
 1

Cycle Breaking in Wormhole Routed
Computer Communication Networks

Mehmet Mustafa
Verizon Laboratories

40 Sylvan Rd, Waltham, MA 02451
E-mail: mehmet.mustafa@Verizon.com

Mark Karpovsky, Lev Levitin
Boston University, College of Engineering

8 St. Mary’s Street, Boston, MA 02215

Abstract
Because of its simplicity, low channel setup times, and high
performance in delivering messages, wormhole routing has been
adopted in second generation multicomputing environments [1-
3]. Furthermore, irregular topologies formed by ad-hoc
interconnection of low cost workstations provide cost effective
alternative to massively parallel computing platforms. Switches
used in these networks of workstations, NOWs, implement
wormhole routing [1, 12]. However, due to a number of channels
being held up while requesting others, wormhole routing is
susceptible to deadlocks. In this paper we investigated
deadlock-free routing algorithms in wormhole routed irregular
network topologies. We used a modified version of the Turn
Prohibition algorithm [4] to break cycles and prevent channel
deadlocks. We then used shortest path algorithm to determine
the routing tables for each computational node in the topology,
avoiding prohibited turns along the paths from source to
destination. We used EMA to import topologies into Opnet and
simulated for message delivery using both our approaches and
for the competing Up/Down [1] approach. We then repeated this
sequence for hundreds of different topologies and determine the
average latencies for all algorithms. Our results show that the
modified turn prohibition based routing has outperformed both,
the original Turn Prohibition and the Up/Down algorithms.

Introduction
Because of its simplicity, low channel setup times, high
performance in delivering messages, wormhole routing has been
adopted in second generation multicomputing environments [3].
Because of their incremental scalability, workstation clusters,
also known as Network of Workstations, or NOWs, have
enjoyed considerable popularity [3, 5, 6]. However providing,
deadlock-free routing in irregular networks has proven to be a
difficult problem. Many routing algorithms for regular
topologies, such as meshes, hypercubes, tori etc, have been
developed providing deadlock free, low latency message
delivery [6-11]. Providing deadlock freedom in irregular
topologies with low latencies for delivering messages, in a cost
effective manner is not trivial [5]. Authors in [5] assumed virtual
cut-through switching in the routers which had no routing tables.
All worms or messages use wormhole routing until it is blocked
at a router. Upon blockage, the message is absorbed in its
entirety at the router and forwarded later when the requested
outbound channel gets freed up. In their approach, authors used
a spanning tree for delivering messages, hereby avoiding
deadlocks. However, any spanning tree based approach is not
very efficient in terms of link utilization. In a network of N
nodes only 1N − links are used with root node links being most

heavily loaded. The Up/Down routing approach, first reported in
[12], is also a spanning tree based approach. However, in
Up/Down routing, nodes are labeled in a partial order with the
root having the smallest label and the leaves having the largest
labels. Authors prescribe direction to both tree links and non-tree
links, latter referred to as cross-links. Routing is then permitted
to follow a path formed by zero or more up-links followed by
zero or more downlinks. One disadvantage of this approach is
that the construction of the best spanning tree is a hard problem.
As in any spanning-tree based approach, links of the root node
usually are most heavily used. In addition, given a topology and
a spanning tree, selection of the root node would result in
unpredictable routing performance [14, 19].

Turn prohibition was first reported in [10, 13], where turn model
was thoroughly investigated for multi-dimensional meshes, and
some turns were prohibited to prevent all possible deadlocks.
Authors considered only 90 degree turns which are sufficient for
meshes to prevent deadlock formation. In [4, 14-18] authors
generalized the notion of turn, and developed an algorithm to
construct minimal sets of prohibited turns, to break all cycles
and prevent deadlock formation. Authors also established that
the fraction of prohibited turns could be used as one of the
criteria of efficiency of a routing strategy. In [19] authors
extended the use of turn prohibition as described in [4] to
general topologies and applied the Network Calculus techniques,
which, until then, used to be strictly for feed-forward routing
networks.

