
 1

Cycle Breaking in Wormhole Routed  
Computer Communication Networks 

Mehmet Mustafa 
Verizon Laboratories 

40 Sylvan Rd, Waltham, MA 02451 
E-mail: mehmet.mustafa@Verizon.com 

Mark Karpovsky, Lev Levitin 
Boston University, College of Engineering  

8 St. Mary’s Street, Boston, MA 02215  

 
Abstract 
Because of its simplicity, low channel setup times, and high 
performance in delivering messages, wormhole routing has been 
adopted in second generation multicomputing environments [1-
3]. Furthermore, irregular topologies formed by ad-hoc 
interconnection of low cost workstations provide cost effective 
alternative to massively parallel computing platforms. Switches 
used in these networks of workstations, NOWs, implement 
wormhole routing [1, 12]. However, due to a number of channels 
being held up while requesting others, wormhole routing is 
susceptible to deadlocks.  In this paper we investigated 
deadlock-free routing algorithms in wormhole routed irregular 
network topologies. We used a modified version of the Turn 
Prohibition algorithm [4] to break cycles and prevent channel 
deadlocks. We then used shortest path algorithm to determine 
the routing tables for each computational node in the topology, 
avoiding prohibited turns along the paths from source to 
destination. We used EMA to import topologies into Opnet and 
simulated for message delivery using both our approaches and 
for the competing Up/Down [1] approach. We then repeated this 
sequence for hundreds of different topologies and determine the 
average latencies for all algorithms. Our results show that the 
modified turn prohibition based routing has outperformed both, 
the original Turn Prohibition and the Up/Down algorithms.  
 
Introduction 
Because of its simplicity, low channel setup times, high 
performance in delivering messages, wormhole routing has been 
adopted in second generation multicomputing environments [3]. 
Because of their incremental scalability, workstation clusters, 
also known as Network of Workstations, or NOWs, have 
enjoyed considerable popularity [3, 5, 6]. However providing, 
deadlock-free routing in irregular networks has proven to be a 
difficult problem. Many routing algorithms for regular 
topologies, such as meshes, hypercubes, tori etc, have been 
developed providing deadlock free, low latency message 
delivery [6-11]. Providing deadlock freedom in irregular 
topologies with low latencies for delivering messages, in a cost 
effective manner is not trivial [5]. Authors in [5] assumed virtual 
cut-through switching in the routers which had no routing tables. 
All worms or messages use wormhole routing until it is blocked 
at a router. Upon blockage, the message is absorbed in its 
entirety at the router and forwarded later when the requested 
outbound channel gets freed up. In their approach, authors used 
a spanning tree for delivering messages, hereby avoiding 
deadlocks. However, any spanning tree based approach is not 
very efficient in terms of link utilization. In a network of N  
nodes only 1N −  links are used with root node links being most 

heavily loaded. The Up/Down routing approach, first reported in 
[12], is also a spanning tree based approach. However, in 
Up/Down routing, nodes are labeled in a partial order with the 
root having the smallest label and the leaves having the largest 
labels. Authors prescribe direction to both tree links and non-tree 
links, latter referred to as cross-links. Routing is then permitted 
to follow a path formed by zero or more up-links followed by 
zero or more downlinks. One disadvantage of this approach is 
that the construction of the best spanning tree is a hard problem. 
As in any spanning-tree based approach, links of the root node 
usually are most heavily used. In addition, given a topology and 
a spanning tree, selection of the root node would result in 
unpredictable routing performance [14, 19]. 
 
Turn prohibition was first reported in [10, 13], where turn model 
was thoroughly investigated for multi-dimensional meshes, and 
some turns were prohibited to prevent all possible deadlocks. 
Authors considered only 90 degree turns which are sufficient for 
meshes to prevent deadlock formation. In [4, 14-18] authors 
generalized the notion of turn, and developed an algorithm to 
construct minimal sets of prohibited turns, to break all cycles 
and prevent deadlock formation. Authors also established that 
the fraction of prohibited turns could be used as one of the 
criteria of efficiency of a routing strategy. In [19] authors 
extended the use of turn prohibition as described in [4] to 
general topologies and applied the Network Calculus techniques, 
which, until then, used to be strictly for feed-forward routing 
networks. 
 
