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Abstract—We propose an algorithm that provides for deadlock-
free and livelock-free routing, in particular in wormhole r outed
networks. The proposed algorithm requires nearly minimal
amount of resources. We model a computer communication
system by representing the underlying topology by a connected
graph. Let G = (V, E) be an undirected connected graph and
C be a cycle of edges inG, containing (not necessarily all
different) vertices v0, v1, ..., vL, v0, v1. A turn (triple of nodes)
(a, b, c) belongs toC, if a, b, c are consecutive nodes inC. A turn
(a, b, c) breaks cycleC, if this turn belongs to C and to the set of
prohibited turns W (G). The setW (G) is connectivity preserving
if for any a, b ∈ V there exists a path inG that is not prohibited.
In this paper we consider the problem of constructing minimal
cycle-breaking connectivity preserving sets of turns for graphs
that model communication networks, as a method to prevent
deadlocks. We present a new cycle-breaking algorithm called
the Simple Cycle-Breaking (SCB) algorithm that is considerably
simpler than earlier algorithms. We prove its properties and
present lower and upper bounds for minimal cardinalities of
cycle-breaking connectivity preserving setsW (G) for graphs
of general topology as well as for planar graphs. We present
experimental results on the fraction of prohibited turns and on
the dilation that illustrate the effectiveness and the efficiency of
the SCB algorithm.

Index Terms—deadlock, livelock, turn prohibition, wormhole
routing.

I. I NTRODUCTION

DUE to the availability of low cost workstations with
network interface adapters that offer high-performance

communications using wormhole techniques, clusters of work-
stations are emerging as preferred computing environments
[1], [2], [3], [4]. However, as wormhole routed messages hold
network resources while requesting others, as they traverse
the network towards the destination, it is prone to deadlocks
under heavy network loads [5], [1], [3]. Deadlocks have been
shown to occur due to the presence of cycles in the channel
dependency graph (CDG) of the original graph representing
the network [5]. Given a graph, constructing the CDG for
it is at best tedious. However, cycles of nodes in the CDG
graph correspond to ”cycles of edges”, as defined below, in the
original network graph. A similar problem causede by cycles,
the so called ”livelocks”,appears in Ethernet type networks.

In this paper, we propose a simple algorithm that will break
all such cycles in the graph of the original communication
network. This is done by preventing certain pairs of commu-
nication links from being used, sequentially, at some nodesin
the graph when forwarding messages.
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Turn prohibition has been used to convert networks with
cycles to feed-forward networks to apply techniques that were
available exclusively for networks free of cycles [6], [7].In
[6] authors used turn prohibition to facilitate the application of
network calculus to general network graphs with cycles and
demonstrate that the earlier version of the turn prohibition
algorithm significantly outperforms other approaches suchas
the spanning tree and up/down routing algorithms for breaking
cycles, for network utilization and delay. Authors conclude
that with the introduction of turn prohibition the restriction of
network calculus to feed-forward routing networks may not
represent a significant limitation. Authors in [7] inventeda new
approach, referred to as turnnet algorithm, which is used to
convert a network graph with a set of prohibited turns into one
without turn prohibitions. The main idea for this is to permit
any routing algorithm to use only the information required,
i.e., the nodes, the links, and the link metrics. Our focus in
this paper is the construction of minimal sets of prohibited
turns for any undirected connected graph.

Let us consider an undirected connected graphG(V, E),
with N = |V | vertices (nodes), denoted bya, b, . . ., and
M = |E| edges, denoted by(a, b), etc, to represent a
communication network. Aturn in G is a triplet of nodes
(a, b, c) if (a, b) and (b, c) are edges inG and a 6= b. In
an undirected graph turns(a, b, c) and(b, c, a) are considered
to be the same turn. If the degree of nodej is dj , the total

number of turnsT (G) in G is given byT (G) =
∑N

j=1

(

dj

2

)

.

