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Abstract:
Error characteristics for many communication and computation channels are non-stationary
or are difficult to determine. In such cases, traditional minimum distance codes do not min-
imize the worst case error masking probabilities. We present robust codes which minimize
the maximum error masking probability when the error distributions are unknown. The
properties of these robust codes as well as optimum constructions for a wide range of
practical parameters are analyzed.

We discuss applications of these codes for reliable transmission and storage. We also
present several design techniques for memories with self-error-detection based on the pro-
posed codes and robust check-point verification providing equal or almost equal protection
against all errors. The proposed techniques are efficient when error vectors at the outputs
of the protected devices (which may be results of internal stuck-at faults) have a high prob-
ability of repeating themselves. The proposed robust codes require slightly larger overhead
than standard and widely-used linear codes but provide for drastic increase in performance
(probability of detection).

1 Introduction

Standard methods for on-line error detection are based on simple linear error-detecting
codes. Typical methods include the use of parity, replication, or Hamming codes [1].
These traditional linear error detection methods are best suited for detection of errors of
a small multiplicity. The codes concentrate their error-detecting power on a small class
of errors which are assumed most likely to be the observed manifestations of faults and
failures. For many traditional linear codes such as parity or Hamming the most probable
errors are assumed to be single or double bit distortions.

However, for many computational devices and many environments the assumptions
which make the traditional methods efficient cannot be guaranteed. In most complex
computational devices and many environments even single faults do not result in single or
double errors at the output but in the corruption of several bits. Due to the complexity of
devices the exact probabilities of different error patterns at the outputs of the devices to be
protected are difficult to determine. Furthermore, increased scaling of device feature sizes
are causing increased probabilities of multibit faults. In the presence of non-stationary or
multibit faults and errors the existing methods can exhibit poor or very difficult to predict
error detection characteristics making it difficult to establish reliability guarantees for the
protection methods based on linear codes.
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In light of these limitations alternate methods based on nonlinear codes known as
robust codes are proposed in this paper. Robust codes are designed to provide uniform
error detection against all errors instead of concentrating their error-detecting power on a
specific class of errors. Nonsystematic robust codes were introduced in [2] and first applied
to the compression of test responses [3]. In [4] systematic constructions of robust codes
were first proposed and applied to the protection of cryptographic hardware against fault
attacks in [5]. In this paper, we outline the properties and constructions for optimum binary
systematic robust codes and provide examples of applications of robust error-detecting
codes for on-line error detection for lazy computation channels and memories as well as
check-point verification.

2 Definition and Basic Properties of Robust Codes

In this paper we mainly consider applications of codes for error detection in digital hard-
ware. We therefore present all of the definitions in terms of binary codes. Most of the
results can be easily generalized for codes over nonbinary fields.

Definition 2.1 (R-Robust Code) A code C ⊆ GF (2n) is R-robust if the size of the
intersection of the code C and any of its translates C̃ = {w̃|w̃ = w + e, w ∈ C, e ∈
GF (2n), e 6= 0} is upper bounded by R:

R = max
0 6=e∈GF (2n)

|{w|w ∈ C,w + e ∈ C}|. (1)

where + is the componentwise addition modular two. A binary R-robust code C of length
n with M = |C| is denoted by a triple (n, M, R).

The above defined robust codes have beneficial properties when worst case error mask-
ing probability of the codes is considered. By definition of a R-robust code there are at
most R codewords which can mask any fixed error e. The error masking probability Q(e)
can be thus defined as

Q(e) =
|{w|w ∈ C,w + e ∈ C}|

|C|
. (2)

For a (n, M, R) robust code, the worst case probability of masking an error is at most
R/M for any error when the codewords of the robust code are assumed equiprobable.
Clearly, robust codes which have a minimum R for a given M will also have the lowest prob-
ability of error masking and hence a predictable behavior in the presence of unpredictable
error distributions since the worst case probability of masking any error is bounded. In the
following sections we investigate the constructions and optimality of the codes followed by
some examples of applications.