In this paper, we modified the selection rule in the original Turn
Prohibition algorithm, to investigate if the fraction of prohibited
turns could be further improved. Motivation for this
investigation is shown in Figure 1, adopted from [20] in which,
we show the percentage gain in maximum sustained throughput
versus the percentage improvement, i.e. reduction, in the fraction
of prohibited turns. This plot, which is approximately linear,
predicts an improvement of 7.7% in the saturation point per 1%
reduction in the fraction of prohibited turns. In order to provide
an unbiased comparison of competing routing algorithms, we
developed a wormhole node model in Opnet, where flit level
simulation has been used to determine the message latencies,
and the saturation points for each topology and each algorithm.
In our implementation of the model, we assume only one flit
storage at the router per input port. We use routing tables
constructed for each routing algorithm to determine which
output port to use to forward the flits. Since our interest is to
compare only the impact of fraction of prohibited turns on

 2

message latency, we assumed that routers are ideal, making
atomic routing decisions with no table lookup latency.

In the rest of the paper, we briefly present the mathematical
theory of turn prohibitions and the modified turn prohibition
with examples, properties and complexities, and high level
simulation results in the next section. In the subsequent section
we discuss Opnet models for the wormhole node, random
topology generation, use of EMA to import the topologies into
Opnet environment, and performance enhancements for
simulation. We present our simulation results in the subsequent
section followed by conclusion and recommendations for further
investigations.

y = 7.7689x + 0.0683
R2 = 0.99

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0% 2% 4% 6% 8% 10%

Reduction in Fraction of Prohibited Turns

Im
pr

ov
em

en
t I

n
Sa

tu
ra

tio
n

Po
in

t

Figure 1 Improvement in the Saturation Point with

Reduction of Fraction of Prohibited Turns as Adopted from
[20]

Turn Prohibition: A Mathematical Model
In this section we provide a brief and simplified overview of
Turn Prohibition [4]. We assume that the network topology is
represented by an undirected, connected graph (),G V E= of

N V= nodes and M E= edges. A turn is defined as a three-

tuple (), ,a b c , where , ,a b c V∈ are nodes in the network in

which () (), , ,a b b c E∈ are edges in G incident on node b .

We assume that turns are symmetric in that if a turn (), ,a b c is

prohibited so is the turn (), ,c b a . In enumerating turns, we

count turns (), ,a b c and (), ,c b a as one and the same. If a

node ia has degree id then the total number of turns in the

graph is ()
2

i

i

d
T G =

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ , where the summation is taken over

all nodes. Not surprisingly, all deadlock free routing algorithms
have prohibited turns. For example in spanning tree based
routing algorithm, only turns along the tree are permitted and the
rest of the turns are prohibited. In the Up/Down routing
algorithm, after the spanning tree is constructed and nodes are
labeled in partial order, in which the root has the smallest label,
turn (), ,a b c is prohibited if label of node b is greater than the
labels of both nodes a and c . In the simplified version of the
Turn Prohibition approach which is fully described in [4], first a
minimum degree node is selected which has neighbors with the
largest degree sum. According to the original Turn Prohibition

algorithm, authors minimize the fraction
()1 / 2a a

i
i nbors

d d

d
∈

−

∑
, where

the summation is over all neighboring nodes of the node a that
is being considered. According to the theory, when such a
minimum degree node a is found that satisfies the selection
criterion, then all turns (), ,b a c at the selected node are

prohibited, and all turns (), ,a b c starting with the selected node
a are permitted. Therefore, by minimizing the fraction,
algorithm attempts to minimize the number of turns prohibited
while simultaneously maximizing the number of permitted turns
at every step of the algorithm. Application of the original Turn
Prohibition algorithm is shown in Figure 2, where the prohibited
turns are shown as arcs between the involved edges at the
selected nodes. Node labels indicate the selection order.
According to the original Turn Prohibition algorithm, node 0 is
selected first and all three turns at this node are prohibited and
ten turns starting with this node are permitted. For example,
turns () ()1,0,3 , 1,0, 4 , and ()3,0, 4 are prohibited and turns

() ()0,1,3 , 0,1, 2 ,... are permitted. At the end of the algorithm,
this approach prohibits nine turns as shown. With 37 total turns
in the graph, fraction of prohibited turns becomes 0.243z = .

