
An Automated Fine-Grain Pipelining Using Domino Style Asynchronous
Library

Alexander Smirnov, Alexander Taubin, Ming Su, Mark Karpovsky
Department of Electrical and Computer Engineering

{alexbs, taubin, mingsu, markkar}@bu.edu

Abstract.

Register Transfer Level (RTL) synthesis model

which simplified the design of clocked circuits
allowed design automation boost and VLSI progress
for more than a decade. Shrinking technology and
progressive increase in clock frequency are bringing
clock to its physical limits. Asynchronous circuits,
which are believed to replace globally clocked
designs in the future, remain out of the competition
due to the design complexity of some automated
approaches and poor results of other techniques.
Successful asynchronous designs are known but they
are primarily custom. This work sketches an
automated approach for automatically re-
implementing conventional RTL designs as fine-grain
pipelined asynchronous quasi-delay-insensitive
(QDI) circuits and presents a framework for
automated synthesis of such implementations from
high-level behavior specifications. Experimental
results are presented using our new dynamic
asynchronous library.

Keywords: asynchronous EDA, synthesis, QDI,
ASIC, HDL.

1. Introduction

The popularity of synchronous design and its

support by EDA tools on one hand and the crisis of
the synchronous paradigm due to process variation,
signal integrity problems and other physical
limitations on the other hand have resulted in a
number of approaches to asynchronous
reimplementation of synchronous designs. The main
idea of such reimplementation is substituting the
global clocking by local control communications. It
has been explored in a number of works including [1-
5]. The following three approaches to asynchronous
circuits design automation are the most elaborate and
closest to our approach.

Phased logic [2, 6] replaces every combinational
logic (CL) gate with its dual-rail implementation.
One rail carries data while the other – phase. Distinct
phases correspond to distinct data tokens: the codes
‘00’ and ‘11’ can be followed by ‘01’ or ‘10’ and
vice versa but ‘00’ is never followed by ‘11’ and ‘01’
by ‘10’ etc. Such an encoding scheme is beneficial
for power consumption since only one transition is
required per data token propagation through a stage
but to ensure safeness additional feedbacks are
required [2] on the design stage increasing the design
complexity.

De-synchronization [3, 5] is another approach to
redesigning clocking for synchronous netlists. The
authors explored both delay matching and completion
detection techniques. The de-synchronized circuits
are architecturally equivalent to the original RTL
design.

Null Convention Logic (NCL) [1, 4] EDA flow
from Theseus Logic exploits the idea of synthesizing
large designs using a commercial synchronous
synthesis engine and substituting globally clocked
synchronous registers in the data path by
asynchronous registers communicating
asynchronously through delay insensitive
handshakes. NCL circuits are dual-rail to enable
completion detection. They are architecturally
equivalent to the RTL implementation. Heavy
synchronization of completion detection signals at
registration points slows NCL designs. The designer
is required to manually specify some handshake
signals in VHDL. That complicates the existing RTL
reuse.

None of the above approaches offer support for
automated pipelining therefore they do not improve
the performance of the original design.

In synchronous designs automatic pipelining is
difficult to implement because it changes the number
and position of registers which finally results in a
completely new specification. Synchronous design
pipelining is reasonable only for more than eight
levels of logic and this number is increasing because

the technology shrinking is decreasing the gate
latency while clock limitations (routing and skew)
stay the same. Further reducing the amount of logic
per pipeline stage reduces the amount of useful work
per cycle while not affecting the overheads associated
with latches, clock skew and jitter [7, 8]. In
asynchronous circuits the handshake implementation,
latency and area are shrinking with the rest of the
circuit. Since no assumptions are made about the
inter-cell communication delays the circuit
correctness no longer depends on the amount of
process variation.

These unique features of clockless handshake-
based systems have inspired the present work
dedicated to automated synthesis of pipelined
asynchronous implementations from HDL
specification.

 Our EDA flow implements the behavior specified
with regular HDL as a pipelined QDI asynchronous
circuit by synthesizing a synchronous implementation
of the specified behavior and ‘weaving’ it into an
asynchronous implementation. By default the design
is pipelined on the finest grain gate level. This way
the highest performance is achieved.

The main distinctive feature of our approach is
that it does not only solve the global clocking
problem by substituting global synchronization signal
with local self-timed control but also replaces the
register transfer architecture by gate transfer
architecture (further referred to as GTL). This
automatically results in very fine grain pipelined
circuits regardless of the original synchronous
implementation pipelining.

