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Abstract


In this paper we consider the problem of constructing a minimal cycle-breaking set of turns for a given non-directed graph. This problem is important for deadlock-free wormhole routing in computer and communication networks with irregular topologies, such as Networks of Workstations or NOWs. In a graph [image: image1.wmf](
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. The proposed Cycle Breaking algorithm, or CB-algorithm, guarantees that the constructed set of prohibited turns is minimal (irreducible) and that the fraction of the prohibited turns will not exceed 1/3 for any graph. The computational complexity of the proposed algorithm is [image: image4.wmf](

)

2

ONd

, where [image: image5.wmf]NV

=

 is the number of vertices, and d is the maximum node degree.  Memory complexity of the algorithm is [image: image6.wmf](
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. As far as authors know, this is the first algorithm providing a minimal solution of the problem and a meaningful upper bound on the minimal number of turns, which should be prohibited to break all cycles in a given graph without loss of connectivity.

We provide general lower bounds on minimum size of cycle-breaking sets for connected graphs. Further, we construct minimal cycle-breaking sets and establish upper and lower bounds on the minimum fraction of prohibited turns for two important classes of graphs, namely, t-partite graphs and graphs with small degrees 


We also present results of computer simulations for the proposed CB-algorithm. These results illustrate the superiority of the proposed CB-algorithm as compared to the well-known and widely used Up/Down techniquescit_af ref_bf(Libeskind-Hadas, R. 1998 ref_num88)ref_af.
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1. Introduction

Recently, Networks of Workstations, NOWs [1, 3, 6, 9, 10], have emerged as an inexpensive alternative to massively parallel multiprocessors cit_bf[2, 3]cit_af ref_bf(Duato, J. 1997 ref_num40 / Ni, L., M. 1993 #48)ref_af.  NOWs comprise a collection of routing switches, communication links and workstations interconnected in an ad hoc manner resulting in a graph of irregular topology. In order to minimize network latency and achieve high bandwidth communications, recent experimental and commercial switches for NOWs implement wormhole routing cit_bf[3, 4]cit_af ref_bf(Kermani, P. 1979 ref_num45 / Ni, L., M. 1993 #48)ref_af. However, because packets are allowed to hold many resources while requesting others, wormhole routing is very susceptible to deadlocks cit_bf[3, 5, 6]cit_af ref_bf(Duato, J. 1993 ref_num39 / Fleury, E. 1998 #41 / Ni, L., M. 1993 #48)ref_af. Thus, deadlock prevention has become an important problem in the theory of communication networks.


It was proved [13] that the absence of cycles in the channel dependency graph is a sufficient condition for deadlock-free routing. It was later shown [15] that this is also a necessary condition for deadlock-free coherent routing algorithms. The elimination of cycles in the channel dependency graph is equivalent to elimination of all cycles in the sense of Definition 3 (see Section 2, below) in the graph of original communication network. This can be accomplished by prohibition of a carefully selected set of turns in the graph.


A turn in a graph[image: image7.wmf]G
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. In order to model existing switch-based networks we assume that [image: image12.wmf]G

 is non-directed. Several routing methods using turn prohibition currently exist for regular topologies, such as 2-dimensional meshes, tori or hypercubes cit_bf[2, 3, 7]cit_af ref_bf(Duato, J. 1997 ref_num40 / Glass, C. 1994 #43 / Ni, L., M. 1993 #48)ref_af. 


It was shown in [7] for meshes and tori and in [9, 10] for irregular topologies that reduction in the number of prohibited turns results in a decrease of average path lengths of messages and in a reduction of average delivery time, thereby increasing throughput. 