A path P = (v0, v1, . . . , vL−1, vL) of lengthL, L ≥ 1 from
node a to node b in G is a sequence of nodesvi ∈ V
such that,v0 = a and vL = b, and every two consecutive
nodes are connected by an edge. Subsequences of the form
(vi, vk, vi) are not permitted in a path. Nodes and edges in the
path are not necessarily all different. A turn(a, b, c) belongs
to path P = (v0, v1, . . . , vL) if (a, b, c) = (vi, vi+1, vi+2),
i = 0, . . . , L − 2. A set of turnsW (G) is called theset of
prohibited turns , if any path that includes turns fromW (G)
is prohibited . This set is calledconnectivity preserving, if for
any a, b ∈ V there exists a path inG that is not prohibited.
Path P = (v0, v1, v2, . . . , vk, v0, v1) in G is called acycle.
If no proper subset of nodes of cycleP forms a cycle, we
call P a simple cycle. SetW (G) of prohibited turns inG is
calledcycle-breaking if every cycle inG includes at least one
turn from W (G). The minimum cardinality of connectivity
preserving setW (G) for a given graphG is denoted by
Z(G) and the fraction of prohibited turns is denoted by
z(G) = Z(G)/T (G). Since prohibition of turns imposes
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routing constraints, by preventing certain communicationpaths
from being used during the routing of messages in the network,
it must be done in a way that minimizes the fraction of link
pairs (i.e. turns) that are prevented from being used. The
motivation for seeking the minimal fraction of prohibited turns
is originally due to Glass and Ni [8]. They have found that
reduction in the number of prohibited turns results in a de-
crease of average path length and the average message delivery
time, thereby increasing the throughput. After Glass and Ni
showed it for regular topologies such as meshes and tori, this
conclusion was confirmed by other authors [9], [10], [11] for
irregular topologies as well. Experimental data [12], [13]show
that there is a considerable gain of approximately 7-8% in
the maximum sustainable throughput in the network, for each
percentage point reduction in the fraction of prohibited turns.
Similar to spanning tree approaches, prohibiting a carefully
selected set of the turns in the network, provides deadlock
freedom. However, unlike the spanning tree based approaches,
the cycle-breaking approach allows all communication links in
the network to be used. The only restriction is that some pairs
of communication links, namely, those that form the prohibited
turns, are prevented from being used sequentially.

Let G be a connected graph with minimum degreeδ.
Consider a set ofR cycles in G such that no more thanr
cycles are covered by the same turn. Then [12], the number
of prohibited turnsZ(G) and fraction of prohibited turnsz(G)
satisfy the following inequalities:

Z(G) ≥ M − N + 1, (1)

z(G) ≥ R

rT (G)
, (2)

and

Z(G) ≥ M − N +

(

δ − 1

2

)

+ 1, δ > 2. (3)

Bound (3) is tight. For example, in the Petersen graph
(Fig. 1) with M = 15, N = 10, and δ = 3 , the number

Fig. 1. The Petersen graph with minimum degreeδ = 3 andZ(G) = 7

of prohibited turns,Z(G) = 7. As another example, in a two-
dimensionalp×p mesh withN = p2 andM = 2p(p−1), the
total number of turns isT (G) = 6(p − 2)2 + 12(p − 2) + 4.
Sinceδ < 3, we use (1) to obtain the fraction of prohibited
turns to bez(G) = p2

−2p+1
6p2−12p+4 , which is the exact result, as

shown in [14].
In the rest of the paper we propose a new cycle breaking

algorithm (the SCB algorithm) and prove its properties in

Section II, followed by an investigation of planar graphs
in Section III. In Section IV we introduce the notion of
distance dilation caused by SCB in the network. In Section V
we present our experimental results and offer conclusions in
Section VI.

II. A G ENERAL ALGORITHM FOR CONSTRUCTION OF

M INIMAL CYCLE-BREAKING SETS OFTURNS

In this section we present an algorithm, called the Simple
Cycle-Breaking (SCB) algorithm, that is much simpler than
those in [15], [12], [10]. Earlier cycle-breaking algorithms in
these publications were complicated and involved as many
as ten steps per each recursive call, whereas the SCB algo-
rithm has only three steps and is easy to understand. The
complexities of having to deal with cut nodes have totally
been eliminated in the SCB algorithm, and, as will be shown,
it has the same time complexity as the algorithms suggested
previously.

Lemma 1: In any connected graphG , there exists a con-
nected subgraphH which consists of non-cut nodes only of
the original graphG and is connected to the rest ofG via at
most one cut nodec ∈ G\H only (i.e., if a ∈ H , b ∈ G\H ,
then c ∈ P (a, b), whereP (a, b) is any path from nodea to
nodeb).

Proof: If G has no cut nodes, thenH = G. Suppose
G has cut nodes. LetSi be the set of connected components
of G obtained by deleting cut nodeci(i = 1, 2, . . .) from G.
Consider the union

⋃

i Si. Let H ∈ ⋃i Si be the connected
component with the smallest number of nodes. This compo-
nent does not include any cut nodes from the original graph
(otherwise it would not be the smallest component). Thus, if
H is obtained by deleting cut nodec from graphG, thenH
is a connected subgraph which is connected toG\H via one
cut nodec only.