Apart from the efforts to automate pipelined
circuits synthesis serious efforts are dedicated to
designing efficient micropipeline implementation.
The latter mostly fall into two categories: matched
delay [9-13] and QDI [13-17] depending on the
computation completion detection implementation.
Fulcrum Microsystems [18] is one of the companies
known to successfully implement commercial high-
speed asynchronous chips using micropipelines.
However to our knowledge the design remains
custom with some in-house proprietary EDA tools.

In [19] a QDI micropipeline based standard-cell
library is presented.

As it is explained in section 3 some of the above
pipeline styles can be used within the proposed
framework.

2. Data tokens and pipeline models

In synchronous designs distinct data portions (we

shall denote them as data tokens or just tokens) can
propagate through several processing stages

separated with registers consisting of either flip-flops
(FFs) shown in Figure 1a or pairs of alternatively
clocked D-latches (DL) – in Figure 1b – pipelining. It
allows subsequent data tokens to be processed
concurrently allowing for performance increase at the
price of some area and latency overhead. In
synchronous implementation a token occupies one FF
or two DLs (one stores the token data and one is
transparent). A Petri Net (PN) model of a
synchronous pipelined data path is shown in Figure
1c. A two-transition loop represents clock, other
transitions – data latch control signals or simply data
latching/propagating through the corresponding latch.
Clearly the entire system is safe – no more than one
token can be present in any place at the same time. In
the hardware systems this means that the data tokens
remain distinct – data intact.

With no clock handshake signals based on the
computation completion can be used to clock the
latches keeping the data distinct. One way of sensing
computation completion is by inserting a delay
element that would match the worst case delay of
data propagation through the data path – bundled data
or delay matching. Another approach is completion
detection where data is encoded in such a way that
either (1) data tokens in the data path are separated
with so called null tokens (or spacers) or (2)
consecutive data tokens are always distinct regardless
of the data content [3]. First requires two transitions:
spacer → data → spacer for token propagation
through a stage, while the second – only one however
the stage implementation is more complex in the
second case.

(b) Synchronous (DL) pipeline implementation

(a) Synchronous (DFF) pipeline implementation

(c) Synchronous pipeline PN model

(d) Half Buffer PPN model

HB (T)

DL2

HB (SS)

CL2

HB (ST)

DL3

HB (ST)

DL1

HB (SS)

CL1

(e) Micropipeline with initial marking and corresponding stage state
HB (T)

DL4

HB (SS)

CL3

HB (SS)

DL5

t3 t4 t5t1 t2 t7 t8t6

t3 t4t1

...

...
...
...

clk0/clk<=’0’

clk1/clk<=’1’

t5 t6

...

...

Q

QSET

CLR

D

L

DL1

CL1

Q

QSET

CLR

D

L

DL2
Q

QSET

CLR

D

L

DL3

CL2

clk0
clk1

Q

QSET

CLR

D

L

DL4
Q

QSET

CLR

D

L

DL5

CL3

Q

QSET

CLR

D

DFF1

CL1

clk

CL2

Q

QSET

CLR

D

DFF2

CL3

Q

QSET

CLR

D

DFF3

Figure 1 Pipelines and their models

In this paper we only consider the completion
detection based (or QDI) return to zero (RTZ)
protocols (tokens are separated with spacers). The
capacity of a pipeline implementing such a protocol

is at most half the number of memory elements that
can store tokens (half of them storing tokens and
another half – spacers). Every pipeline stage capable
of storing a token is called a half-buffer (HB) stage.
Some implementations feature two memory elements
per stage to keep both a token and a spacer at the
same time – those are called full-buffer (FB) stages.
In synchronous design latches can be considered as
HB stages while FFs – as FB stages (an FF can be
considered to be built out of two latches as it is
shown in the Figure 1a,b). We consider the more
general HB pipelines.

In Figure 1 the vertical lines separate HB stages.
Notice that there are more lines in Figure 1d,e. This
illustrates how the pipeline capacity changes during
the move to a fine-grain pipeline.

Various templates have been developed for both
HB and FB pipelines. HB pipeline Petri Net (HB
PPN) – a high-level PN model for an asynchronous
HB pipeline is shown in Figure 1d (places are
omitted). In HB PPN each stage is represented by
three places (arcs). The HB stage states are: token
(T), spacer and can accept token (SS) and spacer and
cannot accept token (ST). The states of the individual
stages are marked in Figure 1e. Every stage goes
through SS → T → ST → SS (always the same
sequence). The stage source transition (on the left
from the stage) moves the stage to the T state while
the stage sink transition – to the ST state. The stage
moves to the SS once as the sink transition(s) of the
following stage(s) is fired. The HB PPN model
presented in Figure 1 has been used to prove the
correctness of weaving algorithms for asynchronous
micropipelines composed of HB stages. The model is
not used for the actual re-synthesis (weaving).

