum distance codes. They have a min-

imum distance larger than 1 and have much fewer unde-

tectable errors than linear codes. Such codes can even be

perfect with respect to the classical Hamming bound.

The first nonlinear perfect code was constructed by

Vasil’ev in [35] and was generalized by Mollard in [22].

We first review the basic construction of Vasil’ev code.

Theorem 4.2 (Vasil’ev Code[35]) For x ∈ GF (2m), let
p(x) = ||x|| mod 2. Let V be a perfect not necessar-

ily linear Hamming code of length m = 2r − 1 with

kV = m − r information bits. Let f : V → {0, 1} be

an arbitrary nonlinear mapping such that f(0) = 0 and

f(v) + f(v
′

) 6= f(v + v
′

) for some v, v
′

∈ V . The code

C defined by

C = {(x, x + v, p(x) + f(v))|x ∈ GF (2m), v ∈ V }
(6)

(where+ is overGF (2)) is a (2m+1, 2m−r, 3) perfect
nonlinear Hamming code.

Remark 4.1 We note that the above construction can be

generalized to generate robust codes with any given dis-

tance d. Denote by P a binary matrix. The code

C = {(x, x+v, Px+f(v))|x ∈ GF (2m), v ∈ V } (7)

is a nonlinear code with minimum distance d if V has

distance d and the code composed of all vectors (x, Px)
has distance d− 1. Vasil’ev code is a special case where
(x, Px) is a linear parity code with minimum distance

2. Some partially robust codes as good as BCH codes in

terms of the number of redundant bits can be generated

based on this construction.

Theorem 4.3 [19] Vasil’ev code is a (2m + 1, 2m −
r, 3) partially robust code with |Kd| = 2m and

maxe/∈Kd
Q(e) = Pf where Pf is the nonlinearity of f ,

Kd is the detection kernel of the code and m = 2r − 1.

Vasil’ev codes are perfect single error correcting codes

and have the same parameters as linear Hamming codes.

The basic construction of Vasil’ev code can be further

generalized as follows. The Theorem can be proved in

a similar way to the proof of Theorem 4.2 presented in

[19].

Theorem 4.4 (Shortened Vasil’ev Code) For x ∈
GF (2a), let p(x) = ||x|| mod 2. Let V be a (m, kV , 3)
not necessarily linear Hamming code with r = m − kV

redundant bits. Without lost of generality, assume that

the first kV bits in any codeword are information bits.

Denote by v = (y, z), y ∈ GF (2kV ), z ∈ GF (2r) the

codewords of V . Let f : GF (2kV ) → {0, 1} be an arbi-
trary mapping such that f(0) = 0 and f(y) + f(y

′

) 6=
f(y+y

′

) for some y, y
′

∈ GF (2kV ). The codeC defined

by

4



C = {(x, (x, 0) + v, p(x) + f(y))}, (8)

where x ∈ GF (2a), 0 ∈ GF (2m−a), 0 < a ≤ m, v ∈ V

is a (a + m + 1, a + kV , 3) code with |Kd| = 2a, and

maxe/∈Kd
Q(e) = Pf . Adding one more overall linear

parity bit to C will result in a nonlinear SEC-DED code

with the sameKd andmaxe/∈Kd
Q(e) as C and minimum

distance 4.

The significance of Theorem 4.4 is twofold. First, it

can generate robust SEC-DED codes of arbitrary lengths.

These codes have the same number of redundant bits as

best linear SEC-DED codes but much smaller number

of undetectable multiple errors and are more suitable for

applications where MBU rate is high. Second, it allows

a tradeoff in terms of robustness and the hardware over-

head. Generally speaking, the smaller a is, the more ro-

bust the code is and more hardware overhead is required

for the encoder. By carefully selecting a and m, we can

construct codes for situations that have different require-

ments for robustness and the hardware overhead.

Example 4.2 (Extended Vasil’ev Code)

1. Let a = 16 and V be a (21, 16, 3) Hamming code.

Select f to be the same nonrepetitive quadratic

function as in Example 4.1. The extended Vasil’ev

code constructed by adding one more overall par-

ity bit to the generalized Vasil’ev construction de-

scribed in Theorem 4.4 is a (39, 32, 4) partially

robust code with |Kd| = 216, d = 4 and

maxe/∈Kd
Q(e) = 0.5.