For a general topology, most of the existing routing strategies are based on the spanning tree approach cit_bf[1]cit_af ref_bf(Libeskind-Hadas, R. 1998 ref_num88)ref_af. According to this strategy, a spanning tree is constructed which is subsequently used for communication, thereby guaranteeing deadlock freedom. The main shortcomings of this approach are long message paths and congestion on the edges near the root node cit_bf[1]cit_af ref_bf(Libeskind-Hadas, R. 1998 ref_num88)ref_af. This approach is also very inefficient since a large number of links are not used. This method can be improved by allowing shortcuts using cross-edges that do not belong to the spanning tree. For example, for the widely used the Up/Down routing cit_bf[1]cit_af ref_bf(Libeskind-Hadas, R. 1998 ref_num88)ref_af, after a spanning tree is constructed for [image: image13.wmf]G

, nodes are labeled preserving the partial order defined by the tree with the root having label 1. If we denote the label of a node [image: image14.wmf]a
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For the Up/Down approach cit_bf[1, 10]cit_af ref_bf(Libeskind-Hadas, R. 1998 ref_num88 / Zakrevski, L. 1998 #51)ref_af, given a network topology, the fraction of prohibited turns for deadlock-free routing, depends not only on the selection of a spanning tree but also on the root of the spanning tree, and could be very close to one. The problem of construction of an optimal spanning tree is NP-hard. 


In [16] authors used a simple turn prohibition algorithm to generalize the application of Network Calculus to arbitrary topologies in which cycles of independent packet flows were eliminated. Ordinarily, Network Calculus applies to feed-forward topologies in which packets do not create cyclic dependencies. Set of prohibited turns generated by this simpler algorithm is not necessarily irreducible. This means that if a turn is deleted from this set, the graph may still be acyclic.  


In this paper, we introduce the mathematical model in Section 2, followed by establishing lower bounds on the fraction of prohibited turns in Section 3. In Section 4 we describe the CB-algorithm for construction of minimal (irreducible) sets of prohibited turns with the fraction of prohibited turns not exceeding 1/3 for any graph. Then we prove that the set of prohibited turns is irreducible. Next in Section 5, we list the main properties of the CB-algorithm followed by determination of the upper and lower bounds on fractions of prohibited turns for complete bipartite and t-partite graphs in Section 6 and for graphs with small degrees in Section 7. Finally, we present experimental results for randomly generated topologies and offer our conclusions. Our simulation results for topologies with 64 nodes show that the proposed CB-algorithm reduces the number of prohibited turns significantly when compared with the Up/Down approach. 


The complexity of the developed algorithm is[image: image19.wmf](
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2. Mathematical model 


Let us consider a non-directed graph [image: image24.wmf](
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, etc. We assume that graph is connected, i.e. there is a path between any two nodes in G. If this is not the case, we consider individual components separately. 

Definition 1. A turn in a graph [image: image29.wmf]G
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Nodes and edges in the path are not necessarily all different. 

Definition 2. Path [image: image49.wmf](
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 is called a cycle of length k, if any directed edge[image: image51.wmf](
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If no proper subset of nodes of cycle [image: image53.wmf]P

 forms a cycle, we call [image: image54.wmf]P

 a simple cycle. 

Examples of cycles for the graph depicted in Fig. 1 are[image: image55.wmf](
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. Note that our definitions of a path and a cycle are somewhat different than the conventional definitions [8, 17-19]. It can be said that we consider “cycles of directed edges”, rather than “cycles of nodes”. The reason is that such cycles result in deadlocks in networks of workstations with computing nodes being vertices of graph G and communication links are edges of G. Breaking all cycles in G results in preventing deadlocks in the corresponding network.
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Fig.  1 Construction of Prohibited Turns Using CB-algorithm

In Fig. 1, we show the prohibited turns constructed using the CB-algorithm. Turns that are prohibited are shown as arcs. For example, turns [image: image62.wmf](
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 are prohibited, but turn [image: image64.wmf](

)

