Robust Residue Codes for Fault-Tolerant
Public-Key Arithmetic

G. Gaubatz, B. Sunar and M. G. Karpovsky
{gaubatz, sunar }@wpi.edu
{markkar }@bu.edu

Abstract

We present a scheme for robust multi-precision arithmetic over the
positive integers, protected by a novel family of non-linear arithmetic
residue codes. These codes have a very high probability of detecting
arbitrary errors of any weight. Our scheme lends itself well for straight-
forward implementation of standard modular multiplication techniques,
i.e. Montgomery or Barrett Multiplication, secure against active fault in-
jection attacks. Due to the non-linearity of the code the probability of
successfully injecting an error does not depend on the error pattern itself,
but also on the data, which is not known to the adversary a priori. We
give a proof of the robustness of these codes by providing an upper bound
on the number of undetectable errors.

1 Introduction

In 1996 Boneh et al. demonstrated painfully how vulnerable straightforward im-
plementations of public-key cryptographic algorithms are to a class of attacks
now commonly referred to as “Bellcore attacks”. In the following years several
simple and “low-cost” countermeasures were proposed by various authors, most
of which were shown to be flawed, depending on the concrete assumptions.
Several more involved protection schemes were proposed and broken, which
demonstrates the need for a robust error detection scheme. A family of system-
atic non-linear error detecting codes derived from systematic linear codes [3] has
been investigated for use in symmetric ciphers like the AES, e.g. in [4] and later
refined in [6]. While these codes work well in the context of symmetric-key al-
gorithms that employ only little more than table look-ups, XORs and byte-wise
rotations, they are virtually unusable within the finite field arithmetic structure
that forms the basis of most public-key algorithms.

During the early years of fault-tolerant computing, residue codes were pro-
posed [9] as a means for checking arithmetic operations for errors, while preserv-
ing the arithmetic structure between operands and their check symbols. The
check symbol in residue codes is computed as the remainder of the operand (or



its negative) with respect to the check modulus, usually a prime. Several vari-
ations such as multi-residue and non-separate (AN) codes were also introduced
early on. Designed for the purpose of detecting only sporadically occuring bit
errors their arithmetic distance is limited to 2 or 3. Mandelbaum [7] introduced
arithmetic codes with larger distance properties, however, with unattractively
large redundancy. Unfortunately, due to the linearity of encoding arithmetic
codes do not offer robustness properties, since any error pattern which itself is
a codeword can not be detected, irrespective of the actual data.

In this paper we propose a non-linear variant of systematic arithmetic residue
codes. Our codes are attractive due to their data dependent and asymptotically
low probability of missing errors. These properties make it nearly impossible for
an adversary to successfully inject faults that are missed by the error detection
network.

2 Adversarial Fault Model

An active side channel attack such as differential fault analysis (DFA) relies
on the manifestation of injected faults as erroneous results which can then be
observed at the output of the device. The error is therefore the difference
between the expected output z and the observed output £ = z + e. In the
following we do not assume that the adversary is limited to any specific method
of fault injection. The only assumption is that direct invasive access to the chip
itself is prevented by some tamper-proof coating, a reasonable assumption, since
this is a common practice, e.g. in the smart card industry.

However, even if the attacker should manage to remove the shielding and
obtain direct access to the chip’s surface [1], a successful fault analysis is still
highly unlikely. Let us assume for a moment that he has the ability to toggle
the state of an arbitrary number of bits with the required spatial and temporal
resolution, i.e. reliably introduce an arbitrary error vector. Due to the data
dependent probability Q(e) of missing an error in the error detection network,
the expected number of attempts to successfully introduce a non-detectable
error is at least 1 max..0(Q(e)). For a sufficiently large digit size k (e.g. 32
bits), this number is on the order of several hundred million trials. While this
number seems low enough to warrant an exhaustive trial and error process,
such an attack can easily be defeated by a mechanism that detects an unusually
large number of errors and simply shuts down the device. Only if the attacker
has the capacity to read out the live state of the circuit and instantly compute
an undetectable error vector the attack will be successful. We note that these
are rather strong assumptions that require a high degree of sophistication and
motivation.