2. Alternatively let a = 6 and V be a (31, 26, 3) per-
fect Hamming code. We can construct a (39, 32, 4)
partially robust code with |Kd| = 26 at the price of

larger hardware overhead for the encoder.

3. For applications where hardware overhead is more

critical, we can select a to be 18 and V to be a

(19, 14, 3) Hamming code. The resulting partially

robust code will have |Kd| = 218, which is the

biggest of the 3 discussed variants. However, the

hardware overhead for the encoder of this imple-

mentation will be the smallest.

Other constructions of perfect nonlinear codes

which have small detection kernels can be found

in [24],[25],[31],[1],[9]. Table 1 compares Kd,

maxe/∈Kd
Q(e) and encoding/decoding complexities of

these nonlinear codes with perfect linear Hamming code.

As expected, linear Hamming code has the lowest en-

coding/decoding complexities but the largest number of

undetectable errors. Large Kd makes it unsuitable for

applications where protection against multiple bit errors

is important. Phelps-Solov’eva code ([24]) has slightly

larger Kd than Vasil’ev code. The encoding and decod-

ing complexity of this code is high due to the fact that

at least two matrix multiplication over GF (2) need to

be performed to compute the syndromes of the two parts

of the codeword. Using the switching constructions [9],

perfect nonlinear codes can be constructed with a detec-

tion kernel of dimension one. However, the maximum

Q(e) for these codes are close to one. Moreover, their en-

coding and decoding complexities are much larger than

Vasil’ev code and this drastically limits their applica-

tions. We therefore propose the Vasil’ev code and the

extended Vasil’ev code as alternatives for traditional lin-

ear single error correcting and SEC-DED codes for ap-

plications where multiple bit errors are un-negligible.

We note that constructions of minimum distance ro-

bust and partially robust codes described in this section

can be easily generalized for nonbinary case.

5 Architecture

In order to demonstrate the advantage of utilizing min-

imum distance partially robust code to protect mem-

ory against soft errors, we compare the error detec-

tion/correction properties as well as the hardware over-

head of a (39, 32, 4) extended Vasil’ev code to the modi-

fication of an in-use (39, 32, 4) extended Hamming code.

The latter was presented in [33] to protect double data

rate DIMM memory in a Virtex-II Pro device.

Figure 1 shows the general memory architecture with

ECC functions based on systematic error correcting

codes. During a WRITE operation, the redundant bits

of the code are generated by the encoder and saved in

the redundant memory block. During a READ opera-

tion, the ECC block computes the signature of the re-

trieved data and executes the error correction algorithm.

If uncorrectable errors occur, ERR will be asserted and

no correction will be attempted.

5.1 Memory protection architecture based

on extended Hamming code

For traditional linear SEC-DED codes, the encoder per-

forms matrix multiplication over GF(2) between the k-

bit data and the encoding matrix P of the selected lin-

ear code. The (39, 32) parity check matrix used to gen-

erate the Hamming code C in [33] is in standard form
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(2m − 1, 2m − 1 − m, 3) Perfect Codes Dimension of Kd maxe/∈Kd
Q(e) Encoding & Decoding Complexity

Linear Hamming Code [12] 2m − 1 − m - Low

Vasil’ev Code [35] 2m−1 − 1 ≥ 0.5 Medium

Phelps-Solov’eva Code [24] 2m−1 Depending on α [24] High

One Switching Code [9] 2m−1 − 1 1 − 2−2m−1+m+1 High

Multiple Switching Code [26] 1 close to 1 Very High

Table 1: Comparison of different perfect single error correcting codes

Figure 1: General Memory Architecture with ECC Func-

tions

H = (P |I), where I is the identity matrix and

P =





















01010110101010101010110101011011
10011011001100110011011001101101
11100011110000111100011110001110
00000011111111000000011111110000
00000011111111001111100000000000
11111100000000000000000000000000
11111111111111111111111111111111





















.

The last parity bit of the design in [33] only covers the

information part of the code. C is not a fully SEC-DED

code and is only able to detect double errors occurring in

the information part of the code. If at least one bit of the

double error is in the redundant portion of C, the code

may miscorrect it as a single bit error. To make C a fully

SEC-DED code, we compute the last parity bit based on

all bits of the codeword instead of only the information

bits.