1
2

3

0

1
2

3

4

56

7
Figure 2 Turn Prohibition Applied to a Simple Graph

Modified Turn Prohibition changed the selection rule in the
following way. Instead of selecting a node that minimizes the
fraction, the modified selection process seeks a node with
minimum degree, which has at least one neighbor with the
smallest degree. For example in Figure 2, nodes 0, 2, 5, 6, and 7
are all degree-3 nodes but only nodes 2, 5, 6, and 7 have
neighbors with degree-3 nodes. On the other hand, the minimum
degree neighbor of node 0 is 4. The reason for selecting the node
with minimum degree neighbors is a greedy reasoning in the
following sense. We select a node a with minimum degree at
the current iteration, such that, when the selected node is
deleted, the remaining subgraph G a− will be the best one for
the next iteration of the algorithm. We see, for example that, the
original Turn Prohibition selection criterion during the first
iteration selected node 1 which, when deleted would leave
behind a subgraph with only degree-3 and degree-4 nodes. This
means that the best that can be done during the next iteration is
to select a degree-3 node with three prohibited turns. With the
modified selection rule, any one of the four nodes 2, 5, 6, or 7,
the subgraph would have at least one degree-2 node and
therefore the next iteration of the algorithm would have to
prohibit only one turn. This selection rule having one-step look-

 3

ahead feature promises to provide a smaller set of prohibited
turns without adding any additional complexity to the original
algorithm. Obvious extensions to the modified selection would
be to have k-step look-ahead with the additional complexity at
each additional step of the look ahead. For example, we can
consider 2-step look ahead where when we discover that there
are multiple nodes satisfying the 1-step look-ahead rule.
Following the modified turn prohibition approach, one selection
order would be 6, 2, 5, 7, 1, 0 with only eight prohibited turns,
and a fraction of prohibited turns of 0.216z = , which is 12.5%
smaller than 0.243z = . It should be noted that the modified turn
prohibition algorithm is fundamentally same as the original
algorithm. Both seek to identify a minimum degree node. If there
are multiple minimum degree nodes then heuristics are used to
identify which node among the set one should select. Original
turn prohibition algorithm selects the node which has the largest
degree neighbors, and the modified turn prohibition algorithm
selects the node with minimum degree neighbors. Because of
this, the properties and complexities of both algorithms are
identical as discussed next.

Properties of Turn Prohibition
Before we dwell into the experimental work, we review the
properties of Turn Prohibition. Properties and proofs of the
properties of the original Turn Prohibition algorithm have been
discussed in great detail in [4, 14, 17-20] and for space
considerations will be listed here without any proofs. Reader is
encouraged to refer to cited papers for the proofs. Both the
original and the modified Turn Prohibition algorithms create a
set ()Z G of prohibited turns. Following properties can be

proven for the set ()Z G :

 (a) Any cycle in G has at least one turn included in ()Z G .

 (b) The set ()Z G is irreducible; deletion of any turn from

()Z G to obtain a new ()'Z G will create at least one cycle in

which would have no turns included in the ()'Z G .
 (c) Connectivity of the is maintained after prohibiting the
turns in ()Z G .

 (d) () () / 3Z G T G≤ where ()T G is the set of all turns in
graph G .
 (e) Computational and memory complexities of the Turn
Prohibition algorithm is ()2O N ∆ and ()O N where N and ∆
are number of nodes and the maximum node degree in the
underlying graph.

First property (a) implies that all cycles in the given graph are
broken. Second property (b) asserts that the set of prohibited
turns is irreducible but it does not claim that the set ()Z G is of
minimum cardinality. Property (d) provides a non-trivial upper
bound for the fraction of prohibited turns to be 1/3. It should be
noted that this upper bound on the fraction of prohibited turns
applies only to the family of complete graphs nG K= .

Routing Table Construction
Since Opnet environment is used for message delivery in the
randomly generated topologies, it is necessary to discuss the

process of generation of the routing tables. Briefly stated, the
construction of the routing tables involves identification of the
shortest path between all node pairs that include no turns from
the set ()Z G . As discussed in [20] in detail, each router is
aware of its permitted and prohibited turns. This information is
represented by a square matrix P of 1d + where d is the
degree of the node. In our models port 0 is assumed to be the
local consumption/injection channel to the local processor and
that all turns from the local port 0 to any one of the remaining d
output ports. Matrix P is such that at node a , (),aP i j is 1 if the

turn (), ,i a j is permitted and 0 otherwise, where ,i j are the
input and output ports respectively. It should be noted that P is
symmetric and that () ()0, ,0 1a aP j P i= = . Algorithm constructs

two tables for each node; the routing table (),aR i n and the

distance table (),aD i n , where, 0,..., ai d= are the input ports
and 0,..., 1n N= − are the destination node numbers. We note
that since routing table generation depends on the prohibition
matrix P , it can also be used for Up/Down approach or any
other algorithm for which the prohibitions can be generated. In
fact we used the same routing table generation algorithm in our
work comparing the performances of Turn Prohibition, modified
turn prohibition and Up/Down algorithms. Instead of describing
the algorithm in detail here, we chose to sketch its operation and
demonstrate it with an example. For more details readers should
refer to [20]. Routing table contains the output port numbers for
permitted turns and -1 for routes that are not available. For
example in Figure 2, the routing table entries for node 1 will
mostly be -1, since this node is not a forwarding node due to the
fact that all turns at this node are prohibited. Only the local
channel messages could be routed at this node. Distance matrix

(),aD i n at node a contains the lengths of the shortest paths in
hops for messages arriving at input port i that are destined for
node n .