3 Bounds, Optimality, and Perfect Robust Codes

Based on the above definitions of the robust codes it is possible to derive the following
main property for a R-robust code.
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Property 3.1 If the code C is R-robust then in the multiset SC = {wj + wi|wi, wj ∈
C,wi 6= wj}, any element appears at most R times.

Robust codes are optimal if they have the maximum number of codewords M for a
given R and and length n. From Property 3.1, a relation on R, n and M of the code can
be established.

M2 −M ≤ R(2n − 1). (3)

Definition 3.1 (Perfect Robust Code) A robust (n, M, R) code satisfying M2 −M =
R(2n − 1) is perfect.

Perfect robust codes are equivalent to classical combinatorial structures known as dif-
ference sets and symmetric designs [6]. It has been shown by Mann that all symmetric
designs over binary fields and hence perfect binary robust codes exist only for even di-
mensions and are limited to the following parameters: (2m + 2, 22m+1 ± 2m, 22m ± 2m) [7].
Moreover, systematic robust codes, which are often more practical for error detection in
computer hardware due to their separation of data and check bits, cannot be perfect.

Theorem 3.1 For any (n, 2k, R) systematic robust code there are at least 2n−k in GF (2n)
elements which cannot be expressed as differences of two codewords.

Proof For any systematic codeword w = (x1, x2 = f(x1)) an error e = (y1, y2) is masked iff
f(x1 + y1) = x2 + y2. An error e = (y1 = 0, y2 6= 0) is never masked since f(x1) = x2 + y2

only iff y2 = 0. An error that is never masked cannot be expressed as a difference of
two codewords. Hence elements from GF (2n) of the form w = (0, x2 ∈ GF (2r)), where
r = n− k cannot be expressed as a difference of two codewords.

Corollary 3.1 There are no perfect systematic robust codes.

When perfect robust codes are not available, the best possible codes which maximize
M for a given n and R are referred to as optimum robust codes.

Definition 3.2 (Optimum Robust code) (n, M, R)robust codes which have the maxi-
mum possible number of codewords M for a given length n and robustness R with respect
to (3) are called optimum. For optimum codes adding any additional codewords would
violate bound (3) and

M2 −M ≤ R(2n − 1) < M2 + M. (4)

4 Constructions of Optimal Systematic Robust Code

There is a strong relationship between robust codes, nonlinearity, and nonlinear functions
since all robust codes are nonlinear. The parameters of systematic robust codes depend on
nonlinearity of the encoding function of the codes.
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We first review some basic definitions and properties of nonlinearity, a good survey of
nonlinear functions can be found in [8].

Let f be a function that maps elements from GF (2k) to GF (2r).

f : GF (2k) → GF (2r) : a → b = f(a). (5)

The nonlinearity of the function can be measured by using derivatives Daf(x) = f(x +
a) + f(x). Let

Pf = max
0 6=a∈GF (2k)

max
b∈GF (2r)

Pr(Daf(x) = b), (6)

where Pr(E) denotes the fraction of cases when E occurred. The smaller the value of Pf ,
the higher the corresponding nonlinearity of f . For linear functions Pf = 1.

Definition 4.1 A binary function f : GF (2k) → GF (2r) has perfect nonlinearity iff
Pf = 1

2r .

Theorem 4.1 Let f be a nonlinear function that maps GF (2k) to GF (2r) where k ≥ r,
the set of vectors resulting from the concatenation of x1, x2 : (x1, x2 = f(x1)) where x1 ∈
GF (2k) and x2 ∈ GF (2r) forms a (k + r, 2k, 2kPf )-robust systematic code.

Proof The error e = (y1, y2), (y1 ∈ GF (2k), y2 ∈ GF (2r)) will be masked iff f(x1 + y1) +
f(x1) = y2, x1 ∈ GF (2k), which is exactly when Dy1f(x1) = y2.

The following is an example of a construction based on perfect nonlinear functions
resulting in optimum robust codes.