In this paper, we modified the selection rule in the original Turn 
Prohibition algorithm, to investigate if the fraction of prohibited 
turns could be further improved. Motivation for this 
investigation is shown in Figure 1, adopted from [20] in which, 
we show the percentage gain in maximum sustained throughput 
versus the percentage improvement, i.e. reduction, in the fraction 
of prohibited turns. This plot, which is approximately linear, 
predicts an improvement of 7.7% in the saturation point per 1% 
reduction in the fraction of prohibited turns. In order to provide 
an unbiased comparison of competing routing algorithms, we 
developed a wormhole node model in Opnet, where flit level 
simulation has been used to determine the message latencies, 
and the saturation points for each topology and each algorithm. 
In our implementation of the model, we assume only one flit 
storage at the router per input port. We use routing tables 
constructed for each routing algorithm to determine which 
output port to use to forward the flits. Since our interest is to 
compare only the impact of fraction of prohibited turns on 
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message latency, we assumed that routers are ideal, making 
atomic routing decisions with no table lookup latency.  
 
In the rest of the paper, we briefly present the mathematical 
theory of turn prohibitions and the modified turn prohibition 
with examples, properties and complexities, and high level 
simulation results in the next section. In the subsequent section 
we discuss Opnet models for the wormhole node, random 
topology generation, use of EMA to import the topologies into 
Opnet environment, and performance enhancements for 
simulation. We present our simulation results in the subsequent 
section followed by conclusion and recommendations for further 
investigations. 
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Figure 1  Improvement in the Saturation Point with 

Reduction of Fraction of Prohibited Turns as Adopted from 
[20] 

 
Turn Prohibition: A Mathematical Model 
In this section we provide a brief and simplified overview of 
Turn Prohibition [4]. We assume that the network topology is 
represented by an undirected, connected graph ( ),G V E=  of 

N V=  nodes and M E=  edges. A turn is defined as a three-

tuple ( ), ,a b c , where , ,a b c V∈  are nodes in the network in 

which ( ) ( ), , ,a b b c E∈  are edges in G  incident on node b .  

We assume that turns are symmetric in that if a turn ( ), ,a b c  is 

prohibited so is the turn ( ), ,c b a . In enumerating turns, we 

count turns ( ), ,a b c   and ( ), ,c b a  as one and the same. If a 

node ia  has degree id  then the total number of turns in the 

graph is ( )
2

i

i

d
T G =

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ , where the summation is taken over 

all nodes. Not surprisingly, all deadlock free routing algorithms 
have prohibited turns. For example in spanning tree based 
routing algorithm, only turns along the tree are permitted and the 
rest of the turns are prohibited. In the Up/Down routing 
algorithm, after the spanning tree is constructed and nodes are 
labeled in partial order, in which the root has the smallest label, 
turn ( ), ,a b c  is prohibited if label of node b  is greater than the 
labels of both nodes a  and c .  In the simplified version of the 
Turn Prohibition approach which is fully described in [4], first a 
minimum degree node is selected which has neighbors with the 
largest degree sum. According to the original Turn Prohibition 

algorithm, authors minimize the fraction
( )1 / 2a a

i
i nbors

d d

d
∈

−

∑
, where 

the summation is over all neighboring nodes of the node a  that 
is being considered.  According to the theory, when such a 
minimum degree node a  is found that satisfies the selection 
criterion, then all turns ( ), ,b a c at the selected node are 

prohibited, and all turns ( ), ,a b c starting with the selected node 
a  are permitted. Therefore, by minimizing the fraction, 
algorithm attempts to minimize the number of turns prohibited 
while simultaneously maximizing the number of permitted turns 
at every step of the algorithm. Application of the original Turn 
Prohibition algorithm is shown in Figure 2, where the prohibited 
turns are shown as arcs between the involved edges at the 
selected nodes. Node labels indicate the selection order. 
According to the original Turn Prohibition algorithm, node 0  is 
selected first and all three turns at this node are prohibited and 
ten turns starting with this node are permitted. For example, 
turns ( ) ( )1,0,3 , 1,0, 4 , and ( )3,0, 4  are prohibited and turns 