6,13,14

 is permitted. Special edges and delayed nodes are shown in bold. Delayed nodes are privileged since no turns are prohibited at these nodes. Definitions of special edges, delayed and forcing nodes are given in Section 4.
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Definition 4. A set [image: image75.wmf](
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For the topology in Fig. 1, cycle [image: image86.wmf](
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. As an example, one cycle-breaking set of prohibited turns for the topology presented in Fig. 1 is
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We say that the cycle-breaking set [image: image89.wmf](
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of prohibited turns preserves connectivity if for any two nodes [image: image90.wmf],
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Given graph [image: image93.wmf]G

 representing a connected network topology, we shall consider in Section 4 the problem of finding a minimal cycle-breaking set of turns for G, which preserves connectivity of the graph. This problem was first formulated and solved for meshes by Glass and Ni cit_bf[7]cit_af ref_bf(Glass, C. 1994 ref_num43)ref_af. 

Definition 5. Path [image: image94.wmf](

)

010

,,...,

Pvvv

=

 in [image: image95.wmf]G

 is called a halfloop if it is permitted under a given set for prohibited turns [image: image96.wmf](
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For example, for the topology and the set of prohibited turns shown in Fig. 1, [image: image97.wmf](
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 is a halfloop.


The number of turns in a minimum cycle-breaking set is denoted by [image: image98.wmf](
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Definition 6.  Cycle-breaking set of turns [image: image99.wmf](
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 is minimal (irreducible), if there are no cycle-breaking proper subsets of [image: image100.wmf](
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.  In other words, deletion of any turn from a minimal set of prohibited turns will introduce a cycle in the graph.


We note that a minimal cycle-breaking set is not necessarily a minimum cycle-breaking set.


3. Lower Bounds on Minimal Cycle-Breaking Sets of Turns


In this section we present two lower bounds of fractions [image: image101.wmf](
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of turns to be prohibited to break all cycles without loss of connectivity in any connected graph [image: image102.wmf](

)

,

GVE

 where [image: image103.wmf]NV

=

 and [image: image104.wmf]ME

=

. 
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Proof. Bound (3)

 follows from the fact that
cycles should be covered by at least 
 turns. 
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 follows from the fact that any cycle-breaking set of edges should contain at least 
 elements, where 
 is the cyclomatic number for 
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 generates a cycle-breaking set of edges 
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Proof. Assume that, in graph [image: image143.wmf]G
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Proof. Any set of turns that breaks all cycles in [image: image175.wmf]G
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4. CB-algorithm for Constructing Irreducible Sets of Prohibited Turns 


In this section we describe the Cycle Breaking or CB-algorithm. Given a connected graph [image: image184.wmf](
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. Furthermore, the CB-algorithm guarantees that the fraction of prohibited turns will not exceed 1/3. As far as we know, this is the first algorithm providing a nontrivial upper bound for the fraction of prohibited turns breaking all cycles.

The algorithm is recursive. At each run of the algorithm one node is selected and every turn at the selected node is either permitted or prohibited. For example, if, after deleting a node [image: image188.wmf]a
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. Then, the CB-algorithm is invoked recursively. At every run of the algorithm labeling of a node to be deleted is done by using the smallest natural number not used at the previous runs as its label. We label a node by assigning a natural number to the node that indicates the order in which the node has been selected. Initially, all nodes are unlabelled. In the course of the algorithm, a node can also be marked as forcing or delayed. Nodes that have never been marked forcing or delayed are called ordinary nodes. An edge can be marked as special. The variable called HALFLOOP is initially cleared by assigning a value of 0 to it. When it is set, its value becomes 1 and remains set.
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Fig. 2  Prohibited Turns Generated by the CB-algorithm Showing Delayed (Solid Black) Nodes.

