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Abstract—We propose an algorithm that provides for deadlock- Turn prohibition has been used to convert networks with
free and livelock-free routing, in particular in wormhole r outed cycles to feed-forward networks to apply techniques thatwe
networks. The proposed algorithm requires nearly minimal g\ 5iaple exclusively for networks free of cycles [6], [Th

amount of resources. We model a computer communication oo . -
system by representing the underlying topology by a conneetl [6] authors used turn prohibition to facilitate the appiioa of

graph. Let G = (V, E) be an undirected connected graph and network calculus to general network graphs with cycles and
C be a cycle of edges inG, containing (not necessarily all demonstrate that the earlier version of the turn prohibitio
different) vertices vo,v1,...,vr,vo,v1. A turn (triple of nodes)  algorithm significantly outperforms other approaches sagh
(a,b,c) belongs toC, if a, b, c are consecutive nodes iU. AtUM  pa gpanning tree and up/down routing algorithms for bregki
(a,b, c) breaks cycleC, if this turn belongs to C and to the set of I

prohibited turns W (G). The setW (G) is connectivity preserving cycles., for n_etwork u.tlllzatlon and d_el,aY' Authors .(.:oncéud

if for any a, b € V there exists a pa’[h inG that is not pr0h|b|ted that W|th the IntrOdUCtlon Of turn pr0h|b|t|0n the restraot Of

In this paper we consider the problem of constructing minima  network calculus to feed-forward routing networks may not
cycle-breaking connectivity preserving sets of turns for taphs represent a significant limitation. Authors in [7] inventedew
that model communication networks, as a method to prevent on,64ch, referred to as turnnet algorithm, which is used to
deadlocks. We present a new cycle-breaking algorithm calte . L .

the Simple Cycle-Breaking (SCB) algorithm that is consideably cqnvert a net\Nork_ g,r_aph with a seF OT prohlblteq tgrns inte on
Simp|er than earlier a|gorithmsl We prove its properties ard W|th0ut turn pl’OthItIOﬂS. The main |dea for th|S Is to pel‘ml
present lower and upper bounds for minimal cardinalities of any routing algorithm to use only the information required,
cycle-breaking connectivity preserving setsiW(G) for graphs je., the nodes, the links, and the link metrics. Our focus in

of general topology as well as for planar graphs. We present iis naper is the construction of minimal sets of prohibited
experimental results on the fraction of prohibited turns and on turns for any undirected connected graph

the dilation that illustrate the effectiveness and the effiency of

the SCB algorithm. Let us consider an undirected connected gréfplv, E),
Irjdex Terms—deadlock, livelock, turn prohibition, wormhole  with N = |V| vertices (nodes), denoted hyb,..., and
routing. M = |E| edges, denoted bya,b), etc, to represent a
communication network. Aurn in G is a triplet of nodes
S ) ~(a,b,¢) if (a,b) and (b,c) are edges inG anda # b. In
UE to the availability of low cost workstations with 5, ,ndirected graph turr(, b, ) and (b, ¢, a) are considered

network interface adapters that offer high-performangg pe the same turn. If the degree of noflés d;, the total
communications using wormhole techniques, clusters okwor ' d.
J

stations are emerging as preferred computing environmentsnber of turng’(G) in G is given byT'(G) = Zﬁ.\;l
[1], [2], [3], [4]. However, as wormhole routed messagesdhol ' 2
network resources while requesting others, as they travefs Path P = (vo, 01, ..., vr1,vr) of length L, L > 1 from
the network towards the destination, it is prone to deadiocRPd€ a t0 nodeb in G is a sequence of nodes ¢ V'
under heavy network loads [5], [1], [3]. Deadlocks have beeich thatwy = a and vy, = b, and every two consecutive
shown to occur due to the presence of cycles in the chanf@fi€s are connected by an edge. Subsequences of the form
dependency graph (CDG) of the original graph representifigj: Uk Vi) are not permitted in a path. Nodes and edges in the
the network [5]. Given a graph, constructing the CDG fgpath are not necessarily all d_|fferent. A tufa, b, ¢) belongs
it is at best tedious. However, cycles of nodes in the CDE path P = (vo, v, ... vr) if (a,b,¢) = (vi,vit1,vit2),
graph correspond to "cycles of edges”, as defined belowgn th = 0’ o L—2. _A set of turnsW(G) is called theset of
original network graph. A similar problem causede by cycleRrohibited tums, if any path that includes turns fromv (G)
the so called "livelocks”,appears in Ethernet type network 'S prohibited. This set is calleatonn_ectwlty preserving, !f for