( ) ( )0,1,3 , 0,1, 2 ,...  are permitted. At the end of the algorithm, 
this approach prohibits nine turns as shown. With 37 total turns 
in the graph, fraction of prohibited turns becomes 0.243z = .  
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Figure 2 Turn Prohibition Applied to a Simple Graph 

 
Modified Turn Prohibition changed the selection rule in the 
following way. Instead of selecting a node that minimizes the 
fraction, the modified selection process seeks a node with 
minimum degree, which has at least one neighbor with the 
smallest degree. For example in Figure 2, nodes 0, 2, 5, 6, and 7 
are all degree-3 nodes but only nodes 2, 5, 6, and 7 have 
neighbors with degree-3 nodes. On the other hand, the minimum 
degree neighbor of node 0 is 4. The reason for selecting the node 
with minimum degree neighbors is a greedy reasoning in the 
following sense. We select a node a  with minimum degree at 
the current iteration, such that, when the selected node is 
deleted, the remaining subgraph G a−  will be the best one for 
the next iteration of the algorithm. We see, for example that, the 
original Turn Prohibition selection criterion during the first 
iteration selected node 1 which, when deleted would leave 
behind a subgraph with only degree-3 and degree-4 nodes. This 
means that the best that can be done during the next iteration is 
to select a degree-3 node with three prohibited turns. With the 
modified selection rule, any one of the four nodes 2, 5, 6, or 7, 
the subgraph would have at least one degree-2 node and 
therefore the next iteration of the algorithm would have to 
prohibit only one turn. This selection rule having one-step look-
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ahead feature promises to provide a smaller set of prohibited 
turns without adding any additional complexity to the original 
algorithm. Obvious extensions to the modified selection would 
be to have k-step look-ahead with the additional complexity at 
each additional step of the look ahead. For example, we can 
consider 2-step look ahead where when we discover that there 
are multiple nodes satisfying the 1-step look-ahead rule. 
Following the modified turn prohibition approach, one selection 
order would be 6, 2, 5, 7, 1, 0 with only eight prohibited turns, 
and a fraction of prohibited turns of 0.216z = , which is 12.5% 
smaller than 0.243z = .  It should be noted that the modified turn 
prohibition algorithm is fundamentally same as the original 
algorithm. Both seek to identify a minimum degree node. If there 
are multiple minimum degree nodes then heuristics are used to 
identify which node among the set one should select. Original 
turn prohibition algorithm selects the node which has the largest 
degree neighbors, and the modified turn prohibition algorithm 
selects the node with minimum degree neighbors. Because of 
this, the properties and complexities of both algorithms are 
identical as discussed next.  
 
Properties of Turn Prohibition 
Before we dwell into the experimental work, we review the 
properties of Turn Prohibition. Properties and proofs of the 
properties of the original Turn Prohibition algorithm have been 
discussed in great detail in [4, 14, 17-20] and for space 
considerations will be listed here without any proofs. Reader is 
encouraged to refer to cited papers for the proofs. Both the 
original and the modified Turn Prohibition algorithms create a 
set ( )Z G  of prohibited turns. Following properties can be 

proven for the set ( )Z G : 

 (a) Any cycle in G  has at least one turn included in ( )Z G . 

 (b) The set ( )Z G  is irreducible; deletion of any turn from 

( )Z G  to obtain a new ( )'Z G will create at least one cycle in 

which would have no turns included in the ( )'Z G . 
 (c)  Connectivity of the is maintained after prohibiting the 
turns in ( )Z G . 