We now illustrate the operation of the CB-algorithm with reference to graph in Fig. 2. In the figure, we show node labels in parentheses after the node numbers. Labels show the order in which nodes are selected by the CB-algorithm. At the first run, we select the ordinary node 1 of degree 2, delete it and its edges (1, 13), (1, 8), and prohibit one turn. Note that all turns such as [image: image287.wmf](
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starting with node 1 are permitted. We next select node 2, which is a cut node. We prohibit no turns at node 2, and node 2 and its edges are deleted, two connected components are created. The first component[image: image288.wmf]1
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. Node 0 is selected without prohibiting any turns. After deleting node 0 and its edges, we are left with a subgraph in which all three nodes are of minimum degree 2 and neither one is a cut node. Arbitrarily, CB-algorithm selects node 3, prohibits the turn [image: image291.wmf](
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After a total of 15 iterations, a minimal set [image: image299.wmf](
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. In the following table we demonstrate the operation of the algorithm, showing the status of the nodes and any related edges, their labels, and the number of prohibited turns at every step of the algorithm. Note that when the HALFLOOP flag is set when node 5 is selected, it remains set for the duration of the algorithm.

Table 1 Step-by-Step Operation of the CB-algorithm for Topology in Fig. 2
	Selected 
   Node
	Node
Label
	   Node
 Attribute
	Special
  Edge
	Delayed
  Node
	HALFLOOP
	Set of Prohibited Turns

	1
	1
	Ordinary
	None
	None
	0
	{(13,1,8)}

	2
	2
	Cut
	(10, 2)
	None
	0
	{}

	0
	3
	Ordinary
	None
	None
	0
	{}

	3
	4
	Ordinary
	None
	None
	0
	{(4,3,5)}

	4
	5
	Ordinary
	None
	None
	0
	{}

	5
	6
	Ordinary
	None
	10
	1
	{}

	6
	7
	Cut
	(6, 13)
	None
	1
	{(13,6,14),(7,6,13)}

	7
	8
	Ordinary
	None
	None
	1
	{(8,7,9),(8,7,10),(9,7,10)}

	8
	9
	Ordinary
	None
	None
	1
	{(9,8,10)}

	9
	10
	Ordinary
	None
	None
	1
	{}

	10
	11
	Delayed
	None
	None
	1
	{}

	11
	12
	Ordinary
	None
	13
	1
	{(12,11,13),(12,11,14),(13,11,14)}

	12
	13
	Ordinary
	None
	None
	1
	{(13,12,14)}

	14
	14
	Ordinary
	None
	None
	1
	{}

	13
	15
	Delayed
	None
	None
	1
	{}



5. Main Properties of CB-algorithm
Theorem 4. CB-algorithm has the following four properties.
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Proof of Property 1. First we will prove the following lemma.
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Hence, in all cases, the number of permitted turns is larger than the number of prohibited turns by at least a factor of two. Since this is true for each run of the algorithm, it follows that [image: image439.wmf](
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We will illustrate operation of the CB-algorithm by applying it to the important class of full bipartite graphs [image: image470.wmf],
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Fig.  2  Bipartite Graph [image: image485.wmf]3,3
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For arbitrary n, minimum degree nodes will be selected alternatively from two parts of the bipartite graph. Denoting the required number of prohibited turns as [image: image486.wmf],
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6. Minimal Cycle-Breaking Sets of Turns for t-partite Graphs


In this section we shall use the CB-algorithm for determining the upper bounds on minimal cycle-breaking sets for bipartite and t-partite graphs.  For the complete bipartite topology [image: image494.wmf],
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 and the symmetric bipartite topology[image: image495.wmf],
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, we obtain a lower bound for the fraction of prohibited turns by means of the following theorem and its corollaries.
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Proof.  To prove the upper bound, we use the set of prohibited turns constructed by CB-algorithm with [image: image499.wmf],
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given by (9)

. The total number of turns in 
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To prove the lower bound, consider the bound given by (3)

. If the set of cycles 
 is taken to contain only cycles of length four, then there are 
 of such cycles and each turn can cover no more than 
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Corollary 2. For bipartite graphs [image: image508.wmf],
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Proof. The upper bound follows directly from (10)
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For the lower bound, note that for [image: image510.wmf],
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Corollary 3. For bipartite graphs [image: image516.wmf],
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Table 2. Bounds for the number of prohibited turns [image: image536.wmf](