Lemma 1 will be used below to prove properties of a new
algorithm for obtaining a minimal cycle-breaking set of turns.

Given a connected graphG(V, E), the SCB algorithm
creates two sets: the setW (G) of prohibited turns and the
setA(G) of permitted turns. It also labels all nodes by natural
numbers starting with 1, in the order they are selected by the
algorithm. In the beginning,W (G) = ∅, A(G) = ∅, and all
nodes are unlabeled. If|V | = N , the algorithm consists of
N − 1 stages (recursive calls). Each stage consists of 3 steps
described below.

1) If |V | = 2, label the nodes by the smallest unused
natural numbers, select and delete the node with label
ℓ = N −1 and return setsW (G) andA(G). Otherwise,
go to Step 2

2) Select a non-cut nodea of the minimum degreed, such
that

2

(

d

2

)

≤
d
∑

i=1

(di − 1), (4)

wheredi are the degrees of the neighbors ofa (nodes
adjacent toa). Prohibit all turns of the form(b, a, c)
and include them inW (G). Permit all turns of the
form (a, b, c) and include them inA(G). Label a by
the smallest unused natural numberℓ(a).
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3) Delete nodea to obtain a graphG′ = G \ a and go to
Step 1 forG′.

Note that at the stage of the algorithm when nodea is
selected, all other undeleted nodes are unlabeled. In fact,they
will be labeled later. As a result, turn(b, a, c) is prohibitediff
ℓ(a) < ℓ(b) and ℓ(a) < ℓ(c). Also, it will be shown below
that in any connected graph there exists a node that satisfies
conditions for being selected at Step 2 of the algorithm.

Theorem 1: The SCB algorithm has the following four
properties.

Property 1. Any cycle inG contains at least one turn from
W (G).

Property 2. SCB preserves connectivity; for any two nodes
a, b ∈ V , there exists a path betweena and b that does not
include turns fromW (G).

Property 3. The setW (G) of prohibited turns generated by
SCB algorithm isminimal (irreducible).

Property 4. For any graphG, W (G) ≤ T (G)/3, where
T (G) is the total number of turns inG.

Proof of Property 1: Consider the nodea with the
minimum labelℓ(a) in any cycleC in G. Then in the turn
(b, a, c) (b, a, c ∈ C), ℓ(a) < ℓ(b) andℓ(a) < ℓ(c). Thus, turn
(b, a, c) is prohibited and cycleC is broken.

Proof of Property 2: The proof is by induction. Consider
the first selected nodea, ℓ(a) = 1. Sincea is a non-cut node,
after all turns of the form(b, a, c) are prohibited and nodea
is deleted, there still exists a path from any nodex to any
nodey, wherex, y ∈ G \ a. Also, since all turns of the form
(a, b, c) are permitted, there exists a path froma to any node
x ∈ G. Now assume that connectivity is preserved after the
first n stages of the algorithm, so that the next selected node
a has labelℓ(a) = n + 1. Nodea is a non-cut node in the
graph that remains after deletion of the firstn selected nodes.
Therefore, after prohibition of all turns(b, a, c) there still exits
a path between any two unlabeled nodesx and y. Consider
now paths from a labeled nodeu, ℓ(u) ≤ ℓ(a) to another
previously labeled nodev, ℓ(v) < ℓ(a), or to an unlabeled
nodey. If such a pathP does not include a turn of the form
(b, a, c), whereb and c are unlabeled, it remains permitted.
Now supposeP includes such a turn (Fig. 2). Then, letx be
the first unlabeled node in the path fromu to v or from u to
y, andz be the last unlabeled node in the path fromu to v.
Now we can replace the part ofP from x to y, or from x to
z, respectively, by a path that does not includea (such a path
exists, sincea is a non-cut node) and obtain a pathP ∗. Let x′

be the node already labeled that immediately precedesx in P
and inP ∗, andz′ be the labeled node that immediately follows
z in P andP ∗ (in the case when such a node exists). Since all
turns(x′, x, w) and(w, z, z′) are permitted, pathP ∗ does not
contain prohibited turns, and connectivity is preserved atthe
(n + 1)th stage of the algorithm. Thus, Property 2 is proved
by induction.