In this paper, we propose a simple algorithm that will breg&Y @0 € V' there exists a path it that is not prohibited.
all such cycles in the graph of the original communicatioR@th £ = (vo, v1, 02, ..., vk, vo,v1) In G is called acycle
network. This is done by preventing certain pairs of commdf N@ proper subset of nodes of cycle forms a cycle, we

nication links from being used, sequentially, at some nodesC@ll P @simple cycle SetW (G) of prohibited tumns inG: is
the graph when forwarding messages. calledcycle-breakingif every cycle inG includes at least one

turn from W(G). The minimum cardinality of connectivity
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routing constraints, by preventing certain communicagiaths Section Il, followed by an investigation of planar graphs
from being used during the routing of messages in the netwonk Section 1ll. In Section IV we introduce the notion of
it must be done in a way that minimizes the fraction of linklistance dilation caused by SCB in the network. In Section V
pairs (i.e. turns) that are prevented from being used. The present our experimental results and offer conclusions i
motivation for seeking the minimal fraction of prohibitadiis Section VI.

is originally due to Glass and Ni [8]. They have found that

reduction in the number of prohibited turns results in a de- II. A GENERAL ALGORITHM FOR CONSTRUCTION OF
crease of average path length and the average messageydelive ~ MINIMAL CYCLE-BREAKING SETS OFTURNS

time, thereby increasing the throughput. After Glass and Ni|n this section we present an algorithm, called the Simple
showed it for regular topologies such as meshes and tosi, thiycle-Breaking (SCB) algorithm, that is much simpler than
conclusion was confirmed by other authors [9], [10], [11] fofhose in [15], [12], [10]. Earlier cycle-breaking algoritis in
irregular topologies as well. Experimental data [12], [$BdW these publications were complicated and involved as many
that there is a considerable gain of approximately 7-8% Hx ten steps per each recursive call, whereas the SCB algo-
the maximum sustainable throughput in the network, for eaghm has only three steps and is easy to understand. The
percentage point reduction in the fraction of prohibitethéu  complexities of having to deal with cut nodes have totally
Similar to spanning tree approaches, prohibiting a caefubeen eliminated in the SCB algorithm, and, as will be shown,
selected set of the turns in the network, provides deadloghas the same time complexity as the algorithms suggested
freedom. However, unlike the spanning tree based appreachgeviously.

the cycle-breaking approach allows all communicationdiirk Lemma 1: In any connected grap8 , there exists a con-
the network to be used. The Only restriction is that Somapai{ected Subgrapw which consists of non-cut nodes 0n|y of
of communication links, namely, those that form the praeidi the original graphG: and is connected to the rest 6f via at
turns, are prevented from being used sequentially. most one cut node € G\H only (i.e., ifa € H, b € G\H,

Let G be a connected graph with minimum degrée thenc e P(a,b), where P(a,b) is any path from node to
Consider a set of? cycles inG such that no more than npodep).

cycles are covered by the same turn. Then [12], the number proof: If ¢ has no cut nodes, theH = G. Suppose

of prohibited turnsZ(() and fraction of prohibited turns(G) ¢ has cut nodes. Les; be the set of connected components

satisfy the following inequalities: of G obtained by deleting cut node(i = 1,2,...) from G.
Z(G)>M — N +1, (1) Consider the .unioMi S;. Let H € |J,; S; be the con_nected

component with the smallest number of nodes. This compo-

2(G) > R , (2) nent does not include any cut nodes from the original graph
rT(G) (otherwise it would not be the smallest component). Thus, if
and H is obtained by deleting cut nodefrom graphG, then H
0—1 ' ich i i
Z(G)> M~ N+ 11,02 3) is a connected subgraph which is connectedtd? via one
2 cut nodec only. [ ]

Lemma 1 will be used below to prove properties of a new

p‘{lgorithm for obtaining a minimal cycle-breaking set ofrtsir

Given a connected grapli(V, E), the SCB algorithm

creates two sets: the s&t'(G) of prohibited turns and the
setA(G) of permitted turns. It also labels all nodes by natural
numbers starting with 1, in the order they are selected by the
algorithm. In the beginninglV (G) = 0, A(G) = 0, and all
nodes are unlabeled. [V| = N, the algorithm consists of

N — 1 stages (recursive calls). Each stage consists of 3 steps
described below.