3. Design flow

In this section we present the Weaver EDA flow

implementing a “push button” approach to
micropipeline synthesis from high-level behavioral
specification retargetable to different micropipeline
styles through the library approach

3.1. Physical library requirements

Currently we are targeting libraries based on

templates presented in [17] but many other templates
can be used. The following are the requirements for
the physical library to be used in the flow.

Inter-cell communication must be delay
insensitive. This is the only assumption we make
about the library. That assumption should hold as
long as no techniques are developed which preserve

isochronic forks during place and route. QDI stands
for delay insensitive (no wire delay assumptions) but
some forks isochronicity can be required. The DI
inter-cell communication assumption is satisfied as
long as all isochronic forks are placed inside library
cells and guaranteed by the library cells design. Apart
from guaranteeing correct functionality this
assumption lowers the effect of parameters variation
on the design parameters. As long as individual cells
are designed to handle variation across the cell no
system-wide constraints are necessary. It is also
noteworthy that the variation across any given cell is
generally smaller and therefore easier to handle than
across a chip.

Communication protocol is uniform among the
submodules of any module and in the protocol tokens
are separated with spacers. (The flow cannot handle a
library designed for non-RTZ protocols like phased
logic since the synthesis procedure would be quite
different).

Data encoding is dual-rail (DR) one-hot. Single-
rail (SR) logical ‘1’ corresponds to DR‘01’, SR‘0’ –
to DR‘10’ while DR‘11’ is an invalid combination
(this fact can be used for error detection and testing)
and DR‘00’ is a spacer. Channels denote sets of
signals (two for dual-rail) carrying data and up to two
handshake signals (request propagating in the same
direction as data and acknowledge – in the opposite)
associated with that data. Handshake signals’
synchronization cells (usually Muller C-elements)
must be available in the library in at least two
versions: resettable to both 0 and 1.

Apart from the handshake synchronization cells
the library must implement at least the equivalent of
AND2 cell (or OR2 assumed to be dual to AND2)
and an identity function stage (buffer stage).
(Inverter is implemented as the cross-over of data
wires). There must be at least three versions of the
buffer stage implementation (resettable to data1,
data0 and spacer) and at least one resettable to
spacer version of cells implementing other logic
functions.

3.2. Flow architecture

We have implemented an EDA flow [20]

maximizing the use of commercial design tools. It
executes three steps.

Library preparation. From the physical (GTL)
library a virtual library (srGTL) is created to be used
on the first design compile step in such a way that it
contains single rail conventional gates functionally
equivalent to GTL cells. VHDL representations of
GTL gates are generated to enable the GTL
implementation simulation. The GTL library must be

specified in Synopsys Liberty format. We used
extensibility of the latter to describe the GTL gates
interface: mark pins as acknowledge, request, reset,
etc and also to define channels the pins belong to, the
equivalent single-rail function implemented by the
GTL cell, initialization and other specific attributes.

First, conventional RTL implementation is
synthesized for the high-level behavioral
specification, optimized and mapped using srGTL
library. As opposed to the attempts to express
asynchronous formal models in HDL (Martin’s CHP
in case of [21] and others or Signal Transition Graphs
in case of [22]) we are using DC Ultra on this step to
ensure quality support for a variety of high-level
specification formats including complete
synthesizable HDL subset.

On the second step, Weaver Engine (WE)
automatically expands the single-rail netlist into a
dual-rail QDI fine-grain pipelined (GTL)
implementation and generates all local wiring related
to the expansion and handshake implementation.

Finally the GTL netlist is mapped using currently
the same DC Ultra to the GTL library. The use of a
commercial engine on this stage ensures support of
standard formats of library specification facilitating
library development and of output file formats for
smooth interfacing with place and route and other
tools following synthesis in the design flow.

Most of the asynchronous cells are complex
sequential devices. As such they are visible as black
boxes for the RTL synthesis engine. No optimization
is allowed on this stage. The GTL architecture
optimization algorithms are implemented in the
Weaver Engine.

The flow consists of the Weaver Engine (WE), a
set of Tcl scripts and a set of VHDL packages in
conjunction with physical library specifying the
target pipeline architecture.

Tcl scripts implement new commands within the
host compiler command set to automate library
retargeting, calling WE etc. For instance the
wvr_acs_compile_design command
implements the same functionality as the
acs_compile_design from Synopsys
Automated Chip Synthesis but synthesizes GTL
implementation.