When talking about errors as manifestations of faults, there are two principle
ways of characterization. A logical error is a bitwise distortion of the data,
usually modeled as the XOR of data and error, i.e. £ = z @ e, while arithmetical
errors admit the propagation of carries up to the range limit: & = x4 e mod 2,
where k is the width of the data path. The former is appropriate for storage



dominated devices (register files, RAM, flip-flops, etc.), the arithmetic error
model is more useful for arithmetic circuits such as adders and multipliers. For
the remainder of this paper we will assume the latter, since it helps to simplify
the analysis.

3 Robust Arithmetic Codes

As mentioned before, a class of non-linear systematic error detecting codes,
so-called “robust codes”, were proposed by Karpovsky and Taubin [3]. They
achieve optimality according to the minimax criterion, that is, they minimize
over all (n,k) codes the maxima of the fraction of undetectable errors Q(e)
for e # 0. While they are suitable for data transmission in channels with
unknown characteristics, and also for robust implementation of symmetric-key
cryptosystems with little arithmetic structure, they do not preserve arithmetic.
We thus propose a new type of non-linear arithmetic code, based on the concept
of arithmetic residue codes. We define robustness as follows:

Definition 1. Let C = {(z,w)|z € Zy,w = f(zx) € F,} be an arithmetic
single-residue code with a function f : Zox — Fp to compute the check symbol
w with respect to the prime check modulus p of length r = [log, p] bits. A non-
zero error e € {(ey,ew)|ex € Lo, ey € Zor} is masked for a message x, when
(x4 ez, w+ey) €C, ie iff

f ((z + e; mod 2%)) = f(z) + e, mod 2" . (1)
The error masking probability for a given non-zero error is thus

{z|(z + ez, w + ey) € C}

Qle) = e . @)

errors. Total robustness is achieved for max..o(Q(e)) = 27". We also call C
e-robust if it achieves an upper bound max..o(Q(e)) < €- 27", where € is a
constant much smaller than 27.

We call the code C robust, if it minimizes mazima of Q(e) over all non-zero
€

In the following we propose a class of non-linear single-residue arithmetic
codes C, based on a quadratic residue check symbol, which achieves e-robustness.
Since in practice total robustness is hard to achieve, we will from now on refer
to e-robustness simply as robustness.

Theorem 1 (Robust Quadratic Codes). Let C,, according to Definition 1, with
f(z) := 22 mod p. C, is robust iff r = k and 2¥ — p < ¢, and has the error
masking equation

(z + e, mod 2%)? mod p = w + e,, mod 2" (3)

Proof. To prove robustness we proceed by proving an upper bound € on the
number of solutions of the error masking equation (3), as that directly translates



into a bound on Q(e). The modulo 2* operator from the LHS of (3) stems from
the limitation of the data path to k-bits. This limits the ranges of both the
message and the message error to 0 < x,e, < 2k We can therefore remove
the modulo 2% operator by distinguishing between the two cases z + e, < 2F
and = + e, > 2%, Similarly, an error is masked only if the faulty check symbol
w < p, so for k = r we can distinguish between the three cases w + e,, < p,
p<w+e, < 2F and 28 < w4 e, < 2 +p. This allows us to simplify the RHS

of (3).
1. Solutions = < 2F — e,: An error (e, e,) is masked iff
(z + e;)? mod p = w + e,, mod 2F
Simplifying the RHS we have the following three cases:
(a) If w < p — ey, the error is masked iff
(z +e.)? mod p=w + ey, (4)

If e = (p,0) eq. (4) has exactly 2¥ — p solutions. For e, # p and
es > 2F—p there exists at most a single solution; at most two solutions
exist in the case of e, < 2F — p.