The check bits are generated and written in the mem-

ory along with the associated 32-bit data. During the

memory READ stage, the data and the check bits are

read simultaneously. Syndromes are calculated in a sim-

ilar way to the check bit generation and are used to look

for the error type and the error location. A 32-bit correc-

tion mask is created to correct single bit errors occurring

to the information part of the code. When a single bit er-

ror is detected, the original data is XORed with the mask

and the distorted bit is reversed. When there are no errors

or multiple errors, all the mask bits are zeros. The data

will go through the ECC block without any changes.

The disadvantage of memory protection scheme based

on traditional linear SEC-DED codes is its large num-

ber of undetectable/miscorrected multiple errors. For

any linear systematic code, Kd = C, |Kd| = |C| =
2k. Thereby the number of undetectable errors for a

(39, 32, 4) extended Hamming code is 232.

It is easy to prove that any (n, k) linear systematic er-

ror correcting code C is able to correct up to 2n−k − 1
errors. If N errors are corrected, 0 ≤ N ≤ 2n−k − 1, the
number of miscorrected errors is N · (2k − 1).
For example, for the approach described in [33], only

single errors occurring to the information part of the code

will be corrected, N = 32. Thus the number of miscor-

rected multiple errors is 32(232 − 1).

5.2 Memory protection architecture based

on extended Vasil’ev code

The codewords of a (a + m + 2, a + kV , 4) extended

Vasil’ev code is in the format of

(x, (x, 0) + v, p(x) + f(y), p(x) + p(v) + f(y)), (9)

where x ∈ GF (2a), 0 ∈ GF (2m−a), 0 < a ≤ m, v ∈
V is the codeword of a (m, kV , 3) Hamming code, y ∈
GF (2kV ) are the information bits of V , f : GF (2kV ) →
{0, 1} is a nonlinear mapping satisfying f(0) = 0 and

p is the linear parity function. In order to simplify the

encoding and decoding complexities, we select V to be

linear Hamming codes.

During the memory WRITE stage, all the check bits

are generated by the encoder and saved in the redundant

memory block. The redundant portion of the extended

Vasil’ev code contains three parts. The first part is the

redundant bits of V which can be generated by a lin-

ear XOR network performing matrix multiplication over

GF (2). The second and the third part are nonlinear (see
9). The encoder for these two parts needs to perform the

6



linear parity predictions p(x), p(v) as well as the non-

linear mapping f : GF (2kV ) → {0, 1}. When kV is

even, we can select f to be the non-repetive quadratic

function (Example 4.1) for the purpose of minimizing

maxe/∈Kd
Q(e).

f = v1v2 +v3v4 +v5v6 · · ·+vkV −3vkV −2 +vkV −1vkV
.

(10)

The error correction algorithm performed in the de-

coder of the extendedVasil’ev code is slightly more com-

plex. Different from traditional linear error correcting

codes, nonlinear codes do not have parity check ma-

trix H . Hence the classical syndrome He that can be

used to locate and correct errors for linear codes do

not work for nonlinear error correcting codes. Before

we describe the error correction algorithm for the ex-

tended Vasil’ev code, the signature S for locating and

correcting errors need to be defined. Denote by c =
(c1, c2, c3, c4) the codeword of the extended Vasil’ev

code, e = (e1, e2, e3, e4) the error vectors and c̃ =
(c̃1, c̃2, c̃3, c̃4) the distorted codeword.

c1 = x,

c2 = (x, 0) + v,

c3 = p(x) + f(y),

c4 = p(x) + p(v) + f(y).

LetH be the parity checkmatrix of the linear code V and

ỹ be the distorted information bits of V . The signature

can be defined as S = (S1, S2, S3), where

S1 = H((c̃1, 0) + c̃2)), (11)

S2 = p(c̃1) + f(ỹ) + c̃3, (12)

S3 = p(c̃1) + p(c̃2) + p(c̃3) + p(c̃4). (13)

The error correction algorithm is as stated below. Sim-

ilar to the design described in [33],only single errors in

the information part of the code will be corrected. If sin-

gle errors in the redundant portion or multiple errors are

detected, ERR will be asserted but no correction will be

attemped.

1. Compute by (11),(12),(13) the signature of the code

S = (S1, S2, S3), where S1 ∈ GF (2⌈log2(m+1)⌉)
and S2, S3 ∈ GF (2).

2. If S is the all zero vector, then no error is detected.

Otherwise one or more errors are detected.

3. If S3 = 0 and at least one of S1, S2 is nonzero,

errors with evenmultiplicities are detected and ERR

will be raised. Errors in this class are uncorrectable

because all of them are multiple errors.