Weaver Engine is a VHDL compiler and a
synthesis engine on its own based on the Savant
VHDL compiler.

VHDL packages specify architectures of particular
GTL stages and some compound standard modules.
These packages are also used for the design VHDL
simulation. The use of packages as opposed to hard
coding the architecture in the WE facilitates synthesis
retargeting from one physical library to another.

Single-rail (synchronous)
netlist synthesis

Weaving

GTL netlist mapping

Single-rail netlist

GTL netlist

Mapped QDI netlist

H
os

t s
yn

th
es

is
 e

ng
in

e

HDL design specification

place & route etc tools following synthesis in EDA flow

W
ea

ve
r

en
gi

ne

VHDL
packages

lib cells,
GTL stages

Library compile

GTL lib

srGTL lib

Figure 2 Design flow using Weaver

3.3. Weaving: general approach

Weaving is a procedure of re-synthesis of a

synchronous single-rail implementation into a GTL
implementation.

During the mapping RTL implementation data
wires are substituted by channels and
(i) no additional data dependencies are added and

no existing data dependencies are removed;
Channels depicted in Figure 3 reflect the general

case (both req and ack are used and their
synchronization for multiple-input gates and for
multi-fan-out cases respectively are shown). The req
and ack synchronizers are shown as they are
introduced by the Weaver Engine. Some templates do
not use all four (handshake req, ack and data d0, d1)
communication lines (e.g. PCHB from [17] does not
use req). Those still fit in the framework as long as
they satisfy the requirements given in section 3.1.

Portions of combinational logic are substituted by
functionally equivalent pipeline stages. Without loss
of generality let every such portion be a single logic
gate in synchronous implementation. In general, the
portions can be of arbitrary size but currently every
synchronous gate is replaced by a pipeline stage (very
fine-grain pipelining) for a number of reasons:
• fine-grain gate level pipelining results in the

highest performance implementations;
• smaller cells/macros have smaller routing

overhead;
• smaller number of stage inputs results in smaller

synchronization overhead;

• only cell/macro wide variation matters for QDI
implementations delay insensitive outside the
cell boundaries – so the smaller the cells the
more optimized they can be;

• large cells are very inefficient in terms of place
and route so if the stage is large it must be
composed of basic cells; this brings up the issue
of isochronic forks outside the cell boundaries;
no solution for this problem is currently
implemented in the flow.

Fine-grain pipelining has a large area overhead due to
a very large number (one per each gate) of handshake
control circuits. An alternative solution is necessary
to allow for better area/performance trade-off.

AND2

A

B

X

Z

weaving

GTL_AND2

ACK

PC

CD

F1: AND2 M

PC

F0: OR2 M

- same as in
domino logic

- overhead

B

A X

Z

d0
d1
req
ack

d0
d1

ack
req

d0
d1

req
ack

d0
d1
ack
req

Figure 3 Weaving a combinational gate

Note that for instance inverters do not have to be
implemented as stages using dual-rail encoding –
their implementation is data wires cross-over (zero
cost).
(ii) every gate implementing a logical function is

mapped to a GTL gate (stage) implementing
equivalent function for dual-rail encoded data
and initialized to spacer;

Replacing a combinational gate implementing the
AND2 function with a GTL gate (or stage) and the
wires with channels is illustrated on the Figure 3.

3.4. Weaving: mapping latches and flip-flops

The section 3.3 addresses basic weaving –

synthesizing a fine-grain pipelined GTL
implementation for single-rail combinational netlists.
However, RTL designs are not always combinational.
Suppose that a synchronous RTL netlist produced by
a commercial synthesis engine consists of
combinational logic (CL) gates, D-latches (DL) and
D-flip-flops (FF). Such an assumption is safe since
we can limit the RTL target synthesis library to any
set of gates as long as it satisfies the synthesis engine

requirements. DFF and DL are sufficient for the DC-
Ultra to implement any design.

Clocked registers (either composed of DFFs or
DLs) are used in RTL implementations to separate
concurrent processing of distinct consecutive data
tokens which advance through the registers at the
pace of the clock signal (shown on the Figure 4a with
empty and shaded circles inside latches representing
latching at two possible clock phases of ‘master’ and
‘slave’ latches one of them being transparent when
clock is low and the other – when it is high).