1) If |V] = 2, label the nodes by the smallest unused
natural numbers, select and delete the node with label
¢ = N —1 and return set¥/(G) and A(G). Otherwise,
go to Step 2

Fig. 1. The Petersen graph with minimum degdee 3 and Z(G) =7 2) Select a non-cut nodeof the minimum degred, such
that

Bound (3) is tight. For example, in the Petersen gra
(Fig. 1) with M = 15, N = 10, andé = 3 , the number

of prohibited turnsZ(G) = 7. As another example, in a two- d d

dimensionap x p mesh withN = p? and M = 2p(p—1), the 2 <2> <> (di—1), (4)

total number of turns iF(G) = 6(p — 2)> + 12(p — 2) + 4. i=1

Sinced < 3, we use (1) to obtain the fraction of prohibited whered; are the degrees of the neighborscofnodes

turns to bez(G) = 652:%, which is the exact result, as adjacent toa). Prohibit all turns of the form(b, a, c)

shown in [14]. and include them inW(G). Permit all turns of the
In the rest of the paper we propose a new cycle breaking form (a,b,¢) and include them inA(G). Label a by

algorithm (the SCB algorithm) and prove its properties in the smallest unused natural numlés).
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3) Delete node: to obtain a grapiG’ = G \ a and go to u
Step 1 forG'.

Note that at the stage of the algorithm when nadés
selected, all other undeleted nodes are unlabeled. Intfest,
will be labeled later. As a result, turd, a, ) is prohibitediff
l(a) < £(b) and {(a) < £(c). Also, it will be shown below
that in any connected graph there exists a node that satisfies
conditions for being selected at Step 2 of the algorithm.

Theorem 1: The SCB algorithm has the following four
properties.

Property 1. Any cycle inG contains at least one turn from

Graph at step n+1

with unlabeled nodes

W(G).
Property 2. SCB preserves connectivity; for any two nodesy. 2. Figure depicting the state of the graph at step n+1 hef t
a,b € V, there exists a path betweenand b that does not SCB algorithm. PathP = (u,...,2",z,...,b,a,¢,...,2,2',...,v)

include t f WG is prohibited due to the prohibited turn at node Path Px =
include turns fromW (G). o (u,...,2',@,...,2,2',...,v) is permitted since it does not involve any
Property 3. The séi’ (G) of prohibited turns generated byprohibited turns.

SCB algorithm isminimal (irreducible).
Property 4. For any grapl, W(G) < T(G)/3, where
T(G) is the total number of turns . and (a, c,y) are permitted, the only prohibited turn i@ is
(b, a, c). By removing this turn froni¥(G), we would create
Proof of Property 1: Consider the node: with the a cycle inG and violate the cycle-breaking Property 1. Thus,
minimum label/(a) in any cycleC in G. Then in the turn setW(G) is minimal. [ |
(b,a,c) (bya,c e C), L(a) < £(b) and{(a) < £(c). Thus, turn Proof of Property 4: At the stage of the algorithm when
(b, a, c) is prohibited and cycl€ is broken. m nodea is selected (recursive call(a)), all turns (b,a,c)
Proof of Property 2: The proof is by induction. Consider become prohibited, and all turr(g, b, ¢) become permitted,
the first selected nodg ¢(a) = 1. Sincea is a non-cut node, wherel(a) < ¢(b) and{(a) < £(c). The number of prohibited
after all turns of the form(b, a,¢) are prohibited and node
is deleted, there still exists a path from any nadéo any

nodey, wherez,y € G \ a. Also, since all turns of the form of permitted turns iSZ?:l(di 1), whered;, (i = 1,....d)

(a,b,c) are permitted, there exists a path franto any node : .
x € G. Now assume that connectivity is preserved after the degrees of all neighbors af Let us prove that in any
: ' . y 1S P faph there exists a node that satisfies inequality (4).dJsin
first n stages of the algorithm, so that the next selected noﬁgmma 1, consider a subgraph that consists of non-cut nodes
a has labelé(a) =n+l. Nod_ea IS a non-cut node in the and at most one cut node, connecting this subgraph to the
graph that remains after deletion of the firsselected nodes. remainina part of the araph. Select a non-cut nadef the
Therefore, after prohibition of all turn@®, a, ¢) there still exits minimumgdpegreei amogg 2” .non—cut nodes in this subgraph
ﬁop\:\?tha?ﬁstvﬁjerg anagvé?egn;it&eﬁleg(lgoie?s)yiocggiﬂz If a is not adjacent to the cut node, then inequality (4) is
P — obviously satisfied. Suppose now that all nodes with minimum
previously labeled node, ¢(v) < ¢(a), or to an unlabeled