Construction 4.1 (Quadratic Systematic Code) Let w = (x1, x2, · · · , x2s, x2s+1),
xi ∈ GF (2r), s ≥ 1. A vector w ∈ GF (2(2s+1)r) belongs to the code iff

x1x2 + x3x4 + · · ·+ x2s−1x2s = x2s+1. (7)

The resulting code is a ((2s + 1)r, 22sr, 2(2s−1)r) optimum robust code.

Proof The encoding function f(x1, x2, . . . , x2s) = x1x2 +x3x4 + · · ·+x2s−1x2s is a perfect
nonlinear function with Pf = 1/2r [8]. For r = 1 this function is known as a bent function.
From Theorem 4.1 the resulting code is a R = 22sr/2r = 2(2s−1)r robust code.

We will discuss applications of these quadratic codes for designing of memories with
self-error-detection in Section 6.1.2, for data transmission in noisy channel in Section 6.2
and for data verification in Section 6.3.

Example 4.1 (Robust Parity) Methods based on linear parity check codes are often used
for on-line error detection in combinational circuits [9]. The linear 1-dim parity codes can
detect all errors of odd multiplicities but offer no protection for errors of even multiplicities.
For devices and environments where the error distributions are unknown or non stationary
the 1-dim parity codes can result in unpredictable behavior in the presence of errors.
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As an alternative to the 1-dim parity codes the quadratic systematic robust codes defined
in Construction 4.1 can be used. Taking r = 1 the resulting systematic code has the same
redundancy as the linear parity code. Unlike the linear parity code, the robust code will
mask an error with a probability of at most 1

2 regardless of the error multiplicity providing
predictable error detection regardless of the error distributions.

Perfect nonlinear functions from GF (2k) to GF (2k) do not exist [8]. Functions with op-
timum nonlinearity in this case are called almost perfect nonlinear (APN) functions [10]
with Pf = 2−k+1. When f are APN functions, the robust codes constructed as in theorem
4.1 have R = 2. These codes are not optimum.

Construction 4.2 (Robust Duplication Code) Let w = (x1, x2), x1, x2 ∈ GF (2r). The
robust duplication code C contains all vectors w ∈ GF (q2r) which satisfy x3

1 = x2 where all
the computations are in GF (2r). The code is a (2r, 2r, 2) robust code.

Robust duplication codes can be a viable alternative to standard duplication techniques.
Application of these codes to memories with self-error detection and comparison between
standard and robust duplication techniques will be discussed in Section 6.2.

5 Partially Robust Codes

Robust codes generally have higher complexity of encoding and decoding than classical
linear codes. The ((2s + 1)r, 22sr, 2(2s−1)r) quadratic systematic codes from Construction
4.1 require s r-bit multipliers and s− 1 r-bit componentwise additions. Assuming a r-bit
multiplier requires r2 two-input gates the encoder for the systematic quadratic code can
be implemented with sr2 + r(s− 1) 2-input gates.

As a tradeoff between robustness and the hardware overhead for computational devices,
partially robust codes were introduced in [4]. These codes combine linear and nonlinear
mappings to decrease the hardware overhead associated with generation of check bits by the
predictor. The encoding of systematic partially robust code is performed first by using a
linear function to compute the redundant r check bits followed by nonlinear transformation.
The use of the linear code as the first step in the encoding process typically results in a
hardware savings in the encoder or predictor since the nonlinear function needs to only be
computed based on the r bit output of the linear block. The application of the nonlinear
transformation reduces the number of undetectable errors thus increasing the robustness
of the linear codes.

Construction 5.1 (Partially Robust Codes) Let f : GF (2r) → GF (2r) be a nonlinear
function with Pf < 1 and let H : GF (2k) → GF (2r) , r ≤ k be a linear onto function. The
set of words in the form (x, f(H(x))) form a code with 2k−r undetectable errors.