CLCL

DL DL DL DL

HB

(a) Pipelined synchronous combinational circuit

(b) Fine-grain pipelined GTL circuit

HBHB HB HB HBHBHBHBHB HBHB

Figure 4 Weaving with clocked registers

The handshake protocols we are considering

already support consecutive data tokens separation
(with spacer) what makes it possible to substitute
every DL with one HB stage (DFF with two HB or
one FB stages) at the same time applying basic
weaving to the CL portions as with CL gates (basic
pipelining). The result is shown in Figure 4b where
in the absence of clock the circles represent initial
states of the stages (spacers – empty circles and
tokens – shaded ones).

If S denotes the number of stages in a pipeline:
(iii)

(iv)

(v)

(vi)

(vii)

in HB pipelines distinct tokens are always
separated with spacers (no two distinct tokens
in any two adjacent stages);

therefore
closed asynchronous HB pipeline maximum
token capacity is ⎡S/2⎤ - 1 (S – the number of
HB stages);
closed asynchronous FB pipeline maximum
token capacity is S - 1 (S – the number of FB
stages);

and following from the above as it is also shown in
[23]

a live closed HB PPN has at least three
transitions (HB stages);
a live closed HB PPN has at least one token
and at most ⎡S/2⎤ – 1 tokens;

Now more tokens can simultaneously fit in the
pipeline increasing its performance relative to the

synchronous implementation. Let n denote the
number of FFs and m denoting the number of CL
levels in the synchronous implementation (RTL
implementation token capacity is n) the resulting
GTL implementation token capacity is n+m/2. By
weaving:
(viii)

(ix)

for each FF in RTL implementation in GTL
implementation there exist two HB stages one
initialized to a spacer and another – to a token;
the number of HB pipeline stages in any cycle
of GTL implementation is greater than the
number of DLs (or half-FFs) in the
corresponding synchronous RTL
implementation;

The initialization is unimportant for linear and
loop free data paths since the tokens can enter until
the pipeline is full and exit as long as it is not empty.
In the presence of loops and/or nonlinearities
initialization is crucial for liveness as shown in [23].

The condition (ix) is strict – the additional spacer
(vacant position) is required for liveness. This
condition is usually satisfied except for the cases like
a circular shift register with no logic between FFs.

As long as all necessary conditions are satisfied
(the tokens moved to other stages) the identity
function stages corresponding to FFs and DLs can be
optimized out.

Latches controlled by signals other than clock are
often used to implement a selector between the old
(stored) and new (input) values rather than separating
consecutive data tokens. These obviously cannot be
substituted by just HB stages. One of the possible
mappings is shown on the Figure 5 (squares represent
HB buffer stages while the MUX comprises one
more HB stage). This way the loop supplies the
previous value that can be directed to the output by
the MUX. The value fed to the output is always
stored (fed in the loop).

Q

QSET

CLR

D

E

weaving

E

D
Q

Figure 5 Weaving non-clocked latches

The minimum of three HB stages in a loop is
required by (vi).

3.5. Weaving: mapping circuits with loops

In this section let us consider a combination of

loop(s) and combinational data paths, for example a
design with a data path controlled by a state machine.

Section 3.4 summarized the token capacity aspects
of the loops mapping. From (ix), (vi), (vii) for HB
implementation ensuring that every loop length is at
least greater than twice the number of tokens in the
loop is sufficient for correct operation.

Consider the GTL implementation performance.
In the presence of loops the entire circuit
performance is limited by the latency through the
loop divided by the number of tokens following each
other in that loop. FSM usually has only one token
per loop. Thus, the performance of our design is
limited by the FSM cycle time (the time between
acknowledging the ith output vector and arrival of the
i+1th output vector). Thus the liveness requirement of
three stages per loop should be approached as closely
as possible. This can be solved automatically in our
flow by identifying the FSM and re-synthesizing it
with one-hot encoding style (WE is responsible for
the FSM identification and the host synthesis engine
is called to perform re-synthesis).

Another problem is illustrated on the Figure 6
(each square represent an HB stage). The design has
two primary inputs (a, b), a 14-stage long data path
and an FSM – a loop of some width and the length of
three stages. In general in the FSMs particular bits of
the state vector may depend on the subset (not the
entire set) of bits of the state and input vectors.
However for simplicity in this example we assume
that the every bit of the state vector depends on the
entire input and state vector.