: degreel are adjacent to the cut node with degiec d. Then
nodey. If such a pathP does not include a turn of the form ) :
. . ... the selected node has at mostd’ — 1 neighbors of degree
(b,a,c), whereb and ¢ are unlabeled, it remains permitted

. ; d, while at least(d — 1) — (d’ — 1) = d — d’ of its neighbors
Now supposeP includes such a turn (Fig. 2). Then, letbe .
the first unlabeled node in the path framto v or from u to have degrees at leag# 1. Thus the numbef(a) of permitted

y, and z be the last unlabeled node in the path franto v. turns at this stage of the algorithm is
Now we can replace the part ¢t from z to y, or fromx to (d)

d
turns is 5 whered is the degree of node; the number

2, respectively, by a path that does not includésuch a path ¢(a) = (d'=1)(d—1)+(d—d")d+(d'~1) = d(d—1) = 2
exists, since: is a non-cut node) and obtain a pdth. Let 2’
be the node already labeled that immediately precedasP Hence, the inequality (4) is satisfied in all cases, whichmsea
and inP*, andz’ be the labeled node that immediately followshat the number of permitted turns is larger than the number o
z in P and P* (in the case when such a node exists). Since atohibited turns by at least a factor of two. Since this ig ior
turns (¢/, z,w) and(w, z, 2’) are permitted, pati#* does not each stage of the algorithm, it follows thdf(G) < T'(G)/3.
contain prohibited turns, and connectivity is preservethat ]
(n + 1)th stage of the algorithm. Thus, Property 2 is proved The prohibition rule for the SCB algorithm can be expressed
by induction. m in different terms. Let us call edge:, b) positive, if ¢(a) <
Proof of Property 3: Consider a prohibited turtb, a,c). ¢(b), and negative otherwise. Then the pdthis prohibited
Since connectivity is preserved ands a non-cut node, thereiff it includes a pair of consecutive edges such that first
exists a permitted patlp, P,¢) from b to ¢ that does not edge is negativeand the second one is positiveThen the
includea. Adding edgesa, b) and(c, a) to this path, we obtain connectivity means that SCB algorithm labels nodes in such a
a cycleC = (a,b, P,c,a,b). Since turns of the fornfa,b,2) way that for any two nodes there exists a path between them
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in which all positive edges (if any) precede all negativesond'he upper bound ohW (G)| is obtained for the value of

(if any). (not necessarily an integer) that turns (10) into equaiigy,
In general, the fraction of prohibited turns yielded by théor the root of the equation:

SCB algorithm is considerably smaller than the upper bodnd o (k —2)(k +1)

1/3. The only class of graphs where the fraction is exattly M- N = s (12)

is the complete graphs,, with |[V| = n and|E| = n(n—1)/2.

Indeed, the closer is a graph to a complete one, the largef{&NCe:

the fraction of prohibited turns, as shown by the following 1+ \/S(M —N+1)+1 1+/83+1

theorem which provides a better upper bound on the ratio ™ — 2 - 2 : (13)

W(G)|/T(G). . Then, by (11),

Theorem 2: Let G = (V, E) be a connected graph witN

nodes andV/ edges. The fraction of prohibited turasc z(G) (M—-N+1) (\/8(M -N+1)+1+ 3)

yielded by the SCB algorithm satisfies the upper bound:  [W(G)| < :
W(G RBL1

zZsCcB = % < w (14)

1 2N -3-V88+1 ) Now let us estimate the total number of turns. According
3 32N+ (B-1)(/8F+1+3)] to the proof of Property 4 in Theorem 1, if the degree of the

where3 = M — N + 1. selected nodes is, then there exist at leastother nodes with

Proof: When a node is selected in the course of the SAB€ sum of degrees at least. The total number of turns at
algorithm, all its edges are deleted. Thusdifis the degree thesek + 1 nodes is minimal, if all degrees are equék= k.
of node with labell at the stage when it is selected, then Since the graph is connected, the remainig- & — 1 nodes
add at leastV — k — 1 turns. Thus the total number of turns