 (d) ( ) ( ) / 3Z G T G≤  where ( )T G  is the set of all turns in 
graph G . 
 (e) Computational and memory complexities of the Turn 
Prohibition algorithm is ( )2O N ∆  and ( )O N  where N  and ∆  
are number of nodes and the maximum node degree in the 
underlying graph. 
 
First property (a) implies that all cycles in the given graph are 
broken. Second property (b) asserts that the set of prohibited 
turns is irreducible but it does not claim that the set ( )Z G  is of 
minimum cardinality.  Property (d) provides a non-trivial upper 
bound for the fraction of prohibited turns to be 1/3. It should be 
noted that this upper bound on the fraction of prohibited turns 
applies only to the family of complete graphs nG K= .   
 
Routing Table Construction 
Since Opnet environment is used for message delivery in the 
randomly generated topologies, it is necessary to discuss the 

process of generation of the routing tables. Briefly stated, the 
construction of the routing tables involves identification of the 
shortest path between all node pairs that include no turns from 
the set ( )Z G . As discussed in [20] in detail, each router is 
aware of its permitted and prohibited turns. This information is 
represented by a square matrix P  of 1d +  where d  is the 
degree of the node.  In our models port 0 is assumed to be the 
local consumption/injection channel to the local processor and 
that all turns from the local port 0 to any one of the remaining d  
output ports. Matrix P is such that at node a , ( ),aP i j  is 1 if the 

turn ( ), ,i a j  is permitted and 0 otherwise, where ,i j  are the 
input and output ports respectively. It should be noted that P  is 
symmetric and that ( ) ( )0, ,0 1a aP j P i= = . Algorithm constructs 

two tables for each node; the routing table ( ),aR i n  and the 

distance table ( ),aD i n , where, 0,..., ai d=  are the input ports 
and 0,..., 1n N= −  are the destination node numbers. We note 
that since routing table generation depends on the prohibition 
matrix P , it can also be used for Up/Down approach or any 
other algorithm for which the prohibitions can be generated. In 
fact we used the same routing table generation algorithm in our 
work comparing the performances of Turn Prohibition, modified 
turn prohibition and Up/Down algorithms.  Instead of describing 
the algorithm in detail here, we chose to sketch its operation and 
demonstrate it with an example. For more details readers should 
refer to [20]. Routing table contains the output port numbers for 
permitted turns and -1 for routes that are not available.  For 
example in Figure 2, the routing table entries for node 1 will 
mostly be -1, since this node is not a forwarding node due to the 
fact that all turns at this node are prohibited. Only the local 
channel messages could be routed at this node. Distance matrix 

( ),aD i n  at node a contains the lengths of the shortest paths in 
hops for messages arriving at input port i  that are destined for 
node n . 
 
For an intermediate node a , the algorithm estimates the length 
of the shortest permitted path between adjacent nodes of a  and 
the destination node. Router at node a  then would route the 
incoming message from an input port i  to the output port j  
provided that ( ), 1aP i j = . Here we assume that output port j  of 
node a , is the port connecting to adjacent node with the shortest 
path length to destination node. As an example, during the 
construction of the routing table at node 1, ( )5 1, 4 3R =  showing 
that for a message arriving from node 1 on the input port 1i =  to 
destination node 4n = , should be routed on output port 3j = . 
 

Table 1 Routing Table 5 ( , )R i n  at Node 5 of Figure 2 

         n 
i 

0 
 

1 
 

2 
 

3 
 

4 
 

5 
 

6 
 

7 
 

0 3 1 2 3 3 X 2 2 

1 3 X 2 3 3 0 2 2 

2 3 1 3 3 3 0 X X 

3 1 1 2 2 X 0 2 2 
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In Table 1 we show the routing table for node 5 of topology in 
Figure 2 in which we also identified the port numbers for node 
5. Port 0 for the local consumption/injection channel is not 
shown for clarity in the figure. It is interesting to note that a 
message arriving at node 5 from input port 2 destined for node 7 
cannot be delivered and hence the ( )5 2,7 1R X= = − . This does 
not mean that messages are not deliverable. In fact, routing table 
at node 6 will be such that no message destined for node 7 will 
be forwarded to node 5.   
 