4. If S3 = 1 and S1 = 0, a single bit error occurs to

the last two redundant bits of the code. ERR will be

asserted and the data will go through ECC without

any correction because only single bit errors in the

information part need to be corrected.

5. If S3 = 1, S1 6= 0 and S1 does not match any

columns of the parity check matrix H, an uncor-

rectable multiple error of odd multiplicities is de-

tected and ERR will be raised.

6. If S3 = 1 and S1 = hi, where hi is the ith col-

umn of H of the linear code V , a single bit error in

the first two parts of the code or multiple errors are

detected. Without lost of generality, we assume that

the firstm−⌈log2(m+1)⌉ bits of V are information

bits. Let kV = m − ⌈log2(m + 1)⌉.

• If a ≤ kV and 1 ≤ i ≤ a, flip the ith bit of c1,

recalculate S2. If S2 = 0, the single error is in
the ith bit of c1 and is successfully corrected.

Otherwise the single error occurs in the ith bit

of c2.

• If a ≤ kV and a < i ≤ kV flip the ith bit

of c2, recalculate S2. If S2 = 0, the single

error is in the ith bit of c2 and is successfully

corrected. Otherwise multiple errors with odd

multiplities are detected.

• If a ≤ kV and i > kV , the error occurs to the

redundant bits of V and does not need to be

corrected. ERR will be asserted and no cor-

rection will be attempted.

• Similar procedures can be applied to the case

when a > kV .

Example 5.1 In this example we show the encoding and

decoding procedure for a (39, 32, 4) extended Vasil’ev

code C with a = 6 (see Theorem 4.4). The for-

mat of codewords is as stated in (9). When a =
6, x ∈ GF (26), v ∈ GF (231), kV = 26. Let

(11111001011011000110010111001111) be the mes-

sage that needs to be encoded. x = (111110), y can

be computed by XOR (x, 0), 0 ∈ GF (2|a−kV |) with

the other kV = 26 bits of the message. Thus y =
(10100011000110010111001111). Let

H =













1111101110110100111100000010000
1111011101101010100011100001000
1110111011011001010010011000100
1101110111000111001001010100010
1011110000111111000100101100001













be the parity check matrix of V . Then the redundant

bits of v ∈ V are (00101). Let f be the nonrepeti-

tive quadratic function as described in Example 4.1,

then p(x) = 1, p(v) = 0, f(y) = 0. The last two
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Figure 2: Error Correction Algorithm for the Extended

Vasil’ev Code (a ≤ kV )

nonlinear redundant bits are 11. The entire codeword

is (111110010110110001100101110011110010111).
Suppose a single bit error occurs to the 9th bit of the

codeword. After receiving the distorted codeword,S1, S2

and S3 can be computed according to (11),(12),(13). We

have S1 = h3 = (11101), S2 = 0, S3 = 1. The 3rd bit

of x is flipped and S2 is recomputed. The new value of

S2 is 1. So the error is at the 3rd bit of the second part

i.e. 9th bit of the entire codeword.

The entire error correction procedure is shown in Fig-

ure 2. The sizes ofKd andKc for extended Vasil’ev code

can be computed according to the next theorem.

Theorem 5.1 For (a + m + 2, a + kV , 4) extended

Vasil’ev codes, where kV = m − ⌈log2(m + 1)⌉, de-
note t = min{a, kV }. There are 2a undetectable er-

rors and 2a+1(2kV − 1) conditionally detectable errors.
If only errors occurring to the information part of the

code are corrected, the number of miscorrected errors is

2t(2a+kV − 1) + (2t − 1)|a − kV |. The number of con-
ditionally miscorrected errors is 2|a− kV |(2

a+kV − 2t).
The probability of error masking for conditionally de-

tectable errors and the probability of miscorrection for

conditionally miscorrected errors are bounded by Pf ,

which is the nonlinearity of f defined by (4) (see The-

orem 4.4).

Proof The signature of the code can be re-written as fol-

lows.

S1 = H((c̃1, 0) + c̃2) = H((e1, 0) + e2),

S2 = p(c̃1) + f(ỹ) + c̃3

= f(ỹ) + f(y) + p(e1) + e3

S3 = p(c̃1) + p(c̃2) + p(c̃3) + p(c̃4)

= p(e1) + p(e2) + p(e3) + p(e4).