Proof of Property 3: Consider a prohibited turn(b, a, c).
Since connectivity is preserved anda is a non-cut node, there
exists a permitted path(b, P, c) from b to c that does not
includea. Adding edges(a, b) and(c, a) to this path, we obtain
a cycleC = (a, b, P, c, a, b). Since turns of the form(a, b, x)

a

b c

u

x '
x

z 'z
v

G r a p h  a t  s t e p  n + 1
w i t h  u n l a b e l e d  n o d e s

Fig. 2. Figure depicting the state of the graph at step n+1 of the
SCB algorithm. PathP = (u, . . . , x′, x, . . . , b, a, c, . . . , z, z′, . . . , v)
is prohibited due to the prohibited turn at nodea. Path P∗ =
(u, . . . , x′, x, . . . , z, z′, . . . , v) is permitted since it does not involve any
prohibited turns.

and (a, c, y) are permitted, the only prohibited turn inC is
(b, a, c). By removing this turn fromW (G), we would create
a cycle inG and violate the cycle-breaking Property 1. Thus,
setW (G) is minimal.

Proof of Property 4: At the stage of the algorithm when
node a is selected (recursive callℓ(a)), all turns (b, a, c)
become prohibited, and all turns(a, b, c) become permitted,
whereℓ(a) < ℓ(b) andℓ(a) < ℓ(c). The number of prohibited

turns is

(

d

2

)

whered is the degree of nodea; the number

of permitted turns is
∑d

i=1(di − 1), wheredi, (i = 1, . . . , d)
are degrees of all neighbors ofa. Let us prove that in any
graph there exists a node that satisfies inequality (4). Using
Lemma 1, consider a subgraph that consists of non-cut nodes
and at most one cut node, connecting this subgraph to the
remaining part of the graph. Select a non-cut nodea of the
minimum degreed among all non-cut nodes in this subgraph.
If a is not adjacent to the cut node, then inequality (4) is
obviously satisfied. Suppose now that all nodes with minimum
degreed are adjacent to the cut node with degreed′ < d. Then
the selected nodea has at mostd′ − 1 neighbors of degree
d, while at least(d − 1) − (d′ − 1) = d − d′ of its neighbors
have degrees at leastd+1. Thus the numberζ(a) of permitted
turns at this stage of the algorithm is

ζ(a) ≥ (d′−1)(d−1)+(d−d′)d+(d′−1) = d(d−1) = 2

(

d

2

)

.

Hence, the inequality (4) is satisfied in all cases, which means
that the number of permitted turns is larger than the number of
prohibited turns by at least a factor of two. Since this is true for
each stage of the algorithm, it follows thatW (G) ≤ T (G)/3.

The prohibition rule for the SCB algorithm can be expressed
in different terms. Let us call edge(a, b) positive, if ℓ(a) <
ℓ(b), and negative otherwise. Then the pathP is prohibited
iff it includes a pair of consecutive edges such thatthe first
edge is negativeand the second one is positive. Then the
connectivity means that SCB algorithm labels nodes in such a
way that for any two nodes there exists a path between them
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in which all positive edges (if any) precede all negative ones
(if any).

In general, the fraction of prohibited turns yielded by the
SCB algorithm is considerably smaller than the upper bound of
1/3. The only class of graphs where the fraction is exactly1/3
is the complete graphsKn with |V | = n and|E| = n(n−1)/2.
Indeed, the closer is a graph to a complete one, the larger is
the fraction of prohibited turns, as shown by the following
theorem which provides a better upper bound on the ratio
|W (G)|/T (G).

Theorem 2: Let G = (V, E) be a connected graph withN
nodes andM edges. The fraction of prohibited turnszSCB(G)
yielded by the SCB algorithm satisfies the upper bound:

zSCB =
|W (G)|
T (G)

≤ 1

3
− 2N − 3 −√

8β + 1

3[2N + (β − 1)(
√

8β + 1 + 3)]
, (5)

whereβ = M − N + 1.
Proof: When a node is selected in the course of the SCB

algorithm, all its edges are deleted. Thus, ifdℓ is the degree
of node with labelℓ at the stage when it is selected, then

N
∑

ℓ=1

dℓ = M. (6)

The total number of prohibited turns is

|W (G)| =

N
∑

ℓ=1

dℓ(dℓ − 1)

2
. (7)

Note that, for the SCB algorithm,

dℓ+1 ≥ dℓ − 1. (8)

(Otherwise, the nodes would be selected in the opposite order).
Obviously, dN = 0 and dN−1 = 1. The quadratic sum (7)
under the constraint (6) achieves maximum if the values of
dℓ are maximally unequal, so that some of them are as large
as possible. Looking at the sequence(dℓ) in the backward
direction, fromℓ = N to ℓ = 1, one can see that, because of
(8), the sequence can increase only by 1 from one term to the
another:dN = 0, dN−1 = 1, dN−2 ≤ 2, . . . , dN−i ≤ i. Hence,
there exists a subsequence(dℓj