The prohibition matrix for node 5 is all ones with the exception 
of entries such as ( ),i i , where input and output port numbers are 
equal.  
 
Distance matrix ( )5 ,D i n  for node 5 is shown below for 
reference. Path lengths for unreachable nodes are represented by 
X = -1 in the table. 
 

Table 2 Distance matrix 5 ( , )D i n  for Node 5 in Figure 2 

         n 
i 

0 
 

1 
 

2 
 

3 
 

4 
 

5 
 

6 
 

7 
 

0 2 1 2 2 1 X 1 2 

1 2 X 2 2 1 0 1 2 

2 2 1 3 2 1 0 X X 

3 2 1 2 3 X 0 1 2 

 
 
High Level Simulations 
High level simulation experiments provided more convincing 
evidence that modified approach would reduce the fraction of 
prohibited turns. In Figure 3, we see that the modified approach, 
in all but very few topologies would result in better results.  
Figure 4 shows the average percent improvement for a number 
of topologies. Given these observations, according to Figure 1 
we expect approximately 30% improvement in the performance 
with the modified turn prohibition when compared with the 
original Turn Prohibition algorithm. 
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Figure 3 High Level Experimental Results for 100 Irregular 
Graphs of 128 Nodes of Average Degree 4 Predicting an 

Expected Gain with the Modified Turn Prohibition Algorithm 
(MTP) over the Original Turn Prohibition Algorithm (TP). 
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Figure 4 Results Showing the Average Improvement of the 

Modified Approach 

 
An OPNET Model for a Wormhole Node 
We used OPNET to develop a simulation model for the 
wormhole node.  Structure of a wormhole message is depicted in 
Figure 5. A typical unicast message has three header flits, where 
the first flit is Destination Address Flit, the second flit is Source 
Address Flit and the third flit is the Message Length Flit. Header 
is followed by zero or more data/payload flits. Last flit in a 
wormhole message is a tail flit, which contains the last payload 
data for the message. We used an 11-bit long packet with two 
fields as our packet format simulating one flit. Three bits wide 
Type field identifies the type of the flit and the eight bits wide 
Data field is the flit payload.  

Data TailMESSAGE

T2 T1 T0 D7 D6 D5 D4 D3 D2 D1 D0

Type Data

FLIT

DAdd SAdd MLen

T2  T1  T0      Flit Type
0     0    0        Data Flit
0     0    1        Dest Address Flit
0     1    0        Src Address Flit
1     1    0        Message Length Flit
1     1    1        Tail Flit  

Figure 5 Wormhole Message Format, Flit Format and Flit 
Types 

 
Wormhole Node Model 
A wormhole node consists of a router and a processor, the latter 
being modeled by two queues; PGQueue for generation of 
messages at the source node, and PSQueue, for consumption of 
messages at the destination node. Router module is responsible 
for forwarding all flits arriving at the input ports to the 
appropriate output ports. Wormhole handshaking [11] is 
implemented using the statwires within the node, and remote 
interrupts with adjacent nodes. Reception of a stream interrupt is 
interpreted as the arrival of a flit. If a flit arrives from the local 
injection channel from the PGQueue module, router uses the 
statwire to acknowledge the receipt and completion of handling 
of the flit. When PGQueue module receives a statwire event, it 
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retrieves the next flit of the message from the queue and sends it 
to the router. When the tail flit arrives from an adjacent router, a 
remote interrupt is used to acknowledge that router is ready for 
the next flit.  