)

,

nn

ZK


	n
	2
	3
	4
	5
	6
	7
	8

	[image: image537.wmf](

)

,

nn

ZK

³


	1
	5
	14
	28
	50
	81
	123

	[image: image538.wmf](

)

,

nn

ZK

£


	1
	5
	14
	30
	55
	91
	140


We conjecture that the CB-algorithm generates a minimum cycle-breaking set for any complete bipartite graph[image: image539.wmf],
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Proof.  To prove the upper bound, we estimate the number of prohibited turns[image: image546.wmf](
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, generated by the CB-algorithm. Number of prohibited turns can be calculated as 
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Equation (14)

 since total number of turns is 
.
(13)

 follows from 

To prove the lower bound, consider all cycles of length three, containing nodes from three different parts, and all cycles of length four, containing nodes from two different parts. There are [image: image549.wmf](
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turns are needed. Since no cycles of the first type have common turns with each other and with cycles of the second type, using Theorem 1, we have 
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7. Graphs With Small Degree Nodes

Now we consider an arbitrary graph [image: image563.wmf]G

, which is constrained to have nodes of small degrees. This corresponds to the practical case where the number of possible point-to-point connections at each node is restricted by the number of output buffers in the router [2]. Assume that degrees of all nodes do not exceed 3. As shown below, in this case the upper bound on the fraction of prohibited turns given in Section 5 can be substantially improved.


Consider first the case when initially graph G includes a node of degree smaller than 3. Then, at each run of the algorithm, each connected component will have a node of degree smaller than 3. If the component is not a simple cycle or a path without repeating nodes it includes also nodes of degree 3. Since runs that select nodes of degree 1 do not prohibit any turns, we assume that there are no nodes of degree 1 in the initial graph. Note that if there are at least two nodes of degree 2 in a component, then at least one of them is not a delayed node and is a neighbor of a node of degree 3. Also, there is only one possibility that a node [image: image564.wmf]a

 of degree 3 will be selected, namely, if the component includes exactly one delayed node [image: image565.wmf]b

of degree 2. It is easy to show by contradiction that in this case there exists a non-cut node of degree 3 that is not a neighbor of the delayed node. Therefore, only a non-cut node of degree 3 can be selected. Let [image: image566.wmf]G

 be such a connected graph with [image: image567.wmf]M
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 are the number of nodes of degree 2 and 3, respectively. Furthermore, assume that CB algorithm is applied to this graph until the remaining subgraph becomes a collection of [image: image571.wmf]k
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 denote the number of non cut nodes and number of cut nodes of degree 2, respectively. Obviously, exactly one turn in each of k simple cycles need to be prohibited. (Nodes selected in these cycles are not counted in [image: image580.wmf]1
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) Hence, the total number of prohibited turns is 
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and
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Since each cut node increases the number of components by one we have
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and since the minimum length of a cycle is 3
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Inequality (19)

 can be strengthened. First note that at every step of the algorithm there exists a component without a delayed or a forcing node. If the initial graph is not a cycle of length 
, it is easy to see that at least one non-cut node of degree 2 will be selected in this component, in the course of the algorithm, before this component turns into a cycle. Thus, 
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provided that [image: image591.wmf]3

N

>

 and there exists anode of degree 2 in the initial graph. (Note that the same is true in the case when the initial graph has nodes of degree 3, provided that [image: image592.wmf]4

N

>

.)

Consider now components with delayed nodes.
Lemma 3. If a component has a delayed node and all other nodes are of degree 3, then either a cycle of length 4 appears or a non-cut node of degree 2 is selected in the course of the algorithm.

       Proof. After a node of degree 3 is selected in this component, three more nodes of degree 2 will appear. Together with the delayed node, they may form a cycle of length four as shown in Fig.  3(a). Suppose now that this is not the case and consider the component to which the delayed node belongs after selection of node of degree 3. Note that henceforth only nodes of degree 2 will be selected in this component. Two cases can can take place in the course of the algorithm:
       i.   The delayed node becomes a node in a simple cycle. 

ii. The delayed node becomes a forcing node.