) such thatdℓj
= j, wherej

takes on all integer values from 0 to a certaink. The value of
|W (G)| achieves its maximum, ifk is the largest integer that
satisfies two conditions. On one hand,

M ≥
k
∑

j=0

j =
k(k + 1)

2
. (9)

On the other hand, since the graph remains connected through
the course of the algorithm, the number of remaining edges
should be no smaller than the number of remaining nodes:

M − k(k + 1)

2
≥ N − (k + 1). (10)

The number of prohibited turns in the nodes of the subse-
quence(dℓj

) is

k
∑

j=1

j(j − 1)

2
=

(k + 1)k(k − 1)

6
. (11)

The upper bound on|W (G)| is obtained for the value ofk
(not necessarily an integer) that turns (10) into equality,i.e.
for the root of the equation:

M − N =
(k − 2)(k + 1)

2
. (12)

Hence,

k =
1 +

√

8(M − N + 1) + 1

2
=

1 +
√

8β + 1

2
. (13)

Then, by (11),

|W (G)| ≤
(M − N + 1)

(

√

8(M − N + 1) + 1 + 3
)

6

≤ β(
√

8β + 1 + 3)

6
. (14)

Now let us estimate the total number of turns. According
to the proof of Property 4 in Theorem 1, if the degree of the
selected nodes isk, then there exist at leastk other nodes with
the sum of degrees at leastk2. The total number of turns at
thesek + 1 nodes is minimal, if all degrees are equal:d = k.
Since the graph is connected, the remainingN − k − 1 nodes
add at leastN − k − 1 turns. Thus the total number of turns
T (G) obeys inequality

T (G) ≥ (k + 1)k(k − 1)

2
+ N − k + 1, (15)

wherek is given by (13).
It follows that the fraction of prohibited turnsz(G) is

upperbounded by

z(G) ≤ |W (G)|
T (G)

≤ 1

3

[

1 − 2N − 3 −√
8β + 1

2N + (β − 1)(
√

8β + 1 + 3)

]

. (16)

Bound (16) is tight. It is achieved, in particular, for a tree
(M = N −1), for a ring(M = N), and for a complete graph

KN

(

M = N(N−1)
2

)

.
Note that bound (16) converges to1/3 iff the cyclomatic

number β = M − N + 1 = ω(N2/3). It will be shown
below (see Section 3) that for some classes of graphs, the
SCB algorithm guarantees that the fraction of prohibited turns
is substantially smaller than that given by bound (16).

The complexity of the SCB algorithm is at mostO
(

N2∆
)

,
where∆ is the maximum node degree inG(V, E).

III. PLANAR GRAPHS

Planar graphs defined as those which can be embedded
in a plane without any crossing edges form an important
class of graphs. A large number of physical problems such
as transportation highways (without underpasses), telecommu-
nication networks, and physical circuit or component layout
problems are modeled by planar graphs. For example, for
proper operation, all physical layout problems in a printed
circuit board and VLSI designs involve constructing conduc-
tive (metallic) signal pathways that must be prevented from
crossing each other, these problems naturally map into planar
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graphs. In VLSI chips, either the entire chip or large sections
of the chip are modeled by planar graphs [16]. In [16],
[17] authors introduced turn prohibition in Network-On-Chips
(NOC) architectures in which multiple processing elementsare
networked on one VLSI chip, in which the layout is planar. In
this section we present constructive upper bounds on minimal
fraction of turns,z(G) to be prohibited to break all cycles in
any planar graphG.

An important characteristic of a planar graph is the number
of edges in the shortest cycle known as itsgirth .

Lemma 2: The average degree in a planar graph withn
nodes and girthg obeys inequality

d ≤ 2g

g − 2
− 4g

N(g − 2)
. (17)

Proof: Let G be a planar graph withF faces and girth
g(G) = g. Since each edge belongs to either one or two faces,
it follows that 2M ≥∑F

j=1 gj ≥ Fg wheregj is the number
of edges of facej. Hence

F ≤ 2M

g
. (18)

Substituting (18) into the Euler equationF = M −N +2, we
obtain

M ≤ g(N − 2)

g − 2
. (19)

Thus the average node degree is

d =
2M

N
≤ 2g

g − 2
− 4g

N(g − 2)
.

It is seen that the upper bound ond given by (17) decreases
monotonically with girthg.