 
Figure 6: OPNET Node Model for a Four-port Wormhole Node 

 
When the Destination Address Flit arrives at a router, it is stored 
temporarily in the flit buffer. Reference to the routing table 
identifies which output port to use. If the output port is busy, the 
header flit is blocked and no acknowledgement is sent to the 
sender. When the output port is finally freed up, it is associated 
with the waiting header flit. If multiple header flits are waiting 
for the same output port that has just been freed up, binding is 
done on a FIFO basis. 
 
In this environment, sending a 200 flit long message would 
involve sending 200 packets; a very inefficient use of resources. 
Because of this we incorporated an optimization mechanism, in 
which, source node processor generates only as many flits as 
necessary for the Source Address flit to arrive at its destination. 
Once the destination is reached, the destination node, knowing 
the sending node address, sends a remote interrupt to the source 
node. When this remote interrupt is received, source node 
generates a tail flit, stores it in the queue and schedules a self 
interrupt. Scheduling of the self interrupt is based on number of 
flits already generated, message length, and the flit transfer time, 
or the flit transmission time. When this tail self interrupt arrives, 
the tail flit is transmitted to the router from the PGQueue. This 
optimization significantly improved the simulation run time 
since for each message of 200 flits; only five to ten flits per 
message are generated and processed.  

 
Figure 7 Process Domain Representation of the PGQueue 

Module of the Processor 

 
PGQueue Module 
In Figure 7 we show the process model of the PGQueue module 
of the wormhole node. The forced init state performs the one -
time setup necessary at the module, reads in the values for the 
run-time attributes, schedules a self interrupt for generating a 
message, and transitions into the only blocking state labeled idle. 
In the idle state, if ROUTER_READY event is triggered, it 
implies that the local router has just sent an acknowledgement 
via the statwire. In this case the PGQueue process sends either a 
flit already in the queue, or if necessary generates one and 
transmits it to the router. In our implementation, we use the 
stream interrupt as the READY signal, and the statwire as the 
ACK signal of the wormhole handshake. When the 
DEST_REACHED event fires, it implies that we just received a 
remote interrupt from the destination, and we schedule a tail flit 
to be transmitted when self interrupt expires. When this self 
interrupt expires, the TIME_OUT macro is triggered, and the 
HANDLE_TIME_OUT is executed. In this function, the tail flit 
is transmitted if the interrupt code indicates so. Otherwise, time-
out implies that time for generating another message has arrived 
and a new worm is generated. 
 
PSQueue Module 
As shown in Figure 8, the process model of the PSQueue of the 
wormhole node processor is very simple. Again, all of the one-
time, module level processing in done in the forcing state called 
init. In the blocking state labeled idle, flits that arrive from the 
local router are handled. Arrival of a flit is triggered by the 
ARRIVAL event, which causes the RECEIVE_FLIT exec to 
run. When run, it stores the flit in the receive queue using the 
wormhole handshaking with the local router. If the incoming flit 
is a Source Address Flit, then a remote interrupt is sent to the 
PGQueue of the source node. If the incoming flit is a tail flit, 
then end-to-end delay is computed and saved and message in the 
PSQueue is discarded. One other activity that takes place in 
RECEIVE_FLIT is monitoring the attainment of network 
stability. PSQueue process, computes the cumulative average 
with every message, and if the stability criterion is reached the 
simulation is terminated. Since we are interested in running 
many simulations on many different topologies, unattended by 
the user, we opted to determine the stability condition in this 
process. We compute the percent difference between the current 
and the previous values for the cumulative running average. If 
this difference is less than 0.1%±  for 300 consecutive messages, 
we assume stability is attained and terminate the simulation. 
Figure 9 shows the time evolution and attainment of network 
stability at low message injection rates, requiring about 1000 
messages. 