The design performance is limited by the
maximum of the slowest stage and the FSM cycle
time. However at the point f data depends on the
result of computation at d. Both depend on the FSM
outputs and for a data token computed at d it takes 8
HB stages to arrive at the input of f. Assuming that
the FSM cannot proceed until all its outputs are
acknowledged, the delay of propagating through 9
HB stages is added to the FSM cycle time drastically
reducing the system performance. The problem is
solved by slack matching first substantially explored
in [24]. Slack matching consists in inserting
additional identity function (buffer) stages
represented by slim rectangles in Figure 6. These
stages balance the length of paths synchronized later
in the system. In our example in Figure 6b the buffer
stages acknowledge the data token traveling to the
point f so that the FSM can proceed. Similar
procedure is applied to the data path to ensure its
maximal token capacity. With proper slack matching
and no loops the pipeline performance is limited by
the total latency of the two slowest adjacent stages.

c

(b) Same design after slack matching

a
b

c

d e f

(a) Typical design with a FSM

a
b d e f

Figure 6 Slack matching

In general the slack matching algorithm balances
the number of stages in all converging paths starting
from the token sources: primary inputs initialized
flip-flops, and latches (as in the case with FSM).

4. Experimental results

To estimate the efficiency of our flow we compare

the performance of synchronous and GTL
implementations.

It is important to show the speed-up achieved
from pipelining a multilevel combinational circuit
and the area penalty paid for the pipeline
implementation. As it was explained above the GTL
cells are specifically designed to meet the isochronic
forks requirement satisfied inside the cells so that the
communication is delay insensitive. Dynamic GTL
cell implementation is advantageous comparing to
static one for better area and performance. With that
in mind we implemented a simple dynamic logic
based library in TSMC 0.18 µm technology obtained
through MOSIS. The library was optimized for speed
and at this point has only an identity function stage
(to be used for slack matching) and as a mapping for
clocked DLs and DFFs, and an AND2 gate. With this
library we ran the set of MCNC multilevel
combinational benchmarks [25]. Timing results for
relatively deep and for some shallow benchmarks are
summarized in the Table 1. In the Table 1 d stands
for the depth in gates of the combinational
implementation, cl – for combinational (conventional
gates) implementation latency, gc – for the cycle time
of the GTL implementation and gl – for its forward
latency. The area is shown in Table 2 where comb
stands for the combinational (conventional gates)
implementation.

We compared the results with a synchronous
implementation using 0.18µm library from Illinois
Institute of Technology (sync). The GTL
performance was measured using simulation. For
synchronous circuits we used the data propagation
time from the Synopsys DC report.
As it can be seen from the table the GTL
implementations performance is approximately the
same for all benchmarks without loops that confirms
our expectations – the performance is limited by the
cycle time of the slowest stage.

Table 1 Cycle time and latency figures for
multilevel MCNC benchmarks

time, ns Ratio Bench-
mark d cl gc gl cl/gc gl/cl
C17 2 0.31 1.25 0.15 0.25 2.0
C1355 12 2.72 1.35 1.03 2.01 2.6
C1908 17 3.71 1.56 1.10 2.38 3.4
C432 14 3.23 1.43 1.26 2.26 2.6
C499 12 2.67 1.32 0.77 2.02 3.5
C880 15 2.58 1.57 0.46 1.64 5.7
cm162a 5 0.93 1.31 0.47 0.71 2.0
cm163a 6 0.91 1.27 0.39 0.72 2.3
cordic 6 1.01 1.25 0.39 0.81 2.7
dalu 13 3.26 1.53 0.48 2.13 6.8
sct 7 0.84 1.38 0.39 0.61 2.2

Table 2 Area comparison for combinational
MCNC benchmarks

area, um3 x 103 Benchmark # of
gates comb gtl

gtl/
comb

C17 6 0.2 1.4 6.97
C1355 546 17.7 123 10.6
C1908 880 14.6 109 7.46
C432 160 6.0 73.6 12.3
C499 202 14.9 92 6.17
C880 383 11.4 111 9.79
cm162a 19 1.2 6.9 5.64
cm163a 16 1.2 7.8 6.52
cordic 102 2.8 13.7 4.96
dalu 1131 27.2 214 7.85
sct 40 2.0 15.4 7.64

Another comparison compares the automated

pipelining in synchronous framework and a manually
pipelined implementation of a deep combinational
circuit with the results obtained with the Weaver
flow. In this experiment we synthesized a 10-rounds
implementation of the Advanced Encryption
Standard. The charts in Figure 7 show the area and
performance characteristics of several of its
implementations.

The first implementation is a purely combinational
non-pipelined implementation by Synopsys DC-Ultra

synthesized from a hierarchical behavioral
specification.

Retiming is a technique used to balance stages in
synchronous pipeline. Synopsys DC-Ultra includes
the pipeline_design –period 0 command
to automatically insert in the initially combinational
design as many registers as possible. This command
inserts a register at the output of a circuit and tries to
move it backwards reducing the clock cycle. Then
another register is inserted and moved until the
constraints are satisfied. The results of this command
were poor for the hierarchical design so we flattened
it to get the most of the tool performance. The next
(second) columns on the chart present the area and
performance of the automatically pipelined flattened
design. Here pipelining improved the performance
drastically – about 25 times. The area was doubled.