N . -
Z dy = M. (6) T(G) obeys inequality
/=1

(k+Dk(k—1)
The total number of prohibited turns is TG =z 2 TNkt (15)
N wherek is given by (13).
de(de — 1
[W(@)| = Z% @) It follows that the fraction of prohibited turns(G) is
=1 upperbounded by
Note that, for the SCB algorithm, €6 < W (G|
dey1 > dg — 1. (8) - T(G)
(Otherwise, the nodes would be selected in the opposite)rde < 1 [ _ 2N -3 -8 +1 . (16)
Obviously,dy = 0 anddy_; = 1. The quadratic sum (7) - 3 2N + (B - 1)(V8B+1+3)

under the constraint (6) achieves maximum if the values of ]

d, are maximally unequal, so that some of them are as largeBound (16) is tight. It is achieved, in particular, for a tree
as possible. Looking at the sequenggk) in the backward (A7 = N —1), for aring(M = N), and for a complete graph
direction, from¢ = N to ¢ = 1, one can see that, because okN M= NN

(8), the sequence can increase only by 1 from one term to th 2
anotherdy = 0,dy_1 =1,dy_2 <2,...,dn_; < i.Hence,
there exists a subsequen@g,) such thatd,, = j, wherej
takes on all integer values from O to a cert&inThe value of
|W(G)| achieves its maximum, it is the largest integer that
satisfies two conditions. On one hand,

k
Mzzj:k(lﬁ—l)' @)
§=0

Note that bound (16) converges tg3 iff the cyclomatic
number3 = M — N + 1 = w(N?/3). It will be shown
below (see Section 3) that for some classes of graphs, the
SCB algorithm guarantees that the fraction of prohibitedgu
is substantially smaller than that given by bound (16).

The complexity of the SCB algorithm is at mast(N2A),
whereA is the maximum node degree G(V, E).

2

) ) I1l. PLANAR GRAPHS
On the other hand, since the graph remains connected througBlanar graphs defined as those which can be embedded
the course of the algorithm, the number of remaining edges

should be no smaller than the number of remaining nodes! | & plane without any crossing edges _form an important
class of graphs. A large number of physical problems such
E(k+1)
2

>N - (k+1). (10) as trgnsportation highways (vyithoqt uqderpasses), teleuo

K _ nication networks, and physical circuit or component layou

The number of prohibited turns in the nodes of the subsgroblems are modeled by planar graphs. For example, for

quence(dy; ) is proper operation, all physical layout problems in a printed
koL, i Kk circuit board and VLSI designs involve constructing conduc
Z JG -1 = (k + Dk — 1)_ (11) tive (metallic) signal pathways that must be prevented from
i=1 2 6 crossing each other, these problems naturally map intcaplan

M —
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graphs. In VLSI chips, either the entire chip or large sewio Hence,

of the chip are modeled by planar graphs [16]. In [16], As+2A3=M - N+1=F —1. (23)
[17] authors introduced turn prohibition in Network-On-i@h
(NOC) architectures in which multiple processing elemengs
ngtworkt_ed on one VLSI chip, in whlch the layout is pIanar..I Z = Ayt 3As. (24)
this section we present constructive upper bounds on minima

fraction of turns,z(G) to be prohibited to break all cycles inHence, an upper bound féf would correspond to a maximal

Note that the number of prohibited turns in the SCB procedure
}]s given by

any planar grapld. Az and a minimalAs. Obviously, the deletion of a degree 2
An important characteristic of a planar graph is the numbaode decreases the number of faces by 1, and the deletion of
of edges in the shortest cycle known asgigh. a degree 3 node decreases this number by 2. The algorithm
Lemma 2: The average degree in a planar graph with terminates when the number of faces is reduced to 1. It is easy
nodes and girtly obeys inequality to show, using (17), (18), and the Euler equation, that fahgi
>4,
i<-29 __19 (17) /=
g—2 N(g—2) E<M 2<M+2:4_L
~F(g—2)+4 ~ 2(F+2) F+2

Proof: Let G be a planar graph witlf' faces and girth
9(G) = g. Since each edge belongs to either one or two facesence, for any graph with girth > 4 (F < 5),d =3—1 < 3.
it follows that2M > Zle gj > Fg whereg; is the number Thus any such graph has non-cut nodes of degree 2 or 1.