Theorem 3: If G is a planar graph without triangles, then

z(G) ≤ 1

4
. (20)

Proof: With no triangles in a planar graph, the girth of
the graph isg(G) = g ≥ 4. Then the average degreed in
(17) becomesd ≤ 4− 8/N , which means that a planar graph
without triangles contains at least two nodes of degree less
than four. Note that any subgraph ofG is also a planar graph
with girth at least four and an average degreed ≤ 4 − 8/n,
wheren is the number of nodes in the subgraph. By Lemma 1,
there exists a subgraphH of G that consists of non-cut nodes
only and connected to the rest of the graph by at most one
cut node. Consider a subgraph ofG formed by subgraphH
and this cut node. It follows that this graph contains a non-cut
node of degree at most 3.

At every step of the execution of the SCB algorithm (see
Section II), a minimum degree node is selected according to
the rule (4). LetAi(i = 1, 2, 3) be the number of nodes
of degreei that were selected during the execution of the
algorithm. Since the last node left is a node of degree zero
and all edges are deleted in the course of the algorithm, we
have

A1 + A2 + A3 = N − 1, (21)

A1 + 2A2 + 3A3 = M. (22)

Hence,
A2 + 2A3 = M − N + 1 = F − 1. (23)

Note that the number of prohibited turns in the SCB procedure
is given by

Z = A2 + 3A3. (24)

Hence, an upper bound forZ would correspond to a maximal
A3 and a minimalA2. Obviously, the deletion of a degree 2
node decreases the number of faces by 1, and the deletion of
a degree 3 node decreases this number by 2. The algorithm
terminates when the number of faces is reduced to 1. It is easy
to show, using (17), (18), and the Euler equation, that for girth
g ≥ 4,

d ≤ 4(F − 2)

F (g − 2) + 4
+ 2 ≤ 4(F − 2)

2(F + 2)
+ 2 = 4 − 8

F + 2
.

Hence, for any graph with girthg ≥ 4 (F ≤ 5), d = 3− 1
7 < 3.

Thus any such graph has non-cut nodes of degree 2 or 1.
Therefore,A3 ≤ (F − 4)/2 and A2 ≥ 3 (providedF ≥ 4).
Then, using (23) and (24), we obtain:

Z =
3

2
(A2 + 2A3) −

A2

2
=

3

2
(M − N + 1) − A2

2
.

Finally, sinceA2 ≥ 3, it follows that

Z(G) ≤ Z ≤ 3

2
(M − N). (25)

Here,Z(G) is the minimum number of prohibited turns for
G. To estimate the total number of turnsT (G), we note that
there are two cases; first, when the average degreed = 2M

N is
3 ≤ d ≤ 4 − 8

N , and second, whend < 3. In the first case,
T (G) is minimal if nodes are of degree 3 and degree 4 only
and in the second case if nodes are of degree 2 and degree 3
only. Assuming first that nodes are of degree 3 and 4 only, we
determine thatN3 = 4N−2M andN4 = 2M−3N , whereN3

andN4 designate the number of nodes of degree 3 and degree
4, respectively, in the graph. It follows thatT (G) = 6(M−N),
and the fraction of prohibited turnsz(G) = Z(G)

T (G) is

z(G) ≤ 1

4
. (26)

For the case when2 ≤ d < 3, T (G) is minimal if there
are N2 nodes of degree2 and N3 nodes of degree 3 only.
Then N2 = 3N − 2M , andN3 = 2(M − N), andT (G) =
4M − 3N = 6(M − N) + (3N − 2M) ≥ 6(M − N) (since
d = 2M

N < 3). Hence in both cases the upper bound for the
fraction of prohibited turns is

z(G) ≤ 1

4
. (27)

Theorem 4: If G is a planar graph with a girthg ≥ 6, then

z(G) ≤ 2

g + 6
− (g − 2)(g − 6)

(g + 6) [g(N − 8) + 6N ]
, (28)

and
z(G) ≤ 2

g + 6
. (29)

Proof: Note that, by (17), for girthg = 6 the average
degree becomesd ≤ 3 − 6

N < 3. For the case ofg ≥ 6, if
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there are onlyN2 nodes of degree 2 andN3 nodes of degree
3, we getN2 = 3N − 2M , N3 − 2(M − N), and the total
number of turns,T (G) = N2 + 3N3 = 4M − 3N . Since
T (G) achieves minimum if the degrees take values closest to
the given average degree, it follows thatT (G) ≥ 4M − 3N .
By the same argument that is given in the first paragraph of
the proof of Theorem 3, there will always be non-cut nodes
of degree at most 2 available for selection at every step of the
algorithm; and thereforeA3 = 0. FromA1 +A2 = N −1 and
A1+2A2 = M , we obtain thatZ = A2 = M−N +1 = F −1
and the upper bound for the fraction of prohibited turns will
be

z(G) ≤ M − N + 1

4M − 3N
.