Proof By Theorem 4.1 the set of words in the form (H(x), f(H(x))) forms a (2r, 2r, Pf2r)
systematic robust code. For this code the only undetectable error is the zero error. Since H
is a linear onto function it maps 2k−r words from GF (2k) to the r-bit zero vector. Hence the
code with words in the form (x, f(H(x))) has a total of 2k−r undetectable errors. (Matrix
H can be selected as a check matrix of the best [k + r, 2k] linear code.)
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The number of undetectable errors is reduced from 2k to 2k−r compared to the linear
code with the same redundancy. The combination of a linear functions simplifies the
prediction complexity for devices with linear or partially linear functions. Application of
partially robust codes for error detection in memories will be discussed ins Section 6.1.1.
Partially robust codes with k = 128 and r = 32 have been used in [5] for design of private
key security devices on Advanced Encryption Standard (AES) resistant to fault injection
attacks. Implementation of this approach resulted in about 80% hardware overhead.

6 Applications

Robust error detecting codes have, by design, a uniform or almost uniform error-detection
coverage and data dependent error detection capability. These unique properties make the
codes useful for channels with unknown or non-stationary error distributions, and channels
with highly correlated or “lazy” errors. To illustrate the potential benefits we provide
analysis for applications where the codes show a benefit over classical linear codes.

6.1 Self Error Detection for Memories with Unknown or Non-Stationary Er-
ror Distributions

The error characteristics in silicon devices are changing and in many instances can be
unpredictable. Using the case of memories as an example of a channel with unknown or
non-stationary error distributions we demonstrate the possible benefits and methods of
adding robust codes to the designs.

As devices are being pushed into the deep submicron technologies reliability is increas-
ingly becoming a critical design issue. Aggressive technology scaling is causing transient
effects to have a larger impact on the overall reliability of a circuit. Cross coupling, ground
bounce, and external radiation are creating more and more unpredictable transient and
soft errors [11]. Memory devices such as DRAMs and SRAMs are especially vulnerable.
Decreased voltage levels and increased densities mean that there is a higher probability of
a transient pulse to get latched and become a permanent bit flip in a memory cell. With
predicted densities of 64GB memories per chip by the year 2008, memories are expected
to face increased reliability challenges [12].

Furthermore, as embedded systems are becoming ubiquitous, their roles are also be-
coming more mission critical for military, automotive, aerospace, and medical applications.
Many embedded memories are exposed to more strenuous and unpredictable environments
while their reliability becomes a matter of critical importance and safety. Many medical
and mobile devices, for example, can be subjected to various environments in short spans
of time. In a matter of minutes a memory device can be moved from sea level, where single
event rates from cosmic rays are low, to being on a trans-Pacific flight where the error rate
can increase 300x [11].

Despite the fact that error characteristics of memories have been less and less pre-
dictable not much has been done to protect these memories in the face of such errors.
Most of the memory protection schemes today are designed for a given error model or er-
ror distribution. These systems usually assume single or double errors and use simple codes
(such as duplication or extended Hamming codes) which concentrate their error detecting
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Figure 1: High level memory architecture with self error detection

power for those errors. These protection methods offer a good protection for errors of low
multiplicities but have a poor performance for other error distributions.

In many situations multiple errors in a word can occur. Things such as address decoder
errors, power glitches, and cross-couplings can create difficult to predict multi-bit errors.
Different protection methods are necessary when the error distributions are unknown or
non-stationary as is the case for embedded memories which are exposed to a wide range of
changing environments.

In the next section we analyze the limitations of existing error detection techniques
and show how robust error-detecting codes can be applied to memory architectures to
make memories more robust and their error detection more predictable in the presence of
unpredictable environments where the error distributions are unknown or non-stationary.

6.1.1 Existing Methods for Self Error Detection in Memories

Two commonly used error detection schemes used in memories today are duplication and
the extended Hamming codes [11]. Both of these schemes are based on very simple linear
codes to reduce the hardware and time overheads.

The high level architecture for protected memory is shown in Figure 1. Extra redundant
memory blocks are added to store redundant encoded data (the signature of the data). In
the case of duplication (k = r), no encoder is necessary since the same data is stored in
both copies. For other linear systematic codes the encoder performs matrix multiplication
over GF (2) between the k-bit data and the parity check matrix of the selected linear code.
The same encoder can be used to recreate the signature of the data for error detection in
the Error Detecting Network (EDN).