(b) If p — e < w < 2%, the error will never be masked, since a check
symbol w > p will always be detected.

(c) For w > 2% — e, the error will be masked iff
(x4 ex)? mod p=w + e, — 2~ . (5)
Eq. (5) has at most two solutions.
2. Solutions z > 2% — e,: An error (e, e,) is masked iff
(z + e, — 2%)? mod p = w + e, mod 2*
For the RHS we distinguish the following three cases:
(a) If w < p — ey, the error is masked iff
(4 e, —2%)2 mod p = w+ e, (6)

Eq. (6) has at most two solutions, unless we have an error e = (2% —
p,0), in which case there are 2F — p solutions.

(b) If p — ey, < w < 2%, the error will never be masked, since a check
symbol w > p will always be detected.

(c) For w > 2% — ¢,, the error will be masked iff
(x+ex —2°)2 modp=w+e, — 28 . (7)

Eq. (7) has at most two solutions.



Q(e) is determined by the number of solutions to the error masking equation
(3). A simple counting argument involving the cases above provides us with an
initial, but somewhat weak bound:

There are at most 2¥ — p + 2 solutions to (3) for errors of the form
(p,0) or (2¥ — p,0), and at most 8 solutions for all other errors.

A tighter bound can be established by differentiating more precisely in which
cases two solutions can occur. We omit the proof here due to space restrictions
and only give the result.

There are at most 2F —p+ 1 solutions for errors of the form e = (p,0)
or e = (2¥ — p,0), and 4 solutions for all other error patterns.

We thus have max.o(Q(e)) = 27% - max(4,2% —p + 1) O

The existence of practical robust codes for cryptographic purposes can be
illustrated with the help of the prime number theorem. The idea here is that
for fault-tolerance in an adversarial situation, the probability of not detecting
an error should be insignificantly small. As we saw from the proof, in the best
case we have a probability of at most Q(e) = 4 -27% = 27542 of not detecting
an error (assuming a uniform distribution of messages). Therefore, a Q(e) that
makes insertion of an error infeasible for an attacker, requires a sufficiently large
digit size k and a prime p close enough to 2* so that the difference does not
increase Q(e) too much. For example, for k = r = 32 the k-bit prime closest to
2% i5 232 — 5, thus bounding Q(e) by (2 —p+1)-27% = 3.2731. Asymptotically,
the prime number theorem guarantees the existence of a prime p close enough
to 2F.

4 Robust Arithmetic Operations

In the previous section we proved the robustness of quadratic codes for digits
of size k bits. We now wish to apply them in a generalized framework for
multi-precision arithmetic over the positive integers.

Due to the range limitation of the information bits to 0 < x < 2% we need
to handle any overflow resulting from arithmetic operations. This may be a
carry bit generated by the addition of two k-bit operands, or the 2k-bit result
of a multiplication. The new digits that are created in this manner will need
their own check symbols, which cannot be derived from the input operands’
check symbols alone. Thus they need to be derived purely from the information
bits of the new digits, creating a potential loophole for the insertion of an
error. This can be avoided by re-computing the joint check symbol from the
newly generated individual check symbols and comparing it to the output of
the predictor. This re-computation represents an integrity check which allows
us bridge discontinuities introduced by interleaving mixed modulus operations,
here the check modulus p and the implicit range limiting modulus 2*. Once
the integrity check is in place we can perform standard arithmetic operations



and implementing an algorithm like Montgomery’s for modular arithmetic is
straightforward.

In the following we show how this check may be implemented for various
arithmetic primitives. Let (a, [a?|,) and (b, [b?|,) denote encoded input operands
a and b, where |2%|, is short-hand notation for 2 mod p. We also introduce
mnemonics for these primitives, in order to tie them into a robust variant of the
digit serial Montgomery multiplication algorithm in the next section.