For an intermediate node a , the algorithm estimates the length
of the shortest permitted path between adjacent nodes of a and
the destination node. Router at node a then would route the
incoming message from an input port i to the output port j
provided that (), 1aP i j = . Here we assume that output port j of
node a , is the port connecting to adjacent node with the shortest
path length to destination node. As an example, during the
construction of the routing table at node 1, ()5 1, 4 3R = showing
that for a message arriving from node 1 on the input port 1i = to
destination node 4n = , should be routed on output port 3j = .

Table 1 Routing Table 5 (,)R i n at Node 5 of Figure 2

 n
i

0

1

2

3

4

5

6

7

0 3 1 2 3 3 X 2 2

1 3 X 2 3 3 0 2 2

2 3 1 3 3 3 0 X X

3 1 1 2 2 X 0 2 2

 4

In Table 1 we show the routing table for node 5 of topology in
Figure 2 in which we also identified the port numbers for node
5. Port 0 for the local consumption/injection channel is not
shown for clarity in the figure. It is interesting to note that a
message arriving at node 5 from input port 2 destined for node 7
cannot be delivered and hence the ()5 2,7 1R X= = − . This does
not mean that messages are not deliverable. In fact, routing table
at node 6 will be such that no message destined for node 7 will
be forwarded to node 5.

The prohibition matrix for node 5 is all ones with the exception
of entries such as (),i i , where input and output port numbers are
equal.

Distance matrix ()5 ,D i n for node 5 is shown below for
reference. Path lengths for unreachable nodes are represented by
X = -1 in the table.

Table 2 Distance matrix 5 (,)D i n for Node 5 in Figure 2

 n
i

0

1

2

3

4

5

6

7

0 2 1 2 2 1 X 1 2

1 2 X 2 2 1 0 1 2

2 2 1 3 2 1 0 X X

3 2 1 2 3 X 0 1 2

High Level Simulations
High level simulation experiments provided more convincing
evidence that modified approach would reduce the fraction of
prohibited turns. In Figure 3, we see that the modified approach,
in all but very few topologies would result in better results.
Figure 4 shows the average percent improvement for a number
of topologies. Given these observations, according to Figure 1
we expect approximately 30% improvement in the performance
with the modified turn prohibition when compared with the
original Turn Prohibition algorithm.

-3.00%

-2.00%

-1.00%

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Im
pr

ov
em

en
ts

N128Ad4

MTP vs TP

75

14

11

Figure 3 High Level Experimental Results for 100 Irregular
Graphs of 128 Nodes of Average Degree 4 Predicting an

Expected Gain with the Modified Turn Prohibition Algorithm
(MTP) over the Original Turn Prohibition Algorithm (TP).

Average Percent Improvement

(MTP over TP)

0.00%
0.50%
1.00%
1.50%

2.00%
2.50%
3.00%
3.50%

0 20 40 60 80 100 120 140
Number of Nodes

Im
pr

ov
em

en
t

Figure 4 Results Showing the Average Improvement of the

Modified Approach

An OPNET Model for a Wormhole Node
We used OPNET to develop a simulation model for the
wormhole node. Structure of a wormhole message is depicted in
Figure 5. A typical unicast message has three header flits, where
the first flit is Destination Address Flit, the second flit is Source
Address Flit and the third flit is the Message Length Flit. Header
is followed by zero or more data/payload flits. Last flit in a
wormhole message is a tail flit, which contains the last payload
data for the message. We used an 11-bit long packet with two
fields as our packet format simulating one flit. Three bits wide
Type field identifies the type of the flit and the eight bits wide
Data field is the flit payload.