When the linear codes are used in the protection of memories it is typically assumed
that only single or double bit errors in a word will be observed. For these types of errors the
current methods can provide for good protection. However, when the error distributions
change and when errors of higher multiplicities occur the methods can have unpredictable
behaviors.

As an example, Figure 2 shows the percent of detectable errors as a function of error
multiplicity (number of distorted bits) for 8-bit duplication (k = r = 8) and the the linear
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[72, 264] extended Hamming code. The detection capability of both codes depends largely
on the multiplicity and type of the error. The schemes offers relatively poor protection
for errors of even multiplicities. Other error distributions can result in more uneven or
unpredictable error detection profiles. For linear codes, for example, any error which is a
codeword will always be masked. For errors of this type the error detection based on linear
codes will provide no protection.

(a) (b)

Figure 2: Percentage of errors detected versus error multiplicity for (a)
8-bit linear duplication (b) [72, 264] extended Hamming code

6.1.2 Robust Methods for Self-Error Detection in Memories

Figure 3 shows the probability of detecting an error as a function of error multiplicity
(number of distorted bits) for codes based on the robust codes presented in the previous
section. While these codes have the same parameters (k and r) as the linear codes, the
error detection profile is much more uniform providing a more predictable error detection
capability regardless of the error distributions.

The error detection profiles of Figure 3 were generated by simulating the codes with
random messages and random errors of given multiplicities. The simulations for the 8-bit
duplication code were performed exhaustively for all possible message/error pairs. The
other two graphs show the result of simulating 200,000 error/message pairs for each error
multiplicity.

Figure 3a shows the error detection profile for a (16, 28, 2) robust duplication code. This
code is robust and any error is detectable. Compared to the linear duplication code with
the same n and k the code has almost completely uniform error detection. This robust
code has R=2, meaning that any error can be masked for at most two messages. Unlike
for the linear codes, regardless of what subset of errors is chosen for this robust code the
error masking probability is bounded by 2−7.

Figure 3b shows the error detection profile for a (72, 264, 256) robust quadratic code
which has the same n and k as the linear extended Hamming code. Unlike the linear
Hamming code which has a total of 264 undetectable errors and whose error detection
depends heavily on the multiplicities of errors the robust code is capable of detecting all
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errors and has an almost completely uniform error detection.
Finally, Figure 3c presents the error detection profile for a partially robust code where

the linear onto function is the parity check matrix of the extended Hamming code. Com-
pared to the original linear extended Hamming code, the partially robust code has a much
flatter error detection profile, but not as flat as the robust code ( see Figure 3b).
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Figure 3: Percentage of errors detected for (a) (16, 28, 2)robust duplication
code (b) (72, 264, 256) robust quadratic code (c) partially robust (72, 264)
extended Hamming code

Table 1 summarizes and compares the error masking probabilities of the proposed
robust error detection method and the traditional methods based on linear error detecting
codes. The table compares the error masking probabilities between the [128, 264] linear
duplication code and the corresponding (128, 264, 2) robust code and between the linear
[72, 264] Hamming code and the corresponding partially robust extended Hamming code
when all the codewords are assumed equiprobable.

As the table shows for the robust duplication code there are no undetectable errors. For
the partially robust code based on the Hamming code the number of undetectable errors
is drastically reduced.
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Table 1: Probability of Masking for linear and robust codes with k = 64s
max Q(e) number of undetectable errors

[128, 264] linear duplication 1 264

(128, 264, 2) robust duplication 2−63 0
[72, 264] linear extended Hamming 1 264

(72, 264) partially robust Hamming 1 256

(72, 264, 256) robust quadratic 2−8 0

6.2 Error Detection in Channels with Laziness

In addition to providing a more uniform error detection coverage compared with classical
linear codes robust error detecting codes have better detection characteristics in channels
where errors have a high laziness or probability of repeating themselves.

Definition 6.1 (Laziness) The laziness L(e) of an error e in a channel is the con-
ditional probability that if an erroneous output w̃i was a result of an error e, the next
erroneous output w̃i+1 was also the result of the same error

L(e) = Pr(e = w̃i+1 − wi+1|e = w̃i − wi), (8)

where wi 6= wi+1, e 6= 0 and all messages w are considered equiprobable.