Addition (RADD and RADDC): RADD (Robust ADDition) and RADDC
(Robust ADDition with Carry) compute the sum of the two input operands.
This is depicted in Figure la. For reference, the operators @, and ®, stand for
addition and multiplication modulo p, respectively. The sum ¢ = a + b (4cin)
may be larger than 2 by at most a single bit. Let ¢;, denote this new carry, and
¢; the k-bit sum. The predictor computes the joint check symbol |¢?|, as the sum
of the check symbols and the product of the operands |c?|, = |(a+ b+ cin)?|, =
lla®|, + 62|, + 2(ab + cin(a + b)) + cin|p. For error detection we first create the
check symbol for the k-bit sum |c¢?|, (the check symbol for the carry bit is the
carry bit itself). Then we re-compute the joint check symbol as

[ = len2” + )l
k k
= |Ch'|22 |p+Ch'|Cl|p'|2 +1|p+|cl2|P|p (8)
= e 2%+ ¢ '2k+1|p+|012|p|p (9)

If the check |c?[% = |c?|, holds, then the result is deemed to be free from errors.
The resulting carry from both RADD and RADDC is held in a register local to
the addition circuit. If the following addition operation is RADDC, then that
carry is used for computation of the new sum. If it is RADD, then a zero carry
is used.

Multiplication (RMUL): The product of @ and b and its joint check symbol
is (¢, |c2|,) = (a-b,|la®|, - [b*|p],). However, the previous tuple is not a code
word, since ¢ may exceed 2¥. We therefore split ¢ into two halves ¢, and ¢,
both of which are within the desired range:

c:ch-2k+cl Ogch,cl<2k.

We then compute the check symbols |c7|, and |c}|, separately, and establish
their integrity with the composite check symbol |c?|,:

|CQ|; = |(ch~2k+cl)2|p

|c,2L-22k +cp o - 28T +012|p

||Ci|p : |22k‘p + |Ch|p : |Cl|p : |2k+1‘p + |Cl2|p|p

Observe that the values |22%|, and |2F+1|, are constant for a given implemen-
tation and that |cj|, and |¢|, are intermediate results from the computation of



RADDC? C L a [e,] [ o | w2

on [1edb]| e [t
(b)

Figure 1: Robust addition (a) and multiplication (b)

the separate halves’ check symbols. Hence we have all the necessary ingredients
to re-compute the joint check symbol as |02|; and compare it to the instance
obtained from the predictor. If the comparison passes we assume there were no
errors.

Shifts, Subtraction, Logic Operations: We can apply similar re-computation
techniques for other operations. Out of space considerations and since we do
not need these other operations for the next section, we skip their details at this
point.

Error Detection: The comparison between the predictor output and the
re-computed joint check symbol is an easy target for an attack if carelessly
implemented. We therefore require implementation as a totally self-checking
checker [8]. The same holds for any other integrity checks.

5 Robust Montgomery Multiplication

We now show how to apply our code to a digit serial Montgomery Multiplication
scheme. A good overview over several variants of the Montgomery algorithm is
given in [5]. In this example we will refer to the finely integrated operand scan-
ning (FIOS) variant. It is the most suitable one for hardware implementations
since it can be used in a pipelined fashion offering some degree of parallelization
[2].

In the following we require some basic familiarity on part of the reader with
the way of how Montgomery multiplication works. To review briefly: the ob-



jective is to compute the modular product of two N-bit numbers with respect
to the N-bit modulus M. Montgomery’s algorithm requires the initial trans-
formation of all operands into residues of the form £ = R mod M and some
final transformation back = #R~! mod M. Here R is the Montgomery radix,
usually 2¢ where e = [N/k] represents the number of digits per operand.
Without loss of generality we assume that the transformation into the Mont-
gomery residue system has already taken place and we operate entirely within
the residue system, so in order to simplify notation we will refer to a residue &
simply as x.

