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Abstract. 
 
Register Transfer Level (RTL) synthesis model 

which simplified the design of clocked circuits 
allowed design automation boost and VLSI progress 
for more than a decade. Shrinking technology and 
progressive increase in clock frequency are bringing 
clock to its physical limits. Asynchronous circuits, 
which are believed to replace globally clocked 
designs in the future, remain out of the competition 
due to the design complexity of some automated 
approaches and poor results of other techniques. 
Successful asynchronous designs are known but they 
are primarily custom. This work sketches an 
automated approach for automatically re-
implementing conventional RTL designs as fine-grain 
pipelined asynchronous quasi-delay-insensitive 
(QDI) circuits and presents a framework for 
automated synthesis of such implementations from 
high-level behavior specifications. Experimental 
results are presented using our new dynamic 
asynchronous library.  

Keywords: asynchronous EDA, synthesis, QDI, 
ASIC, HDL. 

1. Introduction 
 
The popularity of synchronous design and its 

support by EDA tools on one hand and the crisis of 
the synchronous paradigm due to process variation, 
signal integrity problems and other physical 
limitations on the other hand have resulted in a 
number of approaches to asynchronous 
reimplementation of synchronous designs. The main 
idea of such reimplementation is substituting the 
global clocking by local control communications. It 
has been explored in a number of works including [1-
5]. The following three approaches to asynchronous 
circuits design automation are the most elaborate and 
closest to our approach.  

Phased logic [2, 6] replaces every combinational 
logic (CL) gate with its dual-rail implementation. 
One rail carries data while the other – phase. Distinct 
phases correspond to distinct data tokens: the codes 
‘00’ and ‘11’ can be followed by ‘01’ or ‘10’ and 
vice versa but ‘00’ is never followed by ‘11’ and ‘01’ 
by ‘10’ etc. Such an encoding scheme is beneficial 
for power consumption since only one transition is 
required per data token propagation through a stage 
but to ensure safeness additional feedbacks are 
required [2] on the design stage increasing the design 
complexity. 

De-synchronization [3, 5] is another approach to 
redesigning clocking for synchronous netlists. The 
authors explored both delay matching and completion 
detection techniques. The de-synchronized circuits 
are architecturally equivalent to the original RTL 
design. 

Null Convention Logic (NCL) [1, 4] EDA flow 
from Theseus Logic exploits the idea of synthesizing 
large designs using a commercial synchronous 
synthesis engine and substituting globally clocked 
synchronous registers in the data path by 
asynchronous registers communicating 
asynchronously through delay insensitive 
handshakes. NCL circuits are dual-rail to enable 
completion detection. They are architecturally 
equivalent to the RTL implementation. Heavy 
synchronization of completion detection signals at 
registration points slows NCL designs. The designer 
is required to manually specify some handshake 
signals in VHDL. That complicates the existing RTL 
reuse. 

None of the above approaches offer support for 
automated pipelining therefore they do not improve 
the performance of the original design. 

In synchronous designs automatic pipelining is 
difficult to implement because it changes the number 
and position of registers which finally results in a 
completely new specification. Synchronous design 
pipelining is reasonable only for more than eight 
levels of logic and this number is increasing because 



the technology shrinking is decreasing the gate 
latency while clock limitations (routing and skew) 
stay the same. Further reducing the amount of logic 
per pipeline stage reduces the amount of useful work 
per cycle while not affecting the overheads associated 
with latches, clock skew and jitter [7, 8]. In 
asynchronous circuits the handshake implementation, 
latency and area are shrinking with the rest of the 
circuit. Since no assumptions are made about the 
inter-cell communication delays the circuit 
correctness no longer depends on the amount of 
process variation. 

These unique features of clockless handshake-
based systems have inspired the present work 
dedicated to automated synthesis of pipelined 
asynchronous implementations from HDL 
specification. 

 Our EDA flow implements the behavior specified 
with regular HDL as a pipelined QDI asynchronous 
circuit by synthesizing a synchronous implementation 
of the specified behavior and ‘weaving’ it into an 
asynchronous implementation. By default the design 
is pipelined on the finest grain gate level. This way 
the highest performance is achieved.  

The main distinctive feature of our approach is 
that it does not only solve the global clocking 
problem by substituting global synchronization signal 
with local self-timed control but also replaces the 
register transfer architecture by gate transfer 
architecture (further referred to as GTL). This 
automatically results in very fine grain pipelined 
circuits regardless of the original synchronous 
implementation pipelining.  

Apart from the efforts to automate pipelined 
circuits synthesis serious efforts are dedicated to 
designing efficient micropipeline implementation. 
The latter mostly fall into two categories: matched 
delay [9-13] and QDI [13-17] depending on the 
computation completion detection implementation. 
Fulcrum Microsystems [18] is one of the companies 
known to successfully implement commercial high-
speed asynchronous chips using micropipelines. 
However to our knowledge the design remains 
custom with some in-house proprietary EDA tools.  