Data TailMESSAGE

T2 T1 T0 D7 D6 D5 D4 D3 D2 D1 D0

Type Data

FLIT

DAdd SAdd MLen

T2 T1 T0 Flit Type
0 0 0 Data Flit
0 0 1 Dest Address Flit
0 1 0 Src Address Flit
1 1 0 Message Length Flit
1 1 1 Tail Flit

Figure 5 Wormhole Message Format, Flit Format and Flit
Types

Wormhole Node Model
A wormhole node consists of a router and a processor, the latter
being modeled by two queues; PGQueue for generation of
messages at the source node, and PSQueue, for consumption of
messages at the destination node. Router module is responsible
for forwarding all flits arriving at the input ports to the
appropriate output ports. Wormhole handshaking [11] is
implemented using the statwires within the node, and remote
interrupts with adjacent nodes. Reception of a stream interrupt is
interpreted as the arrival of a flit. If a flit arrives from the local
injection channel from the PGQueue module, router uses the
statwire to acknowledge the receipt and completion of handling
of the flit. When PGQueue module receives a statwire event, it

 5

retrieves the next flit of the message from the queue and sends it
to the router. When the tail flit arrives from an adjacent router, a
remote interrupt is used to acknowledge that router is ready for
the next flit.

Figure 6: OPNET Node Model for a Four-port Wormhole Node

When the Destination Address Flit arrives at a router, it is stored
temporarily in the flit buffer. Reference to the routing table
identifies which output port to use. If the output port is busy, the
header flit is blocked and no acknowledgement is sent to the
sender. When the output port is finally freed up, it is associated
with the waiting header flit. If multiple header flits are waiting
for the same output port that has just been freed up, binding is
done on a FIFO basis.

In this environment, sending a 200 flit long message would
involve sending 200 packets; a very inefficient use of resources.
Because of this we incorporated an optimization mechanism, in
which, source node processor generates only as many flits as
necessary for the Source Address flit to arrive at its destination.
Once the destination is reached, the destination node, knowing
the sending node address, sends a remote interrupt to the source
node. When this remote interrupt is received, source node
generates a tail flit, stores it in the queue and schedules a self
interrupt. Scheduling of the self interrupt is based on number of
flits already generated, message length, and the flit transfer time,
or the flit transmission time. When this tail self interrupt arrives,
the tail flit is transmitted to the router from the PGQueue. This
optimization significantly improved the simulation run time
since for each message of 200 flits; only five to ten flits per
message are generated and processed.

Figure 7 Process Domain Representation of the PGQueue

Module of the Processor

PGQueue Module
In Figure 7 we show the process model of the PGQueue module
of the wormhole node. The forced init state performs the one -
time setup necessary at the module, reads in the values for the
run-time attributes, schedules a self interrupt for generating a
message, and transitions into the only blocking state labeled idle.
In the idle state, if ROUTER_READY event is triggered, it
implies that the local router has just sent an acknowledgement
via the statwire. In this case the PGQueue process sends either a
flit already in the queue, or if necessary generates one and
transmits it to the router. In our implementation, we use the
stream interrupt as the READY signal, and the statwire as the
ACK signal of the wormhole handshake. When the
DEST_REACHED event fires, it implies that we just received a
remote interrupt from the destination, and we schedule a tail flit
to be transmitted when self interrupt expires. When this self
interrupt expires, the TIME_OUT macro is triggered, and the
HANDLE_TIME_OUT is executed. In this function, the tail flit
is transmitted if the interrupt code indicates so. Otherwise, time-
out implies that time for generating another message has arrived
and a new worm is generated.

PSQueue Module
As shown in Figure 8, the process model of the PSQueue of the
wormhole node processor is very simple. Again, all of the one-
time, module level processing in done in the forcing state called
init. In the blocking state labeled idle, flits that arrive from the
local router are handled. Arrival of a flit is triggered by the
ARRIVAL event, which causes the RECEIVE_FLIT exec to
run. When run, it stores the flit in the receive queue using the
wormhole handshaking with the local router. If the incoming flit
is a Source Address Flit, then a remote interrupt is sent to the
PGQueue of the source node. If the incoming flit is a tail flit,
then end-to-end delay is computed and saved and message in the
PSQueue is discarded. One other activity that takes place in
RECEIVE_FLIT is monitoring the attainment of network
stability. PSQueue process, computes the cumulative average
with every message, and if the stability criterion is reached the
simulation is terminated. Since we are interested in running
many simulations on many different topologies, unattended by
the user, we opted to determine the stability condition in this
process. We compute the percent difference between the current
and the previous values for the cumulative running average. If
this difference is less than 0.1%± for 300 consecutive messages,
we assume stability is attained and terminate the simulation.
Figure 9 shows the time evolution and attainment of network
stability at low message injection rates, requiring about 1000
messages.