The above definition of laziness can be extended to include non stationary probabilities
and dependence of laziness on messages and other effects, but this simple definition of
laziness allows a cleaner demonstration of benefits of robust codes.

Errors with a high laziness can occur in many hardware implementations. Faults in
linear networks consisting of XOR gates only or fanout-free logic implementations will often
result in internal faults manifesting themselves as repeating errors at the outputs of the
devices. Failures in interconnect networks such as busses can also result in repeating errors
since faults can directly manifest themselves as errors. For such devices a single fault has
a very high probability of manifesting itself in a constant error pattern regardless of the
data it distorts.

Errors with high laziness can also occur in channels where an adversary is the cause
of the malfunctions. It has been shown that security of implementations of cryptographic
algorithms can be compromised if faults occur in the devices [13]. Malicious attackers can
inject faults to help in cryptanalysis. Due to the mechanical nature of the fault injection
the fault injection will typically be much slower than the operation of the device often
causing a single fault or error to affect several cycles of data processing. This inherent
slowness or laziness of fault injection has been used as one of the motivations for the use
of robust codes in cryptographic hardware [5].

Example 6.1 (Circuit errors in combinational networks resulting from single
stuck-at faults)

Consider the circuit in Figure 4. In the presence of single stuck-at-zero faults the
errors at the output of the circuit can exhibit high laziness and the errors are not limited
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Figure 4: A circuit with laziness

Table 2: Laziness of errors L(e) for circuit from Figure 4
location of fault e=001 e=010 e=011 e=100 e=101 e=110 e=111

1 - - - - - 0.333 0.333
2 - - - - - 0.333 0.333
3 - 0.333 0.333 - - - -
4 1 - - - - - -
5 1 - - - - - -
6 - - - - - 1 -
7 - 1 - - - - -
8 1 - - - - - -

total laziness L(e) 1 0.666 0.333 - - 0.555 0.333

to single bit distortions. The analysis of the laziness of all the errors in the presence of a
single stuck-at-zero fault at each of the possible eight locations is shown in Table 2. The
first eight srows in Table 2 shows the L(e) for each error when a single stuck-at-zero fault
affects the numbered location in the circuit. For each fault location some errors exhibit very
high laziness while other errors are do not apear for the specific fault (represented by a dash
in the table). The final row shows the laziness of each error if any of the single stuck-at-zero
faults and all input vectors are equiprobable. When any of the single stuck-at-zero faults
can occur, for example, when the error of 110 is observed at the output there is a 55.5%
probability that the next erronous output will be distorted by the same error.

The repeating nature of the errors can be problematic for classical error detection
methods since when the manifestation of faults is not detectable by the code for one
output vector then the corresponding error will never be detected and the device will
function erroneously without providing any detection of a possible malfunction.

For a robust code all errors are detectable. For a binary systematic (n, 2k, R) robust
code any error is masked with a probability of no worse than R/2r when the messages are
randomly chosen and uniformly distributed. Moreover, since the detection of each error is
message dependent, the error masking probability decreases the more messages the error
affects. Figures 5 show the effect of error detection when an error is stationary for multiple
messages. The probability of detection increases exponentially with the the number, t, of
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Figure 5: Percentage of errors detected for (a) 8-bit robust duplication
after t=2 and 3 messages (b) (72, 264, 256) robust code (c) partially Robust
Hamming code after t=2 data

different data being affected by the same error. For robust duplication, as is shown in
Figure 5a, which results in a 2-robust error-detecting code all possible errors are detectable
if they remain constant for t ≥ 3 messages. The error detection profile for t = 2 messages
for the (72, 264, 256) robust code is shown in Figure 5b. After two messages the probability
of masking an error is reduced to 2−16 for any error.

Likewise, Figure 5c shows the probability of detecting an error for the partially ro-
bust (72, 264) extended Hamming code when an error is present for t = 2 different mes-
sages. While the application of the non-linear transformation on the redundant bits of
the extended Hamming code does not result in a completely robust code, the number of
undetectable errors is reduced from 2k to 2k−r and the probability of error masking is
reduced when the error is present for multiple messages, a property not found in the linear
Hamming code.