1. Kd = {e|S1 = 0 ∈ GF (2⌈log2(m+1)⌉), S2 = S3 =
0 ∈ GF (2), ∀x ∈ C}. S1 = H((e1, 0) + e2) =
0 ⇒ (e1, 0) + e2 is a codeword of the linear code

V . Because f : GF (2kV ) is a nonlinear function,

the only possibility to guarantee S2 = 0, ∀x ∈ C

is that (e1, 0) = e2, p(e1) = e3. S3 = 0 ⇒ e4 =
e3 = p(e1). So the detection kernel of the code

contains all error vectors e = (e1, e2, e3, e4) such

that (e1, 0) = e2, e3 = e4 = p(e1). The number of

errors in this class is 2a;

2. If (e1, 0)+e2 is a nonzero codeword of V and e4 =
p(e1)+p(e2)+p(e3), thenS1 = 0, S3 = 0, ∀x ∈ C.

S2 can be either 1 or 0 depending on the informa-

tion part of the code. These errors will be condi-

tionally detected. The error masking probability is

bounded by Pf . If f is a perfect nonlinear function,

these errors will be detected with probability 0.5.

The number of errors in this class is 2a+1(2kV −1).

3. Multiple error e will be miscorrected as single bit er-

rors occurring in the information part of the code if

and only if S3 = 1, S1 = hi, 1 ≤ i ≤ max{a, kV }.
Let t = min{a, kV }.

• If 1 ≤ i ≤ t, e will always be miscorrected as

a single error in the ith bit of either c1 or c2.

The number of pairs of e1, e2 satisfying S1 =
H((e1, 0), e2) = hi, 1 ≤ i ≤ t is t · 2a+kV .

e3 can be either 1 or 0. e4 = p(e1) + p(e2) +
p(e3) + 1. So there are 2t · 2a+kV errors that

satisfy S3 = 1, S1 = hi, 1 ≤ i ≤ t. 2t of

them are correctly corrected. The number of

miscorrected errors in this class is 2t(2a+kV −
1).
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• If t < i ≤ max{a, kV }, the number of er-

rors satisfying S3 = 1, S1 = hi is 2|a − kV | ·
2a+kV . After flipping the ith bit of either c̃1 or

c̃2, S1 and S3 become zero. Denote by e∗1, e
∗
2

the new error vectors after flipping the bit for

the first two parts of the codewords.

– If (e∗1, 0) + e∗2 = 0 and e3 = p(e∗1), S2

is always zero. The number of errors in

this class is 2t · |a − kV | and |a − kV | of
them are correctly corrected. The number

of miscorrected errors is (2t−1)·|a−kV |.

– If (e∗1, 0) + e∗2 = 0 and e3 6= p(e∗1), S2

is always one. Errors in this class are al-

ways detectable. The number of them is

2t · |a − kV |.

– If (e∗1, 0) + e∗2 6= 0, then S2 can be ei-

ther 0 or 1 depending on the informa-

tion bits of the code. Errors in this class

will be conditionally miscorrected. The

probability of miscorrection is bounded

by Pf . If f is a perfect nonlinear func-

tion, the probability of miscorrection is

0.5. The number of errors in this class

is 2|a − kV |(2a+kV − 2t).

The size of Kd and Kc are functions of a and m. For any

(n, k, 4) extended Vasil’ev code, we have

k = a + kV = a + m − ⌈log2(m + 1)⌉,

n = a + m + 2,

a ≤ m.

Hence n − 2n−k−2 − 1 ≤ a ≤ ⌊n−2
2 ⌋. When n =

39, k = 32, 6 ≤ a ≤ 18. Figure 3 shows |Kd| and |Kc|
of (39, 32) extended Vasil’ev codes for different a. The

minimum values of |Kd| and |Kc| are 26 and 12(232 −
1) + 20(26 − 1) respectively, both of which are achieved
when a = 6.
Different from traditional linear error detecting

codes, extended Vasil’ev codes have conditionally un-

detectable/miscorrected errors. For (39, 32, 4) extended
Vasil’ev code with a = 6, the numbers of errors which

are masked or miscorrected with probability 0.5 are

2(232 − 26) and 40(232 − 26).

5.3 Comparison of extended Hamming

and extended Vasil’ev codes

Both extended Hamming code and extended Vasil’ev

code are able to correct all single bit errors and de-

tect all double bit errors. Under the assumption that

all errors with higher multiplicities are equiprobable, ex-

tended Vasil’ev codes can provide better error protection

than extended Hamming codes.

