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Consider a combinational device with m inputs where each output 1is
a Boolean function of at most s binary input variables. The problem of
exhaustive testing of such devices ([1] -~ [5]) can be formulated as
follows: construct a binary matrix T(m,s) (rows of T(m,s) are test
patterns) with m columns such that all 2° possible binary vectors

appear in each s columns of the matrix. A test with T{m,s) as a test

matrix is called s—exhaustive,

It has been shown ([1],[4]) that there exist s-exhautive matrices
with a number of rows which grows asymptotically with m as log m (for
any fixed value of s). The lower bound on the number of rows also
yields the same order of growth. However, no constructiomns of

s—exhaustive tests are known which satisfy these (non-constructive)

bounds.

In this paper an iterative procedure for constructing s-exhaustive

tests is suggested in which the number of test patterns grows with m as

1ng“m. where w can be chosen arbitrarily close to 1, i.e. arbitrarily

close to the theoretical bound.

Let T(g,s) be an s—-exhaustive binary matrix with N rows and g
columns. Denote columns of T(g,s) by numbers 0,1,..., (g-1). Consider

a g-ary matrix Q =Ilqijll with n rows and m columns (m>q), where

matrix elements qijezqf: {0,1,...,(g-1)}. If now we replace each

matrix element of 0 by a corresponding column of T(q,s), we obtain a

binary matrix M with nN rows and m columns.




Lemma 1. The matrix M is s-exhaustive if the matrix Q¢ has the

following property:

Consider any submatrix S of Q with n rows and s columns. Consider
now any submatrix R of S with n rows and r columns (r =1,..., |872]).
Denote the matrix elements of R and those of the complementary
submatrix S-R (i.e., of the columns of S not included in R) by,

respectively, a:, and blh (1<i<n, 1<g<r, 1<h<s-r). For any choice of S

and for any chc-i?:e c}f R there exists a row j=3j(S,R) such that a‘i% = bjk
for any g and h. (Here |cJ is the integral part of c).

Consider now the set of binary columns which are all possible
Hamming differences between the columns of matrix Q. (A component of
the Hamming difference is equal to 0 if the corresponding components of
the two columns of Q are equal, and it is equal to 1 otherwise).

Lemma 2. The matrix M is s-exhaustive 1f for any L§2f4j Hamming
differences between the columns of matrix Q there exists a row where
all the elements are egqual to 1.

Let g now be a prime or a power of a prime, let's take m=qk,

k=2,3..., and let columns of Q be the codewords of a linear code
c(n,k,d) over GF(q), where n is the length, k is the dimension and 4 1is
the distance of the code. The following theorem shows how g—-ary linear
codes can be used to construct s-exhaustive tests.

Theorem 1. The matrix M is s—exhaustive if for the corresponding g-ary

linear code C(n,k,d)
als2/4} > n(s®/4] - 1.
The best constructions of this type are given by maximum distance

separable (MDS} codes which satisfy the singleton bound n = d+k-l.




Using the results on MDS codes presented in ([él, Ch. 11} we come to

the following conclusion.

Theorem 2. Let T(g,s) be an s-exhaustive test with N test patterns and

q = pt. where p is a prime, and t = 1,2,... Then for any Kk such that

q > |s°/4] (k-1)
an s—-exhaustive test T(qk,s) can be constructed by use of an MDS code
Cin,k d = n-k+1) over GF{(g) with n = ngf{j (k-1) + 1, The obtained

test quk,sJ has
nN = ([s2/4] (k=1) + 1IN

test patterns.

k

It follows from Theorem 2 that in transition from T(g,s) to T(q ,S)

the number of test patterns grows as in*m, where m is the number of

input variables (i.e., the number of columns in the test matrix), and
log (LSZ/{]- (k-1}+1l)-log k
log k¥ + log 1n g

Since w—1 for increasing k and g, the asymptotical growth of the
number of test patterns can be made arbitrarily close to the

theoretical bound 1n m for any fized s.

On the other hand, it can be shown that the redundancy (n~k)/k

cannot be made arbitrarily small for any construction which uses

k

columns of T{g,s) to buiid a larger s—exhaustive test T{(qg ,s).

Theorem 3. Let T(qg,s) be a s-exhaustive test. Consider a g-ary matrix

O with n rows and qk columns. Then the binary matrix M obtained by




substituting columns of T(q,s) for corresponding matrix elements of Q

cannot be s—exhaustive if

n £ (s-1)(k=-1).
Theorem 3 shows that for s=3 MDS codes give an optimal construction

(n = 2(k-1) + 1) of the considered type.

The complexity of the test generator is considered. It is shown
that a test generator for the tests based on MDS codes can be
implemented with an asymptotically minimal number of gates

L{qk,skvqk. A method for such an implementation is suggested.
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