The k-bit digit serial FIOS Montgomery algorithm (Alg. 1) takes as its inputs
the e-digit vectors a and b, and computes the product MM(a,b) = a-b- R~! mod
M. The value M| is pre-computed whenever the modulus changes. In terms
of notation, a pair (C,S) represents the concatenation of two variables as the
destination for the result of an operation. Furthermore, the variable C is slightly
larger than the other variables, i.e. k 4+ 1 bits. This is so to efficiently handle
extra carries from the accumulation of C, d; and the two products a;b; and
M;U. The division by R is handled implicitly by the algorithm. For example,
in line 4 the sum (C, S) + MyU is assigned to (C,S), but in the following step
S is dropped. This shift to the right by k bits, repeated e times, results in
division by R. As one can easily verify, Algorithm 1 consists only of very basic

Algorithm 1 k-bit Digit-Serial FIOS Montgomery Multiplication
Require: d = {0,...,0}, M} = —MO_1 mod 2
1: for j=0toe—1do
2: (C, S) <~ aobj —+ do
3. U <« SM{ mod 2*
4 (C,)8) < (C,S)+ MU
50 fori=1toe—1do
6: (C, di—l) <~ O+0Jibj + M;U + d;
7.
8
9:

end for
(de, defl) =C
end for

addition and multiplication steps. We may therefore obtain a robust digit-serial
Montgomery algorithm (Alg. 2) simply by mapping all arithmetic steps to our
robust arithmetic primitives introduced in the previous section. Additionally
we insert intermediate checks during which we verify the integrity of operand
values and their check symbols. This is indicated by a call to the pseudofunction
Check((z, |z?[,),...). Although not indicated in the algorithm description, we
assume further that the error signal generated by the the internal integrity check
within the arithmetic primitives RADD, RADDC and RMUL, is also constantly
evaluated. In the case of an error the algorithm is aborted by an error handler.

Some comments about the robust algorithm: Algorithm 2 appears much
longer than Algorithm 1, since the latter combines multiple arithmetic opera-
tions into a single step. Also, while algorithm 1 handles carries implicitly using



a larger variable C, the robust algorithm is restricted to a digit size of exactly
k bits. Thus, extra carry handling steps are required. In Alg. 2, line 6, the des-
tination of the top half of the result is not assigned: (—, —). This is equivalent
to computing the result modulo 2, as in Alg. 1, line 3. Similarly in Alg. 2, line
8, where the lower half of the result is dropped due to the implicit shift to the
right. The point of performing the addition is purely to determine whether or
not a carry is generated.

Algorithm 2 Robust Montgomery Multiplication
Require: d = {(0,0),...,(0,0)}, M} = —M;* mod 2F
1: for j=0toe—1do
2 if Check((ao, |a3],), (b, [b2],), (do, [d31,), (MG, |(M§)?],), (Mo, |MZ],) then
3 (T, |T12‘:0)7 (To, |T02‘p)) < RMUL((ao, |a%|P)7 (b5, ‘bglp))
£ (To,|T¢ly) < RADD((To, |T3],), (do, |dz]))
5 (Th,|T?],) < RADDC((T3, [T7],), 0,0))
6: (=), (U7 ‘Uzlp)) < RMUL((To, |T02‘P)7 (M(/), |M(I)2|P))
7.
8
9

((Ts,|T31p), (T2, |T5)) <= RMUL((Mo, |M§]p), (U, |U?[))
(=, =) <= RADD((To, |75 ,), (T2, |15 ]p))
(To, |T5|p) <= RADDC((Th, [T?,), (T, | T3 1))

10: (T1,|TE|p) < (carry, carry)

11: fori=1toe—1do

12: if CheCk((ai’ |a12‘:0)7 (bj7 |b§|1))7 (dlv |d?|P)7 (U7 ‘U2|P)7 (Mi7 |MZ2|P)) then
13 (To, |T31,) <= RADD((Ty, [T31,), (d; |d2],)