The next implementation running at
approximately 578 MHz is manually pipelined [26]
and synthesized by the DC-Ultra for the same library.

PerformanceArea

unpipelined

pipelined with DC

manually pipelined

Weaver with mpchb018 library

15

371

578

714
1847

270
419

207

Figure 7 10-round AES implementations
comparison

Finally the last bar corresponds to the GTL
implementation area and performance. The
implementation was synthesized by the Weaver flow
using (the same as in MCNC benchmarks) mpchb
library developed in our lab [20].

5. Conclusion

In this paper we’ve briefly presented a framework

for synthesis of fine-grain pipelined QDI circuits
from high-level specification. We have implemented
techniques for efficiently re-synthesizing
architectures with clocked registers and no loops or
where the only loops are inside the FSM. The
efficiency of such architectures after re-synthesis is
defined by the library.

The behavior specification can be written in
VHDL, Verilog HDL or other languages supported as
input by Synopsys DC-Ultra. Theseus Logic NCL

flow used the same approach utilizing industrial
synthesis engine to perform logic synthesis. However
in the NCL flow some specific programming is
required on the level of input specification e.g.
handshake signals for non-linear data paths had to be
explicitly specified by the designer. In our flow the
initial specification does not need to be tailored for
asynchronous implementation allowing for the HDL
code reuse.

The architecture of NCL, phased logic and in the
de-synchronization implementations mimics the
architecture of the synchronous design usually
coarse-grain thus not improving the performance of
the original design. NCL also adds significant
synchronization overhead for wide data paths. GTL
circuits are fine-grain pipelined regardless of whether
the synchronous implementation was pipelined or
not. In addition GTL avoids unnecessary
synchronization which even more improves the
implementation performance.

Lastly, NCL flow only used proprietary NCL cells
while the Weaver flow can be retargeted to any QDI
pipeline library.

The experimental results show that GTL synthesis
contributes high performance with robustness to
process, temperature etc variations and the design
automation allowing low-latency domino-like logic at
the expense of area overhead and automatic fine-
grain pipelining (Table 1, Table 2 and Figure 7).

The performance of synthesized implementation is
limited by (1) the cycle time of the slowest stage for
the circuits with no internal loops or (2) the worst
loop cycle time over the number of tokens in the
loop. GTL cell cycle time is slower than the latency
of a conventional static gate. This fact makes GTL
performance higher only compared if a 6-10 gate
deep circuit is pipelined (Table 1). On the other hand
the GTL cell latency is lower than that of static gates
since our dynamic cells are domino style. This
suggests two main applications of GTL circuits –
those that take advantage of deep pipelining and
those where the forward latency is important.

We did not include any tables on the FSMs in this
paper but the performance of a one-hot GTL FSM is
usually on the level of 500MHz. The area overhead is
about the same as with combinational benchmarks.

The area and performance figures heavily depend
on the quality of the library so development of
libraries for the flow remains crucial for the
methodology to succeed in industry.

6. References

1. Ligthart, M., et al., Asynchronous Design Using
Commercial HDL Synthesis Tools, in Proc.

International Symposium on Advanced Research
in Asynchronous Circuits and Systems. 2000,
IEEE Computer Society Press. p. 114--125.

2. Linder, D.H. and J.C. Harden, Phased Logic:
Supporting the Synchronous Design Paradigm
with Delay-Insensitive Circuitry. IEEE
Transactions on Computers, 1996. 45(9): p. 1031-
-1044.

3. Blunno, I., et al. Handshake protocols for de-
synchronization. in International Symposium on
Advanced Research in Asynchronous Circuits and
Systems. 2004.

4. Kondratyev, A. and K. Lwin, Design of
Asynchronous Circuits using Synchronous CAD
Tools. IEEE Design & Test of Computers, 2002.
19(4): p. 107--117.

5. Cortadella, J., et al. Coping with the variability of
combinational logic delays. in Int. Conf. on
Computer Design (ICCD). 2004. San Jose.

6. Reese, R.B., M.A. Thornton, and C. Traver. A
Fine-Grain Phased Logic CPU. in IEEE
Computer Society Annual Symposium on VLSI
(ISVLSI 2003). 2003. Tampa, Florida.

7. Hrishikesh, M.S., et al. The Optimal Depth Per
Pipeline Stage is 6 to 8 FO4 Inverter Delays. in
29th Int'l Symp. Computer Architecture. 2002:
IEEE CS Press.