Consider the case i. Since in addition to the delayed node, at least two nodes must become simultaneously of degree 2 to form a cycle, it follows that when it occurs, a non-cut node of degree 2 was selected as in Fig.  3(b).


Case ii includes two sub cases. First sub case takes place if the delayed node becomes a cut node of degree 2. Then the node [image: image593.wmf]a

 whose selection caused this result must be a non-cut node, as shown in Fig.  4(a). The second sub case occurs if the delayed node becomes a node of degree 1. Then the selected node [image: image594.wmf]a

 is a neighbor of the delayed node, Fig.  4(b). Node [image: image595.wmf]a

 must be a non-cut one, since otherwise the delayed node must have been turned into a forcing node (a cut node) already, Fig.  4(c).
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Fig.  3  Graphs illustrating the cases where the only node of degree two is a delayed node, showing delayed nodes as solid.

It follows from Lemma 3 that every selection of node of degree 3 either creates a cycle of length [image: image597.wmf]4

j

C

=

, or leads to a selection of non-cut node of degree 2, increasing [image: image598.wmf]2
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 by 1. These considerations, together with (20)

 imply the following inequality(19)

 and 
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Finally, since at most one node of degree 3 can be selected in each component, except the component without a delayed node, it follows that
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[image: image601.png]=]





Fig.  4 Graphs illustrating the runs that would make a node of degree 2 a forcing node in (a), a node of degree 1 forcing node in (b), and node that should have been a forcing node rather than a delayed node in (c)
Theorem 7. Let [image: image602.wmf]G

be a connected graph with [image: image603.wmf]M
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nodes, where all nodes have degrees not exceeding 3 and at least one node is of degree smaller than 3. Then
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and
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Proof.
The proof follows from the system of equations (18)

 we get , we get(21)

and substituting 
 from (16)

 from (22)

. Subtracting (21)

-(15)

 ,(18)

 and inequalities (16)

- 
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Multiplying (25)

 yields(22)

 by 4 and adding 
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Subtracting (17)

, we obtain(16)

 from 
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From (18)

:
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and
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Corollary 5. For any 3-regular graph G with [image: image620.wmf]4
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Proof.  After selecting the first node (which is a non-cut node of degree 3), prohibiting 3 turns, permitting 6 turns, deleting the node and its edges, we obtain a graph considered in Theorem 5, with [image: image623.wmf]'1

NN

=-

 nodes and [image: image624.wmf]3

'33

2

MMN

=-=-

 edges. Hence the number of prohibited turns [image: image625.wmf](

)

ZG

 becomes





[image: image626.wmf](

)

(

)

(

)

147

363512

66

N

ZGMN

+

êúêú

£+---+=

éù

ëû

êúêú

ëûëû

,


where we used [image: image627.wmf]3

2

N

M

=

.  With the total number of turns given by [image: image628.wmf]3

TN

=

, (30)

 follows immediately.
(

Bounds Fig.  5(30)

 are tight. The first is achieved, e.g., for the graph shown in (24)
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There is a gap between the upper bounds(2)

, in spite of the fact that both the upper and lower bounds are tight. This variation is due to the effect of nodes of degree 3 to be selected in the course of the algorithm, as the following theorem shows.
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Theorem 8. For graphs described in Theorem 5, if no nodes of degree 3 are selected in the course of the algorithm, then
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which gives (31)

.
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Thus in this case the upper and the lower bounds coincide and the CB algorithm is optimal.