Figure 8: PSQueue Module of the Processor

 6

-5.0000%

-4.0000%

-3.0000%

-2.0000%

-1.0000%

0.0000%

1.0000%

2.0000%

0 200 400 600 800 1000

Worm Count

P
er

ce
nt

 D
iff

er
en

ce

Figure 9 Monitoring the Attainment of Network Stability in

PSQueue Module

Router Module
Router module process model is depicted in Figure 10, where
we have two blocking states and a forcing state. In Init state,
router identifies its node number from its name, reads in the run-
time attribute values, identifies the attached PGQueue and
PSQueue objects, initializes all state variables, dynamically
allocates memory for routing tables, and reads in the node
specific routing table. It then transitions to the Identify blocking
state. In this state, each node identifies its neighbors by sending
just a Source Node Address Flit to each of its active ports. When
the router receives all responses from its active ports, it
schedules a self interrupt with no delay and transitions to the
next blocking state called Listening.

In Listening state, FLIT_ARRIVAL is defined to be a stream
interrupt and all flit types are processed by a function
represented by the HANDLE_FLIT macro. This function calls
other procedures that handle individual flit types. For example, if
the flit type is a Destination Node Address flit, then routing table
is referenced to identify the output port that flit needs to be
transmitted out of. If the output port is busy then process of
handling the waiting header flit is blocked. When a tail flit is
transmitted out on any busy output port, then list of waiting
headers is examined. If there is a header flit waiting for the
output port that has just been freed up, then the input port that it
came from is associated with the, now free, output port and
binding takes place. When the HANDLE_FLIT macro, identifies
that the destination node address is equal to its own node
address, then the local output port to the PSQueue is bound to
the port delivering the flit. From now on, all incoming flits and
the tail flit from the associated input port are sent out to this
output port. With each transmitted flit, router process will send a
stat wire to the PGQueue object and will be awaiting a remote
interrupt from the adjacent router. As discussed earlier,
wormhole handshaking takes place at the router at three
interfaces; first between the two adjacent routers, second
between the PGQueue and the local router, and third between the
PSQueue and the local router.

The transition event called ACK is defined to be a remote
interrupt from an adjacent node. Router process identifies the
adjacent node by the interrupt code and interprets it to mean that

remote node is ready for the next flit. All remote interrupts are
processed by the function defined in the HANDLE_ACK macro.

PSQUEUE_READY transition event is defined to trigger when
a statwire interrupt is received from the PSQueue module,
indicating that it is ready for the next flit. This interrupt is
managed by the function represented by the HANDLE_SWIRE
macro.

The TIME_OUT macro is for debugging purposes and is not
used.

Topology Generation
One important requirement in our research is the generation of
large number of random topologies with given specifications.
We developed a topology generator which is capable of
generating topologies with given average and standard deviation
for the node degree, number of nodes and the bisection width for
the topology. When the standard deviation for the node degree is
zero, then each node in the generated topology is of fixed
degree. We can also generate topologies that have no bisection
width constraints imposed. The generator creates a text file for
the underlying graph in the successor list form.

Figure 10 Process Model for the Router Module in the

Wormhole Node

EMA tool provided the necessary bridge between the topologies
generated outside into networks recognized by Opnet. An EMA
program was created for this purpose that reads in the network
topology and connectivity information from the text file
generated by the topology generator. It uses the wormhole node
and wormhole link model files to create the subnet network
model. Nodes are positioned on a square grid at such small node
to node distances that propagation time is insignificant compared
to transmission time. A typical subnet network model created
following this process is shown in Figure 11. Even though
node_14 and node_15 are shown next to each other, in fact these
two nodes are not neighbors in the topology. This figure is one
of the topologies for a 64 node network with average node
degree of four, node degree standard deviation of one, and a
bisection width of two. Bisection width is the minimum number
of links that when deleted separates the graph into two equal
sized sub-graphs.