(a)

(b)

Figure 3: Kernel of (39, 32, 4) exnteded Vasil’ev codes

as a function of “a” (a) detection kernel (b) correction

kernel

Table 2 shows the number of unde-

tectable/miscorrected errors with multiplicities 3 to

6 for (39, 32, 4) extended Hamming code and extended

Vasil’ev code (a = 6). As expected, both codes have no

undetectable single, double and triple errors. We note

that 1583 quadruple errors will be masked by extended

Hamming code while only 21 will be masked by ex-

tended Vasil’ev code. Only errors with odd multiplicities

are miscorrected. The number of miscorrected errors

with ||e|| ≤ 6 for the extended Vasil’ev code is less than

one half of the corresponding number for the extended

Hamming code.

Smaller kernels make extended Vasil’ev codes much

more powerful for detection of repeating errors than

the extended Hamming codes. Traditional linear er-

ror correcting code do not have conditionally unde-

tectable/miscorrected errors. All errors are either 100%

protected or not protected at all. As a result, |Kd|
and |Kc| of linear codes are in general much larger

than for nonlinear codes. Large Kd and Kc are

bad for detection of repeating errors, since an error

e will always be masked/miscorrected as long as it is

masked/miscorrected for one single message. Detection

of conditionally undetectable/miscorrected errors for ex-

tended Vasil’ev codes, however, is message-dependent.

The more messages the error affects, the smaller the er-
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Code ||e|| = 3 ||e|| = 4 ||e|| = 5 ||e|| = 6
Undetectable Extended Hamming 0 1583 0 51744

Extended Vasil’ev 0 21 0 0

Miscorrected Extended Hamming 5176 0 254432 0

Extended Vasil’ev 1635 0 108993 0

Table 2: Detection and Correction Kernel

ror masking probability is. Thereby, in “lazy channels”

[17] where errors tend to repeat themselves, extended

Vasil’ev codes have more advantages. Repeating errors

can occur in many situations. If a SEU lasts for several

consecutive read/write cycles of the memory, it is possi-

ble that different messages written into the same mem-

ory cell are affected by the same error pattern. Another

example of repeating errors in memory is the hard er-

ror. Hard errors are caused by permanent faults of the

device and are unrecoverable by re-writing the memory

cells thus tend to repeat themselves until the memory is

replaced. For all applications where repeating errors ex-

ist, extended Vasil’ev codes can be a promising alterna-

tive to the classical extended Hamming codes.

The encoders and the error correction circuits of both

the extended Hamming code and the extended Vasil’ev

code (a=6) are synthesized in Synopsys design compiler

for the purpose of comparing the hardware overheads.

For (39, 32, 4) extended Hamming code the encoder per-

forms matrix multiplication over GF (2) and can be im-

plemented using 72 2-input XOR gates. The decoder can

be implemented using 450 2-input logic cells and invert-

ers. The hardware overhead for extended Vasil’ev code

is slightly higher. 106 and 538 2-input cells and invert-

ers are needed for the encoder and decoder of (39, 32, 4)
extended Vasil’ev code respectively (a = 6). The small

difference in overheads between the two codes in many

cases is not very important due to the fact that hardware

overhead of encoder and decoder for memory protection

circuit counts only a very small portion of the whole de-

vice.

6 Conclusion

In this paper, a partially robust code with minimum dis-

tance 4 is proposed to replace the traditional linear ex-

tended Hamming codes to protect memories for situa-

tions where MBU rate is high or errors tend to repeat

themselves. The numbers of undetectable and miscor-

rected multiple errors for the proposed code are much

smaller than for traditional linear error correcting codes.

In the presence of multiple bit distortion, our codes can

provide much better protection against soft errors with

only a small increase in hardware overhead. Different

from linear codes, robust and partially robust codes have

conditionally undetectable/miscorrected errors. The de-

tection/correction of errors are message-dependent. This

makes robust codes useful to detect/correct repeating er-

rors, i.e. hard errors caused by permanent faults.

The proposed protection scheme is not targeted for any

special memory architecture. It can be applied to nearly

all types of memories such as RAM, ROM, FLASH and

disk memories.

The constructions of binary minimum distance ro-

bust/partially codes shown in Section 4 can be easily gen-

eralized for non-binary case.
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