A similar result holds for a 3-regular graph if the number of connected components remains equal to 1 throughout the execution of the algorithm.
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Number of nodes and number of edges are equal to [image: image641.wmf]112
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 and Theorem 2 that (34)
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Fig.  6 The example of a topology which attains the upper bound (30)

 asymptotically for 
 

8. Experimental Results


To illustrate the effectiveness of CB-algorithm we compared it with the Up/Down approach cit_bf[1] by means of simulation experimentscit_af ref_bf(Libeskind-Hadas, R. 1998 ref_num  88  )ref_af. In Fig. 3, we show the histograms of the fraction of prohibited turns obtained using these two algorithms. We generated a family of graphs with a given minimum bisection width B. Minimum bisection width is the number of edges that when deleted separates the graph into two connected components with equal number of nodes. In Fig. 3a, b, c, and d we show the results of our simulation experiments for topologies of minimum bisection widths 2, 4, 6, and 8 respectively. For each distribution in Fig.  7, we generated 100 random graphs with the given bisection width, and 64 nodes of fixed node degree of 4. We then applied both algorithms to the same set of topologies, determining the mean and the variance for the fraction of prohibited turns. In Fig.  8, we plotted the mean of the fraction of prohibited turns versus the bisection width B.  It can be seen that the Up/Down approach appears to have a larger variance than the CB-algorithm. The mean fraction of prohibited turns in the Up/Down approach are consistently larger by about 15% than those generated by the CB-algorithm.


In next set of experiments we analyzed the average distance as a function of bisection width in a large number of topologies. Given a randomly generated topology of interconnected nodes of a given average degree and a given minimum bisection width, we first computed the average distance in this topology without any turn prohibition. We then applied turn prohibitions using the Up/Down algorithm and computed the average distance to determine the effect of prohibitions on the average distance. Subsequently we applied the CB algorithm to prohibit turns to the same original topology and computed the average distance after the CB algorithm is applied. We repeated these set of experiments for 100 different randomly generated topologies, and computed the mean of average distances. We repeated the set of experiments, varying the bisection width between 2 and 30. In all topologies, the average node degree was 4, and the number of nodes was 64. Our results are shown in Fig.  9. Surprisingly, as can be seen in Fig.  9(a), for the 64 node topologies that we studied, the Up/Down algorithm has smaller average distance values than CB algorithm when bisection width values  are in [2,10] and the CB algorithm has smaller average distance values than CB algorithm when minimum bisection width values are in [16, 30]. When the Bisection width is in [12, 14] both algorithms perform approximately the same. As expected, in all cases, both CB and the Up/Down algorithms increase the average distance of the original topology. Defining the average distance dilation as the ratio of the average distance with a given prohibition scheme to the average distance with no prohibition, we obtain the plot in Fig.  9(b).  For the topologies that we studied, CB algorithm introduces approximately the same dilation in topologies with bisection width of 2 as does the Up/Down algorithm at bisection width of 30. For bisection widths 12 and 14 both algorithms cause approximately same dilation. For topologies with bisection widths greater than 14, the dilation introduced by the CB algorithm is always less than the dilation introduced by the Up/Down algorithm.


9. Conclusions

In this paper we analyzed the problem of constructing minimal cycle-breaking sets of turns in a given graph. This problem is important in networks with irregular topologies in which wormhole routing is used. We developed an algorithm, which we called the CB-algorithm, with [image: image649.wmf](

)

2

ONd

complexity. This algorithm generates irreducible sets of prohibited turns, the size of which is no more than one third of the total number of turns for any graph. Furthermore, this set breaks all cycles and maintains connectivity in the original graph. The results of computer simulations illustrate that the proposed approach performs consistently and considerably better than the existing Up/Down approach. With randomly generated 64-node topologies with nodes of fixed degree four, using CB-algorithm based approach outperformed the Up/Down approach by approximately 15%.


The results presented in this paper can be easily generalized to multigraphs with several edges between any two nodes and for directed graphs.
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Fig.  7  Experimental Comparison of Up/Down and CB-algorithms
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Fig.  8  Average Fraction of Prohibited Turns vs.  Minimum Bisection Width B (N =64, d=4)
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Fig.  9  (a)-Average Distance and (b)-Average Distance Dilation vs. Minimum Bisection Width
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