 7

Figure 11: Subnet Network Model Imported into Opnet by

Importing the Scenario Generated by EMA

Simulation and Experimental Results
We used Perl scripts to generate different graphs and their Opnet
subnet models using EMA. We then used the original Turn
Prohibition algorithm to generate set of prohibited turns and the
routing tables. Using Perl script, we simulated the network using
the op_runsim_opt with required command line parameters and
generated both the vector and scalar output files. For all of our
simulations, we used 200 flits long messages. Uniform traffic
model was used for selection of destination nodes, in which each
node has the same probability of being selected as a destination.
We identified the saturation point as the message generation
rate, at which the average latency is 22 10× times the low
injection latency. We then used the op_cvos command to convert
each scalar file to GDF text file. A utility program has been
written to parse the GDF text files to identify the saturation
points for each topology. We determined the distribution of the
saturation points for each algorithm and plotted the results. In
Figure 12 we show the distribution of the saturation points for
Turn Prohibition (TP), Up/Down (UD) and Modified Turn
Prohibition (MTP), for one family of 100 randomly generated
topologies, each with 64 nodes of average degree four and
bisection width of eight. In the figure, we show the saturation
points on the horizontal axis in units of 310 [worms/(sec.node)].
The vertical axis shows the number of topologies in the listed
bins. For this specific case the mean of the distributions are 53.9,
61.0, and 88.4 for Turn Prohibition (TP), Up/Down (UD), and
Modified Turn Prohibition (MTP) respectively. In Figure 13,
we show the saturation points versus the minimum bisection
width. One interesting observation is that for bisection width less
than ten, Up/Down algorithm performs better than the original
Turn Prohibition algorithm. For the topologies that we
investigated, performance of the Up/Down algorithm worsens
after bisection width of ten. In all cases, the average performance
of the modified turn prohibition algorithm is considerably and
consistently better than the other two. Percentage improvement
attained by the modified turn prohibition over the original Turn

Prohibition approach is 26% at bisection width of two, which
peaks at 40% at bisection width of six.

0

5

10

15

20

25

30

35

20 30 45 55 65 75 85 95 105 115

Saturation Point x1000 [worms/(sec.node)]

N
um

be
r o

f G
ra

ph
s

TP
UD
MTP

Figure 12 Distributions of the Saturation Points for the Three

Algorithms for 64 Node Graphs for Bisection Width Eight

To explain the observed behavior of the Turn Prohibition and the
Up/Down algorithms, we computed the average distances in
these topologies, first without any prohibition (NP), then with
Turn Prohibition (TP), then with Up/Down (UD), and finally
with modified turn prohibition (MTP) algorithms. Our results for
average distances shown in Figure 14 have similar behavior and
a crossover at about the same bisection width. For these
topologies, the Turn Prohibition introduces larger dilations than
the Up/Down algorithm for bisection widths smaller than twelve.
However, for bisection widths lager than fourteen, dilation
introduced by Up/Down algorithm is larger. We believe that,
the observed behavior is due to the worse dilation performance
of the original Turn Prohibition algorithm for topologies with
small bisection widths. We note that the modified turn
prohibition has the best dilation properties for the entire family
of topologies that we investigated.

2.0E+04

3.0E+04

4.0E+04

5.0E+04

6.0E+04

7.0E+04

8.0E+04

9.0E+04

1.0E+05

1.1E+05

1.2E+05

0 2 4 6 8 10 12 14 16 18 20 22
Minimum Bisection Width (BW)

A
ve

ra
ge

 S
at

ur
at

io
n

Po
in

t [
w

/(s
.n

od
e)

]

TPU
UDU
MTPU

Figure 13 Simulation Results Comparing Turn Prohibition,
Up/Down and Modified Turn Prohibition Saturation Points

 8

2.5

3.0

3.5

4.0

4.5

5.0

5.5

0 2 4 6 8 10 12 14 16 18 20 22 24
Minimum Bisection Width

A
ve

ra
ge

 D
is

ta
nc

e
(h

op
s)

NP
TP
UD
MTP

Figure 14 Computed Average Distances vs. Bisection Width

Conclusions
In this paper we developed Opnet based tools and investigated
three competing routing algorithms in irregular network
topologies. Specifically, we validated that as the fraction of
prohibited turns is reduced there is a significant improvement in
average message delivery times. We have shown that by
modifying the node selection rule in the original Turn
Prohibition algorithm, we achieved significant improvement in
increasing the maximum sustainable throughput. Modified turn
prohibition provided no less than 26% and up to 40%
improvement over the original Turn Prohibition algorithm, and
up to 42% improvement over Up/Down algorithm. Inconsistent
average distance dilation behavior of the original Turn
Prohibition algorithm has not only been improved, providing
consistency for all of the graphs that we investigated, but also
providing consistently smaller average distance dilations. By
breaking all cycles by means of prohibiting a small subset of
turns in a given irregular network, we proactively prevented all
deadlocks in wormhole routed networks.