Substitutingx = M/N , we get

z(G) ≤ 1

4
− 1/4 − 1/N

4x − 3
. (30)

The right-hand side of (30) is a monotonically increasing
function of x. Note that fromd = 2M/N = 2x we get

x ≤ g

g − 2
− 2g

N(g − 2)
.

Substituting the maximum value ofx into (30) we obtain

z(G) ≤ 2

g + 6
− (g − 2)(g − 6)

(g + 6)[g(N − 8) + 6N ]
,

and
z(G) ≤ 2

g + 6
.

The bound (28) is tight as shown by the following example.
Example. Consider the planar graph of girthg = 8 shown

in Fig. 4, withN = 32, M = 40, andT = 64. For this graph,
Z = M − N + 1 and z = 9

64 is equal to the right-hand part
of inequality (28).

Fig. 3. An infinite planar graph with average degreed = 10/3

To avoid misunderstanding, let us point out that it is
planarity and girth constraints that result in (20) and (28),
but not the limits on the average degree alone. It is easy to
construct graphs with average degreed arbitrarily close to 2,
for which z(G) is arbitrarily close to1/3.

Fig. 4. Planar graph with girthg = 8, N = 32, M = 40, andT = 64.
Prohibited turns are shown as arcs.

For girth g(G) = 5 planar graphs, the average degree in
(17) becomes

d ≤ 10

3
− 20

3N
. (31)

This bound is tight and is achieved for the infinite graph of
Fig. 3.

For N < 20 (F < 12) the average degreed < 3 and it
follows that such graphs would always have a node of degree
2.

Conjecture. If G is a planar graph with girthg(G) = 5,
thenz(G) ≤ 1/5.

Note that Theorems 3 and 4 do not apply to non-planar
graphs. For example, for bipartite graphK4,4 with N = 8
nodes, we havez(K4,4) = 14/48 > 1/4.

The proofs of Theorem 3 and Theorem 4 suggest a some-
what more general result.

Theorem 5: If in the course of the SCB algorithm, all
selected nodes are of degree 2 or less, then the solution given
by SCB is optimal, and,

|W (G)| = M − N + 1. (32)

Proof: The result follows immediately from the expres-
sions (23) and (24), and lower bound (1).

In particular, the SCB algorithm provides an optimal solu-
tion for 2-dimensional rectangular mesh and honeycomb mesh
– two popular network topologies.

IV. D ISTANCE DILATION

Consider now the notion of dilation in a network topology
due to turn prohibitions. Paths that involve prohibited turns
are prohibited and are not used for communication. Thus, one
side effect of turn prohibitions is that, prohibiting certain paths
from being used for message routing, may increase distances
between some nodes. The net result of this is that the average
distance of the network graph will be increased. To facilitate
the investigation of this phenomenon, we introduced the notion
of distance dilation which we define as the ratio of the average
distance after turn prohibitions to the average distance without
any turn prohibitions. When the dilation is 1 it would imply
that the turn prohibitions have not caused any lengthening
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of the average distance. For example, in complete graphs the
fraction of prohibited turns achieves the upper bound, but the
dilation is 1.

V. EXPERIMENTAL RESULTS

In this section we present the results of our calculations
for the fraction of prohibited turns using the SCB algorithm
and experiments involving message delivery simulations using
Opnet discrete event simulation tools. In all of our calculations
and simulations, network topologies were first generated using
tools that we developed. All of the topologies were represented
by 64-node undirected graphs. For the irregular topologies, we
constructed 100 graphs of average degree four. The SCB al-
gorithm was applied to generate minimal turn prohibition sets
for each topology and fractions of prohibited turns for each
graph were calculated. In Fig. 5, results of these calculations
for 100 different graphs are shown as a histogram. It can be
seen that no graph had a fraction of prohibited turns larger than
0.19. In Fig. 6, distributions of the average distances before
turn prohibitions and after SCB generated turn prohibitions are
shown. Given a graph, after turns are prohibited, the average
distance may increase. This increase is described in terms of
the dilation introduced by turn prohibitions. Results on dilation
calculations for irregular graphs are shown in Fig. 7, where
we see that the lengthening of the average distance has a mean
of approximately 7%.
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Fig. 5. Histogram for the fractions of prohibited turns in 100 general graphs
each with 64 nodes of average degree four

Calculations for planar topologies follow a similar approach.
We first generated a number of families of planar graphs, each
family with a different girth. In all of our constructions, the
faces are all regular and have the same number of edges. For
example in girth 3 planar topologies all faces are triangular.
After the planar topologies are generated we then applied
the SCB algorithm to break all cycles as before. Results of
these calculations are shown below. In Fig. 8, the fractionsof
prohibited turns are shown for families of planar graphs with
girths 3 through 8 together with the theoretical upper bounds.
In this figure we also show the fraction of prohibited turns of
(z(G) = 4/15 ) for icosahedron with 12 nodes.