8. Hartstein, A. and T.R. Puzak. Optimum
Power/Performance Pipeline Depth. in MICRO-
36 International Symposium on
Microarchitecture. 2003.

9. Singh, M. and S.M. Nowick, MOUSETRAP:
Ultra-High-Speed Transition-Signaling
Asynchronous Pipelines, in Proc. International
Conf. Computer Design (ICCD). 2001. p. 9--17.

10. Sutherland, I. and S. Fairbanks, GasP: A Minimal
FIFO Control, in Proc. International Symposium
on Advanced Research in Asynchronous Circuits
and Systems. 2001, IEEE Computer Society Press.
p. 46--53.

11. Schuster, S., et al. Asynchronous Interlocked
Pipelined CMOS Circuits Operating at 3.3-4.5
GHz. in International Solid-State Circuits
Conference. 2000.

12. Singh, M. and S.M. Nowick, Fine-grain pipelined
asynchronous adders for high-speed DSP
applications, in Proceedings of the IEEE
Computer Society Workshop on VLSI. 2000, IEEE
Computer Society Press. p. 111--118.

13. Singh, M. and S.M. Nowick, High-Throughput
Asynchronous Pipelines for Fine-Grain Dynamic
Datapaths, in Proc. International Symposium on
Advanced Research in Asynchronous Circuits
and Systems. 2000, IEEE Computer Society Press.
p. 198--209.

14. Ferretti, M. and P.A. Beerel, Single-Track
Asynchronous Pipeline Templates Using 1-of-N
Encoding, in Proc. Design, Automation and Test
in Europe (DATE). 2002. p. 1008--1015.

15. Choy, C.-s., et al. A fine-grain asynchronous
pipeline reaching the synchronous speed. in
ASIC. 2001. Shanghai, China.

16. Nowick, M.S.a.S.M., High-Throughput
Asynchronous Pipelines for Fine-Grain Dynamic
Datapaths. Proceedings of the 6th IEEE
International Symposium on Advanced Research
in Asynchronous Circuits and Systems ("Async-
2000"), Eilat, Israel, 2000.

17. Ozdag, R.O. and P.A. Beerel, High-Speed QDI
Asynchronous Pipelines, in Proc. International
Symposium on Advanced Research in
Asynchronous Circuits and Systems. 2002. p. 13-
-22.

18. Fulcrum Microsystems Inc. Web site:
http://www.fulcrummicro.com/technology.htm.

19. Ozdag, R.O. and P.A. Beerel. A Channel Based
Asynchronous Low Power High Performance
Standard-Cell Based Sequential Decoder
Implementated with QDI Templates. in
International Symposium on Advanced Research
in Asynchronous Circuits and Systems. 2004.

20. Weaver: GTL synthesis flow.
http://async.bu.edu/weaver/. 2004.

21. Renaudin, M., P. Vivet, and F. Robin, A Design
Framework for Asynchronous/Synchronous
Circuits Based on CHP to HDL Translation, in
Proc. International Symposium on Advanced
Research in Asynchronous Circuits and Systems.
1999. p. 135--144.

22. Blunno, I. and L. Lavagno, Automated synthesis
of micro-pipelines from behavioral Verilog HDL,
in Proc. International Symposium on Advanced
Research in Asynchronous Circuits and Systems.
2000, IEEE Computer Society Press. p. 84--92.

23. Smirnov, A., et al. Gate Transfer Level Synthesis
as an Automated Approach to Fine-Grain
Pipelining. in Workshop on Token Based
Computing (ToBaCo). 2004. Bologna, Italy.

24. Kim, S. and P.A. Beerel, Pipeline Optimization
for Asynchronous Circuits: Complexity Analysis
and an Efficient Optimal Algorithm, in Proc.
International Conf. Computer-Aided Design
(ICCAD). 2000.

25. Yang, S., Logic Synthesis and Optimization
Benchmarks Version 3.0. 1991, Microelectronics
center of North Carolina.

26. Verbauwhede, I., P. Schaumont, and H. Kuo,
Design and Performance Testing of a 2.29-GB/s
Rijndael Processor. IEEE Journal of Solid-State
Circuits, 2003. 38(3): p. 569-572.

http://www.fulcrummicro.com/technology.htm
http://async.bu.edu/weaver/

	Introduction
	Data tokens and pipeline models
	Design flow
	Physical library requirements
	Flow architecture
	Weaving: general approach
	Weaving: mapping latches and flip-flops
	Weaving: mapping circuits with loops

	Experimental results
	Conclusion
	References