of edges of facg. Hence Therefore, A3 < (F —4)/2 and A; > 3 (provided F' > 4).
oM Then, using (23) and (24), we obtain:
F<—. (18) 3 A, 3 Ay
g Z="(Ag+243)— = =(M—-N+1)- ==,
- ; ; 2 2 2 2
Substituting (18) into the Euler equatidh= M — N +2, we ) )
obtain Finally, sinceA; > 3, it follows that
g(N —2)
M <= (19) 2(G) <7< (M- N) (25)
Thus the average node degree is Here, Z(G) is the minimum number of prohibited turns for
_ oM 29 4g G. To estimate the total number of tur@¥G), we note that
d= N < g—2 N(g—2) there are two cases; first, when the average denzl;liee?NM is

3<d<4- 2%, and second, whed < 3. In the first case,

) - . T(G) is minimal if nodes are of degree 3 and degree 4 only
Itis seen that the upper bound drgiven by (17) decreases 5 i the second case if nodes are of degree 2 and degree 3

monotonically with girthg. _ , only. Assuming first that nodes are of degree 3 and 4 only, we
Theorem 3: If G is a planar graph without triangles, then yotarmine thalVs = 4N —2M andN, = 2M —3N, whereN

o) < 1 20 and N, designate the number of nodes of degree 3 and degree
A(6) < 4 (20) 4, respectively, in the graph. It follows th&{G) = 6(M —N),
. - Z(G) -
Proof: With no triangles in a planar graph, the girth oftnd the fraction of prohibited turns(G) = % IS
the graph isg(G) = g > 4. Then the average degrekin 1
(17) becomesl < 4 — 8/N, which means that a planar graph 2(G) < 7. (26)

without triangles contains at least two nodes of degree less

than four. Note that any subgraph @fis also a planar graph For the case whefl < d < 3, T(G) is minimal if there
with girth at least four and an average degiee 4 — 8/n, are No nodes of degre@ and N3 nodes of degree 3 only.

wheren is the number of nodes in the subgraph. By Lemma nyc/[en Np = 3N —2M, and N = 2(M — N), andT(G_) N
there exists a subgrapti of G that consists of non-cut nodes* _2]\?4’]\7 = 6(M - N.) + (BN —2M) > 6(M — N) (since
only and connected to the rest of the graph by at most ofie” N < 3). Hence in both cases the upper bound for the

cut node. Consider a subgraph @fformed by subgraphi fraction of prohibited turns is

and this cut node. It follows that this graph contains a noh-c 2(G) < 1 27)
node of degree at most 3. 4
At every step of the execution of the SCB algorithm (see ]
Section II), a minimum degree node is selected according toTheorem 4: If G is a planar graph with a girth > 6, then
the rule (4). LetA;(i = 1,2,3) be the number of nodes 9 —N(g—6
) . ’ (9—2)(g—6)
of degreei that were selected during the execution of the 2(G) < 6 G0 (N —8) + 6N (28)
algorithm. Since the last node left is a node of degree zero g g g
and all edges are deleted in the course of the algorithm, wad 9
have z(G) < porr (29)
Aj+ Ao+ A3 =N — 1, (1) J

Proof: Note that, by (17), for girthy = 6 the average
Ay +2A5 +3A3 = M. (22) degree becomeg < 3 — % < 3. For the case ofy > 6, if
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there are onlyN, nodes of degree 2 anll5 nodes of degree

3, we getN, = 3N — 2M, N3 — 2(M — N), and the total
number of turns,T'(G) = N2 + 3N3 = 4M — 3N. Since
T(G) achieves minimum if the degrees take values closest to
the given average degree, it follows tH&{G) > 4M — 3N.

By the same argument that is given in the first paragraph of
the proof of Theorem 3, there will always be non-cut nodes
of degree at most 2 available for selection at every stepef th
algorithm; and thereford; = 0. FromA; + A, = N —1 and

A1 +2A4, = M,weobtainthat/ = Ao, = M-N+1=F-1

and the upper bound for the fraction of prohibited turns will
be

M-N+1
< .
9= Tar—an
SUbStitUtingx = M/N’ we get Fig. 4 Planar graph with girtly = 8, N = 32, M = 40, andT = 64.
1 1/4 . 1/N Prohibited turns are shown as arcs.
< -
(G = -3 (30)
The right-hand side of (30) is a monotonically increasing For girth g(G) = 5 planar graphs, the average degree in
function of z. Note that fromd = 2M /N = 2z we get (17) becomes 0 2
d< —— —. 31
r < g 29 - 3 IN ( )

T9-2 Ng-2) This bound is tight and is achieved for the infinite graph of
Substituting the maximum value af into (30) we obtain Fig. 3.