In Fig. 9, the average distance versus the girth is plotted
after the application of the SCB algorithm. Given a graph, as
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Fig. 6. Distributions of average distance in 100 irregular topologies with 64
nodes before and after SCB generated turn prohibitions
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Fig. 7. The average dilation introduced by SCB is 7%
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Fig. 8. Fraction of prohibited turns for SCB in 64-node planar graphs as a
function of girth

the turns are prohibited, the average distance may increase.
This increase is described in terms of the dilation introduced
by turn prohibitions.

Results on dilation calculations are shown in Fig. 10, where
we see that as the girth increases the average dilation increases,
predicting a better performance for message delivery timesfor
planar topologies with smaller girths. We see that for girths 3
and 4 topologies that we investigated, the dilation were 1.0002
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Fig. 9. Average distance in planar topologies with 64 nodes after SCB
generated turn prohibitions as a function of girth
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SCB generated turn prohibitions as a function of girth

and 1.0009 respectively.
In addition to these calculations, we also performed message

delivery experiments. In the experiments, we implemented
wormhole node models [18], [12], [19] with 16 bidirectional
full-duplex ports and a local port. Messages, also known as
worms, are generated at a module attached to the local port
at the node. All messages in our simulations, 200 flits long,
were generated using uniform traffic model with exponential
inter-arrival times. As worms are injected into the networkvia
the local channel, the router at the node determines using a
routing table, which output port to use to route the message.
If the output port is free, it is immediately committed to
the incoming message port for the duration of the message,
otherwise the message is blocked until the output port is
freed up. Routing table at each node is generated using the
all-pairs shortest path algorithm with an additional criterion
that the selected shortest paths do not include any prohibited
turns. This way, both deadlock and live-lock conditions are
proactively prevented from occurring during the actual routing
of messages. The results on average saturation points obtained
in the message delivery experiments with planar topologies
are presented in Fig. 11. The results are in agreement with the

20,000

40,000

60,000

80,000

100,000

120,000

140,000

3 4 5 6 7 8 9

Girth

A
v
e
ra

g
e
 S

a
tu

ra
ti

o
n

 [
w

o
rm

s
/(

s
 .

 n
o

d
e
)]

Fig. 11. Saturation points (maximum sustainable message generation rates
per second per node) as a function of the girth of planar topologies

anticipated behaviors. In particular, since the average distance
increases with girth in planar networks with a given number
of nodes, one would expect better performance in networks of
smaller girths. Indeed as seen at Fig.??, the saturation load
increases for smaller girths.

VI. CONCLUSIONS

In this paper considers the problem of constructing minimal
cycle-breaking sets of turns for graphs that model communi-
cation networks. This problem is important for deadlock-free
and livelock-free message routing in computer communication
networks. We present a new algorithm called the Simple
Cycle-Breaking or the SCB algorithm which is considerably
simpler than those in [15], [12], [10] and has the same
performance and run-time complexity. Earlier cycle-breaking
algorithms were complicated, involving as many as ten steps,
whereas the SCB algorithm has only three steps and is easy
to understand. The complexities of having to deal with cut
nodes have totally been eliminated in the SCB algorithm. We
also present results on minimal fractions of turns that must
be prohibited to break all cycles without loss of connectivity
for arbitrary irregular connected graphs and planar graphs, and
present simulation results on saturation points for networks of
different girths. The proposed algorithm is shown to be very
efficient in terms of three basic characteristics: the fraction of
prohibited turns, the dilation, and the saturation load.

All turn prohibition approaches considered so far are based
on labeling of the vertices of a graph in one way or the other.
A turn (a, b, c) is then prohibited either when the label of
node b is smaller (or, alternatively, larger) than the labels
of nodesa and c. Node labeling, however, may result in
prohibiting a larger than necessary number of turns and may
effect the efficiency of the algorithms. We may expect that
new algorithms which could avoid node labeling would be
more efficient.
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