Robust codes can offer an advantage over the classical linear error detection in the
latency of fault detection providing the system with and earlier notification of malfunction.
The detection properties of linear and robust codes are compared for two metrics in the
next two subsections.
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6.2.1 Failure Detection Probability

For many reliable systems it is critical to detect as many occurrences of a failure as possible.
Multiple instances of the same error for multiple consecutive messages are likely to occur
due to a single fault in many devices. The larger the laziness L(e) of errors in a channel
the longer is the average span of the errors or rather the more likely that the error will
affect more than one message. Detection of at least one instance of the error in its span
allows for a detection of a failure.

For a classical linear error detecting code the laziness of a channel does not improve
the error detection probability of the code. That is, if the error is masked for the first
message the error will be masked for the rest of the messages within the span of the error.
Hence if the probability of masking an error for one message is Q(e), the probability of
masking the whole span is Q(e) regardless of the laziness of the error for the linear code.
If a failure results in an undetectable error with a high laziness, the error can affect many
messages and the system will have no indication that a failure occurred. Classical linear
error-detecting codes do not take an advantage of repeated manifestations of an error.

For a robust code the probability of detecting an error increases as the error affects
more messages or rather as the span of the error increases. Since the error detection of
error is data dependent, the more messages the error affects the higher the chances of
detecting the error at least once within the span.

If the probability of masking an error e for a a robust code for a single message is Q(e)
then the probability that an error will be masked for its entire span is

Q(e, L(e)) = Q(e)(1− L(e))
∞∑
i=0

L(e)iQ(e)i (9)

assuming as before that messages are equiprobable, the geometric series can be simplified
to

Q(e, L(e)) = Q(e)(1− L(e)) +
Q(e)2(1− L(e))L(e)

1−Q(e)L(e)
. (10)

For the robust codes as the L(e) increases the probability of detecting the error at
least once in the span of the errors increases as well, providing for a higher likelihood of
detecting failures that can manifest themselves as repeating errors.

6.2.2 Failure Detection Latency

Minimizing latency of failure detection, the time between when a failure manifest itself as
a nonzero error and the when it is detected, is another important consideration for on-line
detection.

When a failure within a device results in erroneous outputs it is important to reduce
the number of erroneous messages which will be processed until the failure is detected by
detecting an error. The detection latency for robust codes is not affected by the laziness
L(e) of the manifested errors. The latency of detection for classical linear codes, however,
increases as the laziness of errors increases.

To quantify this metric we analyze linear and robust codes with respect to the prob-
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ability of detecting at least one error in a span of erroneous messages assuming an error
laziness L(e) in the channel.

For a linear code the probability of detecting at least one error in a span of T mes-
sage/error pairs is dependent on the number of different errors present within the span. If
in the span of T error/message pairs only t errors e1, · · · , et were unique the probability
of masking all errors within the span is

∏t
i=1 Q(ei). The larger the laziness of errors in a

channel the fewer distinct errors will be observed and the error detection latency of the
linear code will degrade as laziness of errors increases.

For a robust code on the other hand, the detection latency is not affected by the laziness
of the errors. For a robust code it is the number of different message/error pairs which are
observed and not the number of different errors which affect the latency of detection. In
this case the probability of masking all errors for T message/error pairs is

∏T
i=1 Q(ei) if all

messages within the span are unique.
As the laziness increases the robust codes detection latency remains constant while

there is a increase for linear codes.

6.3 Robust Check-Point Verification

Robust codes can be used to provide a guaranteed level of protection against an unbounded
error model in data verification applications. Large sets of data can be reliably compressed
and compared at remote locations using robust codes providing a provable guarantee of
detection of set differences while minimizing communication complexity when no limits on
errors are assumed.