) (9—2)(g—6) For N < 20 (F < 12) the average degre¢ < 3 and it
2(G) < g+6 - (g + 6)[g(N —8) + 6N]’ fzollows that such graphs would always have a node of degree
and 9 Conjecture. If G is a planar graph with girtly(G) = 5,
2(G) < P thenz(G) < 1/5.

Note that Theorems 3 and 4 do not apply to non-planar
raphs. For example, for bipartite grapgty 4 with N = 8
odes, we have (K, 4) = 14/48 > 1/4.

The proofs of Theorem 3 and Theorem 4 suggest a some-
what more general result.

Theorem 5: If in the course of the SCB algorithm, all
selected nodes are of degree 2 or less, then the solution give
by SCB is optimal, and,

W(G)| =M—N+1. (32)

The bound (28) is tight as shown by the following exampl%

Example. Consider the planar graph of girth= 8 shown
in Fig. 4, with N = 32, M = 40, andT" = 64. For this graph,
Z=M-N+1landz = % is equal to the right-hand part
of inequality (28).

Proof: The result follows immediately from the expres-
sions (23) and (24), and lower bound (1). [ ]
In particular, the SCB algorithm provides an optimal solu-
tion for 2-dimensional rectangular mesh and honeycomb mesh
— two popular network topologies.

IV. DISTANCE DILATION

Consider now the notion of dilation in a network topology
due to turn prohibitions. Paths that involve prohibitedntur
are prohibited and are not used for communication. Thus, one
side effect of turn prohibitions is that, prohibiting cent@aths
from being used for message routing, may increase distances
Fig. 3. An infinite planar graph with average degiée= 10/3 between some nodes. The net result of this is that the average

distance of the network graph will be increased. To fa¢dita

To avoid misunderstanding, let us point out that it ithe investigation of this phenomenon, we introduced thenot
planarity and girth constraints that result in (20) and (28df distance dilation which we define as the ratio of the averag
but not the limits on the average degree alone. It is easydistance after turn prohibitions to the average distanteout
construct graphs with average degrearbitrarily close to 2, any turn prohibitions. When the dilation is 1 it would imply
for which z(G) is arbitrarily close tol/3. that the turn prohibitions have not caused any lengthening
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of the average distance. For example, in complete graphs the® _ T e Ne Proibtion: mean < 3.330]
fraction of prohibited turns achieves the upper bound, bat t o1 .| WSCB:mean=3.446
dilation is 1. ]
25
£
V. EXPERIMENTAL RESULTS 520
5 1

In this section we present the results of our calculationsg s ]
for the fraction of prohibited turns using the SCB algorithm 5
and experiments involving message delivery simulatioiirsgus
Opnet discrete event simulation tools. In all of our caltolss 5]
and simulations, network topologies were first generat@tus ]
tOOIS that we deVeIOped. A” Of the toPOlogieS were reprmn 24252627 28293.03.1323334353.63.738394.0414243 44
by 64-node undirected graphs. For the irregular topologies Average Distance (hops)
constructed 100 graphs of average degree four. The SCB al-
gorithm was applied to generate minimal turn prohibitiotsseFig. 6. Distributions of average distance in 100 irregutgoiogies with 64
for each topology and fractions of prohibited turns for eaclpdes before and after SCB generated turn prohibitions
graph were calculated. In Fig. 5, results of these calanati o
for 100 different graphs are shown as a histogram. It can be
seen that no graph had a fraction of prohibited turns lafgger t 25 Lo e DO
0.19. In Fig. 6, distributions of the average distances fgefo
turn prohibitions and after SCB generated turn prohibgiare 20 ek
shown. Given a graph, after turns are prohibited, the aeerag
distance may increase. This increase is described in tefms
the dilation introduced by turn prohibitions. Results olatibn
calculations for irregular graphs are shown in Fig. 7, where® 10— 1 B
we see that the lengthening of the average distance has a mean