Our next investigation would be to extend these ideas into
multicasting in wormhole routed computer networks.

References
[1] N. Boden and e. al. "Myrinet: A Gigabit per second Local Area

Network," IEEE Micro pp. 29-35, 1995.
[2] R. Horst, W. "ServerNet(TM) Deadlock Avoidance and

Fractahedral Topologies," Proc. of IEEE Int. Parallel Processing
Symp. pp. 274-280, 1996.

[3] F. Silla and J. Duato "High-Performance Routing in Networks of
Workstations with Irregular Topology," IEEE Trans. on Parallel
and Distributed Systems vol. 11, no. 7, pp. 699-719, 2000.

[4] L. Zakrevski "PhD Thesis: Fault-Tolerant Wormhole Message
Routing in Computer Communication Networks," College of
Engineering pp. 21-27, 2000.

[5] H. Chi and C. Tang "A Deadlock-Free Routing Scheme for
Interconnection Networks with Irregular Topologies," 1997
International Conference on Parallel and Distributed Systems
pp. 88-95, 1997.

[6] W. Dally and C. Seitz, L. "Deadlock-Free Message Routing in
Multiprocessor Interconnection Networks," IEEE Trans. on
Comput. vol. 36, pp. 547-553, 1987.

[7] R. Boppana and S. Chalasani "A Comparison of Adaptive
Wormhole routing Algorithms," Computer Architecture News
vol. 21, no. 2, pp. 351-360, 1993.

[8] A.A. Chien and J. Kim "Planar Adaptive Routing: Low-Cost
Adaptive Networks for Multiprocessors," Journal of ACM vol.
42, no. 1, pp. 91-123, 1995.

[9] J. Duato "A New Theory of Deadlock-Free Adaptive Routing in
Wormhole Networks," IEEE Trans. on Parallel and Distributed
Systems vol. 4, pp. 1320-1331, 1993.

[10] C. Glass and L. Ni "The Turn Model for Adaptive Routing," Proc.
of the 19th Annual Int.. Symp. on Computer Architecture pp.
278-286, 1992.

[11] L. Ni, M. and P. McKinley, K. "A Survey of Wormhole Routing
Techniques in Directed Networks," Computer vol. 26, pp. 62-76,
1993.

[12] M. Schroeder and t. al. "Autonet: A High-Speed self configuring
Local Area Network Using Point-to-point Links," 1990.

[13] C. Glass and L. Ni "The Turn Model for Adaptive Routing,"
Journal of ACM vol. 5, pp. 874-902, 1994.

[14] L. Zakrevski, S. Jaiswal, L. Levitin and M. Karpovsky "A New
Method for Deadlock Elimination in Computer Networks With
Irregular Topologies," Pro. of the IASTED Conf. PDCS-99 vol.
1, pp. 396-402, 1999.

[15] L. Zakrevski and M. Karpovsky, G. "Fault-Tolerant Message
Routing for Multiprocessors," Parallel and Distributed
Processing pp. 714-731, 1998.

[16] L. Zakrevski and M. Karpovsky, G. "Fault-Tolerant Message
Routing in Computer Networks," Proc. of Int. Conf. on PDPA-
99 pp. 2279-2287, 1999.

[17] L. Zakrevski, S. Jaiswal and M. Karpovsky "Unicast Message
Routing in Communication Networks With Irregular
Topologies," Proc. of CAD-99 1999.

[18] L. Zakrevski, M. Mustafa and M. Karpovsky "Turn Prohibition
Based Routing in Irregular Computer Networks," Proc. of the
IASTED International Conference on Parallel and Distributed
Computing and Systems pp. 175-179, 2000.

[19] D. Starobinski, M. Karpovsky and L. Zakrevski "Application of
Network Calculus to General Topologies Using Turn
Prohibition," IEEE/ACM Transactions on Networking vol. 11,
no. 3, pp. 411-421, 2003.

[20] S. Jaiswal, L. Zakrevski, M. Mustafa and M. Karpovsky, G.
"Unicast Wormhole Message Routing in Irregular Computer
Networks," Twelfth IASTED International Conference on
Parallel and Distributed Computing Systems - PDCS 2000,
pp169-174, 2000.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