To illustrate the data verification application consider a system designed for high re-
liability in which remote machines perform identical computations on identical data sets.
The computations of one machine are mirrored by another remote and possibly different
machine. To ensure reliability the remote machines can exchange intermediate results of
computations at specific checkpoints in the program which is executed by both machines
to ensure that no errors occurred. To make the checkpoint verification efficient the large
intermediate data sets (e.g. contents of cache memories) cannot be directly exchanged but
require compression before verification.

For the data used in computations even a single error or fault may result in large
number of errors in the final results. In most cases, the exact error characteristics of the
intermediate computations are are very difficult to predict or estimate even in the presence
of single transient faults as errors can accumulate after several computations.

Robust codes can be used in such a situation to compress and verify remote data with a
minimum probability of error masking regardless of the number of differences of the results
of the intermediate calculations at the two remote machines. The encoding function of a
systematic robust code can be used to compress the k bits into a smaller r bit signature
(r << k) that can be used to verify the equality of the remote k-bit data to that of the
local copy. The verification based on the compression using robust codes can provide for
more uniform verification characteristics than a methods using compression based on linear
error detecting codes which have been used in [14].

Data compression for verification using robust codes can be performed as follows. As-
sume machine A want to verify a checkpoint of large fixed length dataset X of k bits with

14



a remote machine B. To verify the consistency of the two data machine B compresses its
dataset into r (r << k) bits by generating a r-bit signature in such a way that the k
bits of the original data and the r-bit signature on machine B is a codeword of systematic
(k + r = n, 2k, R) robust code. Machine B then sends only the data r-bit signature to the
machine A. Machine A can then generate a r-bit signature for its own data set and com-
pare the signature to the one received from machine B. We will call this approach robust
check-point data verification.

Theorem 6.1 For robust verification of a k bit data set based on a systematic (n, 2k, R)
robust code (if only one of the machines has an error in its data set) the probability that
the error will be missed during verification is at most R/2k.

Proof Distortion e that affects only one of the machines will be masked if for the compres-
sion function f and dataset X the following relation is satisfied f(X + e) = f(X). From
Theorem 4.1 any (n, 2k, R) systematic Robust code can be defined by the nonlinearity of its
encoding function. For a systematic (n, 2k, R) Robust code the nonlinearity of the encoding
function is Pf = R/2k where Pf = max0 6=a∈GF (2k) maxb∈GF (2r) Pr(f(x + a)− f(x) = b).

We note that for any verification method based on linear compression the are 2k unde-
tectable distortions where the probability of masking is one.

In the case when both data sets A and B can both be distorted there are errors which
cannot be detected. If both of the machines have an error in their computations then there
are 2k − 1 possible errors which are undetectable. For any verification method which uses
linear compression there are 2k2k−r such errors.

Example 6.2 Consider the case of two remote machines computing on a data set of k =
224 bits. To verify consistency between the two data sets one machine computes the r-bit
signature of the k bits based on the encoding function of a systematic robust code. Taking
the quadratic systematic robust code ( Construction 4.1 ) as an example, one machine would
compute the quadratic signature which would correspond to the robust code with the desired
detection parameters and redundancy. Using encoding based on a (224 + 64, 2224

, 2224−64)
robust code the k = 224 data bits are compressed into r = 64 bits for transmission and the
probability of masking any error is at most 2−64. The computation of the signature requires
one 64-bit multiplier and one 64-bit adder/accumulator in GF (264 which should be used
for 217 clock to compute the signature.

7 Conclusions

In this paper we describe a new class of error detecting codes and apply them for error
detection in communications, storage and for robust check-point verification. As opposed
to the approaches based on standard linear codes the proposed approach provides for equal
protection against all possible errors. This may be very useful when errors at the outputs
of the channel or device we are protecting are difficult to predict. The proposed approach
is most efficient for repeating errors. In this case it was shown that the proposed approach
is more efficient than the approaches based on linear codes. For example, the proposed
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robust codes with n = 72 or n = 128 and k = 64 are shown to be viable alternatives
to widely used [72, 264, 4] extended Hamming code or [128, 264, 2] duplication code for the
design of memories with self-error detection. For check-point verification robust quadratic
codes with r = 64 are shown to be viable alternatives to the corresponding linear code.
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