 
Figure 8: PSQueue Module of the Processor 
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Figure 9 Monitoring the Attainment of Network Stability in 

PSQueue Module 

 
Router Module 
Router module process model is depicted in Figure 10, where 
we have two blocking states and a forcing state. In Init state,  
router identifies its node number from its name, reads in the run-
time attribute values, identifies the attached PGQueue and 
PSQueue objects, initializes all state variables, dynamically 
allocates memory for routing tables, and reads in the node 
specific routing table. It then transitions to the Identify blocking 
state. In this state, each node identifies its neighbors by sending 
just a Source Node Address Flit to each of its active ports. When 
the router receives all responses from its active ports, it 
schedules a self interrupt with no delay and transitions to the 
next blocking state called Listening.  
 
In Listening state, FLIT_ARRIVAL is defined to be a stream 
interrupt and all flit types are processed by a function 
represented by the HANDLE_FLIT macro. This function calls 
other procedures that handle individual flit types. For example, if 
the flit type is a Destination Node Address flit, then routing table 
is referenced to identify the output port that flit needs to be 
transmitted out of. If the output port is busy then process of 
handling the waiting header flit is blocked. When a tail flit is 
transmitted out on any busy output port, then list of waiting 
headers is examined. If there is a header flit waiting for the 
output port that has just been freed up, then the input port that it 
came from is associated with the, now free, output port and 
binding takes place. When the HANDLE_FLIT macro, identifies 
that the destination node address is equal to its own node 
address, then the local output port to the PSQueue is bound to 
the port delivering the flit. From now on, all incoming flits and 
the tail flit from the associated input port are sent out to this 
output port. With each transmitted flit, router process will send a 
stat wire to the PGQueue object and will be awaiting a remote 
interrupt from the adjacent router. As discussed earlier, 
wormhole handshaking takes place at the router at three 
interfaces; first between the two adjacent routers, second 
between the PGQueue and the local router, and third between the 
PSQueue and the local router.  
 
The transition event called ACK is defined to be a remote 
interrupt from an adjacent node. Router process identifies the 
adjacent node by the interrupt code and interprets it to mean that 

remote node is ready for the next flit. All remote interrupts are 
processed by the function defined in the HANDLE_ACK macro.  
 
PSQUEUE_READY transition event is defined to trigger when 
a statwire interrupt is received from the PSQueue module, 
indicating that it is ready for the next flit. This interrupt is 
managed by the function represented by the HANDLE_SWIRE 
macro. 
 
The TIME_OUT macro is for debugging purposes and is not 
used.  
 
Topology Generation 
One important requirement in our research is the generation of 
large number of random topologies with given specifications. 
We developed a topology generator which is capable of 
generating topologies with given average and standard deviation 
for the node degree, number of nodes and the bisection width for 
the topology. When the standard deviation for the node degree is 
zero, then each node in the generated topology is of fixed 
degree.  We can also generate topologies that have no bisection 
width constraints imposed. The generator creates a text file for 
the underlying graph in the successor list form. 

 
Figure 10 Process Model for the Router Module in the 

Wormhole Node 

 
EMA tool provided the necessary bridge between the topologies 
generated outside into networks recognized by Opnet. An EMA 
program was created for this purpose that reads in the network 
topology and connectivity information from the text file 
generated by the topology generator. It uses the wormhole node 
and wormhole link model files to create the subnet network 
model. Nodes are positioned on a square grid at such small node 
to node distances that propagation time is insignificant compared 
to transmission time. A typical subnet network model created 
following this process is shown in Figure 11. Even though 
node_14 and node_15 are shown next to each other, in fact these 
two nodes are not neighbors in the topology. This figure is one 
of the topologies for a 64 node network with average node 
degree of four, node degree standard deviation of one, and a 
bisection width of two. Bisection width is the minimum number 
of links that when deleted separates the graph into two equal 
sized sub-graphs. 
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Figure 11: Subnet Network Model Imported into Opnet by 