14: (T1,|T2|,) <= RADDC((T4, |TE|,), (0,0))

15 (T4, [T2],), (T, 1T3],)) <= RMUL((as, [a21,), (b, [63],)
16 (To, [T31,) <= RADD((Ty, [T31,), (Ts, |T2],))

17 (T, [T2,) < RADDC((T,[T2],), (T3, [T31,))

18: (T, |TZ|p) < (carry, carry)

19 (T4, [T2],), (T, [T31,)) < RMUL((M;, [M2],), (U, [U2],))
20: (di-1,|d?_1]p) <= RADD((To, |15 ), (T3, |T5]5))

21, (T, [T2],) <= RADDC((T3, [ T2,), (Ts, |T21,)

22: (T1,|T2|,) < (carry, carry)

23: else

24: ABORT

25: end if

26: end for

2 (e, |d2a]y) = (To, |T3],)

2% (de|d2]y) < (T1,|T2])

29:  else

30: ABORT

31: end if

32: end for

6 Conclusion

We have presented a novel systematic non-linear arithmetic code robust against
adversarial injection of faults. Based on this code we have presented arithmetic



primitives for computation with encoded digits. Integrity of the code words is
assured even when overflows occur. We have further used the example of digit
serial Montgomery modular multiplication to demonstrate how robust arith-
metic can be deployed for fault-secure multi-precision public-key computations.

The drawback of our method is easily found. The complexity of a) predicting
the joint check symbol and b) re-computing the joint check symbol from the re-
sulting digits after each operation, will have a serious impact on the performance
of our scheme. However, the reader should also keep in mind that we clearly
prioritize robustness over performance. Given the increased vulnerability level
of mobile and ubiquitous security devices, and the progress in adversarial fault
analysis techniques, we believe this priority assessment is justified. Moore’s
law fill further reduce the impact that the performance gap has on the user
experience.

References

[1] R. Anderson and M. Kuhn. Tamper resistance - a cautionary note. In
Proceedings of the Second Usenix Workshop on FElectronic Commerce, pages
1-11. USENIX Assoc., USENIX Press, Nov 1996.

[2] G. Gaubatz. Versatile montgomery multiplier architectures. Master’s thesis,
Worcester Polytechnic Institute, Worcester, Massachusetts, May 2002.

[3] M. Karpovsky and A. Taubin. New class of nonlinear systematic error de-
tecting codes. IEEE Transactions on Information Theory, 50(8):1818-1820,
August 2004.

[4] M. G. Karpovsky, K. J. Kulikowski, and A. Taubin. Robust protection
against fault-injection attacks of smart cards implementing the advanced
encryption standard. In L. Simoncini, editor, Proc. Int. Conf. Dependable
Systems and Networks (DSN’04), pages 93-101. IEEE Computer Society,
TEEE Press, 2004.

[5] C.K. Kog, T. Agar, and B.S. Jr. Kaliski. Analyzing and comparing mont-
gomery multiplication algorithms. IEEE Micro, 16(3):26-33, June 1996.

[6] K. Kulikowski, M. G. Karpovsky, and A. Taubin. Robust codes for fault
attack resistant cryptographic hardware. In L. Breveglieri and I. Koren, ed-

itors, 2nd Int. Workshop on Fault Diagnosis and Tolerance in Cryptography
(FDTC’05), Sep 2005.

[7] David Mandelbaum. Arithmetic codes with large distance. IEEE Transac-
tions on Information Theory, 13(2):237-242, April 1967.

[8] D.K. Pradhan (ed.). Fault Tolerant Computing — Theory and Techniques,
volume 1. Prentice-Hall, New Jersey, 15! edition, 1986.

10



[9] T.R.N. Rao and O. N. Garcia. Cyclic and multiresidue codes for arithmetic
operations. IEEE Trans. Inf. Theory, 17(1):85-91, Jan 1971.

11