10 1

Graphs

45 o |

umberG}

of approximately 7%. S |
ol O P oy o
BO g [Emean = 0.160] 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 110 111 1.12 113 1144 1.45 116 1.17
45 e Average Distance Dilation
40 ;_ ..............................................................................................
1 Fig. 7. The average dilation introduced by SCB is 7%
%— 35 TR e
g 30 ;_ ................................................................................... 0-30 e
B 25 Joeeeeeee e b £ —>—Experimental
é ” 0.28 oereerre -~ Upper Bounds
E 20 e S 0.26 & Q O Icosahedron
z 4 20
15 B R e R R s
1 20.24
10 Fooeemeeenennnnn e S L I 5
| =
] o 0.22
S o
01 = ‘ ; ; = 5 0.20 4
c
0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 -f-i 0.18 4
= 0.
Fraction of Prohibited Turns o
'S 0.16 -
g
Fig. 5. Histogram for the fractions of prohibited turns indl@eneral graphs g 0.14 1
each with 64 nodes of average degree four < 042
. . oo 0.10 : : : : : : ‘
Calculations for planar topologies follow a similar apprba 3 K i ; s 0

We first generated a number of families of planar graphs, each
family with a different girth. In all of our constructionshe
faces are all regular and have the same number of edges.
example in girth 3 planar topologies all faces are triangula
After the planar topologies are generated we then applied
the SCB algorithm to break all cycles as before. Results tife turns are prohibited, the average distance may increase
these calculations are shown below. In Fig. 8, the fract@fns This increase is described in terms of the dilation intraalic
prohibited turns are shown for families of planar graphswitby turn prohibitions.
girths 3 through 8 together with the theoretical upper beund Results on dilation calculations are shown in Fig. 10, where
In this figure we also show the fraction of prohibited turns ofie see that as the girth increases the average dilatioraisese
(2(G) = 4/15 ) for icosahedron with 12 nodes. predicting a better performance for message delivery tifmes

In Fig. 9, the average distance versus the girth is plottethnar topologies with smaller girths. We see that for gir3h
after the application of the SCB algorithm. Given a graph, ad 4 topologies that we investigated, the dilation wer@0d20

1il:hig. 8. Fraction of prohibited turns for SCB in 64-node plageaphs as a
ftion of girth
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LB v eveeme e
F anticipated behaviors. In particular, since the averagadce

increases with girth in planar networks with a given number
of nodes, one would expect better performance in networks of
smaller girths. Indeed as seen at Fig, the saturation load
increases for smaller girths.

1.250 +

1.200 +

VI. CONCLUSIONS

In this paper considers the problem of constructing minimal
cycle-breaking sets of turns for graphs that model communi-
0850 cation networks. This problem is important for deadloakefr
. and livelock-free message routing in computer commurooati
networks. We present a new algorithm called the Simple

Girth Cycle-Breaking or the SCB algorithm which is considerably
simpler than those in [15], [12], [10] and has the same
Fig. 10. Average distance dilation in planar topologieshv nodes after performance and run-time complexity. Earlier cycle-biegk
SCB generated turn prohibitions as a function of girth algorithms were complicated, involving as many as ten steps
whereas the SCB algorithm has only three steps and is easy
) to understand. The complexities of having to deal with cut
and 1.0009 respectively. nodes have totally been eliminated in the SCB algorithm. We

In addition to these calculations, we also performed messagsy present results on minimal fractions of turns that must
delivery experiments. In the experiments, we implementeg yrohibited to break all cycles without loss of connetfivi
wormhole node models [18], [12], [19] with 16 bidirectionakg, arbitrary irregular connected graphs and planar gragis
full-duplex ports and a local port. Messages, also known ggesent simulation results on saturation points for nete/of
worms, are generated at a module attached to the local R@fferent girths. The proposed algorithm is shown to be very
at the node. All messages in our simulations, 200 flits longficient in terms of three basic characteristics: the foacof
were generated using uniform traffic model with exponentigfohipited turns, the dilation, and the saturation load.
inter-arrival times. As worms are injected into the netweik Al turn prohibition approaches considered so far are based
the local channel, the router at the node determines usingf|abeling of the vertices of a graph in one way or the other.
routing table, which output port to use to route the message.tyr (q,b,c) is then prohibited either when the label of
If the output port is free, it is immediately committed toyode 4 is smaller (or, alternatively, larger) than the labels
the inc_oming message port for the dura_tion of the message. nodesa and c. Node labeling, however, may result in
otherwise the message is blocked until the output port dgohibiting a larger than necessary number of turns and may
freed up. Routing table at each node is generated using fg.ct the efficiency of the algorithms. We may expect that

all-pairs shortest path algorithm with an additional gida gy algorithms which could avoid node labeling would be
that the selected shortest paths do not include any prebibit,,gre efficient.

turns. This way, both deadlock and live-lock conditions are

proactively prevented from occurring during the actuatiroy REFERENCES

of messages. The results on average saturation pointsebtai o ,
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