Importing the Scenario Generated by EMA 

 
Simulation and Experimental Results 
We used Perl scripts to generate different graphs and their Opnet 
subnet models using EMA. We then used the original Turn 
Prohibition algorithm to generate set of prohibited turns and the 
routing tables. Using Perl script, we simulated the network using 
the op_runsim_opt with required command line parameters and 
generated both the vector and scalar output files. For all of our 
simulations, we used 200 flits long messages. Uniform traffic 
model was used for selection of destination nodes, in which each 
node has the same probability of being selected as a destination. 
We identified the saturation point as the message generation 
rate, at which the average latency is 22 10×  times the low 
injection latency. We then used the op_cvos command to convert 
each scalar file to GDF text file. A utility program has been 
written to parse the GDF text files to identify the saturation 
points for each topology. We determined the distribution of the 
saturation points for each algorithm and plotted the results. In 
Figure 12 we show the distribution of the saturation points for 
Turn Prohibition (TP), Up/Down (UD) and Modified Turn 
Prohibition (MTP), for one family of 100 randomly generated 
topologies, each with 64 nodes of average degree four and 
bisection width of eight. In the figure, we show the saturation 
points on the horizontal axis in units of 310  [worms/(sec.node)]. 
The vertical axis shows the number of topologies in the listed 
bins. For this specific case the mean of the distributions are 53.9, 
61.0, and 88.4 for Turn Prohibition (TP), Up/Down (UD), and 
Modified Turn Prohibition (MTP) respectively.  In Figure 13, 
we show the saturation points versus the minimum bisection 
width. One interesting observation is that for bisection width less 
than ten, Up/Down algorithm performs better than the original 
Turn Prohibition algorithm. For the topologies that we 
investigated, performance of the Up/Down algorithm worsens 
after bisection width of ten. In all cases, the average performance 
of the modified turn prohibition algorithm is considerably and 
consistently better than the other two. Percentage improvement 
attained by the modified turn prohibition over the original Turn 

Prohibition approach is 26% at bisection width of two, which 
peaks at 40% at bisection width of six.  
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Figure 12 Distributions of the Saturation Points for the Three 

Algorithms for 64 Node Graphs for Bisection Width Eight 

 
To explain the observed behavior of the Turn Prohibition and the 
Up/Down algorithms, we computed the average distances in 
these topologies, first without any prohibition (NP), then with 
Turn Prohibition (TP), then with Up/Down (UD), and finally 
with modified turn prohibition (MTP) algorithms. Our results for 
average distances shown in Figure 14 have similar behavior and 
a crossover at about the same bisection width. For these 
topologies, the Turn Prohibition introduces larger dilations than 
the Up/Down algorithm for bisection widths smaller than twelve.  
However, for bisection widths lager than fourteen, dilation 
introduced by Up/Down algorithm is larger.  We believe that, 
the observed behavior is due to the worse dilation performance 
of the original Turn Prohibition algorithm for topologies with 
small bisection widths. We note that the modified turn 
prohibition has the best dilation properties for the entire family 
of topologies that we investigated. 
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Figure 13 Simulation Results Comparing Turn Prohibition, 
Up/Down and Modified Turn Prohibition Saturation Points 
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Figure 14 Computed Average Distances vs. Bisection Width 

 
Conclusions  
In this paper we developed Opnet based tools and investigated 
three competing routing algorithms in irregular network 
topologies. Specifically, we validated that as the fraction of 
prohibited turns is reduced there is a significant improvement in 
average message delivery times. We have shown that by 
modifying the node selection rule in the original Turn 
Prohibition algorithm, we achieved significant improvement in 
increasing the maximum sustainable throughput. Modified turn 
prohibition provided no less than 26% and up to 40% 
improvement over the original Turn Prohibition algorithm, and 
up to 42% improvement over Up/Down algorithm. Inconsistent 
average distance dilation behavior of the original Turn 
Prohibition algorithm has not only been improved, providing 
consistency for all of the graphs that we investigated, but also 
providing consistently smaller average distance dilations. By 
breaking all cycles by means of prohibiting a small subset of 
turns in a given irregular network, we proactively prevented all 
deadlocks in wormhole routed networks.   
 
Our next investigation would be to extend these ideas into 
multicasting in wormhole routed computer networks. 
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