In [19] a QDI micropipeline based standard-cell 
library is presented. 

As it is explained in section 3 some of the above 
pipeline styles can be used within the proposed 
framework. 

2. Data tokens and pipeline models 
 
In synchronous designs distinct data portions (we 

shall denote them as data tokens or just tokens) can 
propagate through several processing stages 

separated with registers consisting of either flip-flops 
(FFs) shown in Figure 1a or pairs of alternatively 
clocked D-latches (DL) – in Figure 1b – pipelining. It 
allows subsequent data tokens to be processed 
concurrently allowing for performance increase at the 
price of some area and latency overhead. In 
synchronous implementation a token occupies one FF 
or two DLs (one stores the token data and one is 
transparent). A Petri Net (PN) model of a 
synchronous pipelined data path is shown in Figure 
1c. A two-transition loop represents clock, other 
transitions – data latch control signals or simply data 
latching/propagating through the corresponding latch. 
Clearly the entire system is safe – no more than one 
token can be present in any place at the same time. In 
the hardware systems this means that the data tokens 
remain distinct – data intact.  

With no clock handshake signals based on the 
computation completion can be used to clock the 
latches keeping the data distinct. One way of sensing 
computation completion is by inserting a delay 
element that would match the worst case delay of 
data propagation through the data path – bundled data 
or delay matching. Another approach is completion 
detection where data is encoded in such a way that 
either (1) data tokens in the data path are separated 
with so called null tokens (or spacers) or (2) 
consecutive data tokens are always distinct regardless 
of the data content [3]. First requires two transitions: 
spacer → data → spacer for token propagation 
through a stage, while the second – only one however 
the stage implementation is more complex in the 
second case. 

(b) Synchronous (DL) pipeline implementation

(a) Synchronous (DFF) pipeline implementation

(c) Synchronous pipeline PN model

(d) Half Buffer PPN model 
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Figure 1 Pipelines and their models 

In this paper we only consider the completion 
detection based (or QDI) return to zero (RTZ) 
protocols (tokens are separated with spacers). The 
capacity of a pipeline implementing such a protocol 



is at most half the number of memory elements that 
can store tokens (half of them storing tokens and 
another half – spacers). Every pipeline stage capable 
of storing a token is called a half-buffer (HB) stage. 
Some implementations feature two memory elements 
per stage to keep both a token and a spacer at the 
same time – those are called full-buffer (FB) stages. 
In synchronous design latches can be considered as 
HB stages while FFs – as FB stages (an FF can be 
considered to be built out of two latches as it is 
shown in the Figure 1a,b). We consider the more 
general HB pipelines.  

In Figure 1 the vertical lines separate HB stages. 
Notice that there are more lines in Figure 1d,e. This 
illustrates how the pipeline capacity changes during 
the move to a fine-grain pipeline. 

Various templates have been developed for both 
HB and FB pipelines. HB pipeline Petri Net (HB 
PPN) – a high-level PN model for an asynchronous 
HB pipeline is shown in Figure 1d (places are 
omitted). In HB PPN each stage is represented by 
three places (arcs). The HB stage states are: token 
(T), spacer and can accept token (SS) and spacer and 
cannot accept token (ST). The states of the individual 
stages are marked in Figure 1e.  Every stage goes 
through SS → T → ST → SS (always the same 
sequence). The stage source transition (on the left 
from the stage) moves the stage to the T state while 
the stage sink transition – to the ST state. The stage 
moves to the SS once as the sink transition(s) of the 
following stage(s) is fired. The HB PPN model 
presented in Figure 1 has been used to prove the 
correctness of weaving algorithms for asynchronous 
micropipelines composed of HB stages. The model is 
not used for the actual re-synthesis (weaving). 

3. Design flow 
 
In this section we present the Weaver EDA flow 

implementing a “push button” approach to 
micropipeline synthesis from high-level behavioral 
specification retargetable to different micropipeline 
styles through the library approach  

3.1. Physical library requirements 
 
Currently we are targeting libraries based on 

templates presented in [17] but many other templates 
can be used. The following are the requirements for 
the physical library to be used in the flow.  

Inter-cell communication must be delay 
insensitive. This is the only assumption we make 
about the library. That assumption should hold as 
long as no techniques are developed which preserve 

isochronic forks during place and route. QDI stands 
for delay insensitive (no wire delay assumptions) but 
some forks isochronicity can be required. The DI 
inter-cell communication assumption is satisfied as 
long as all isochronic forks are placed inside library 
cells and guaranteed by the library cells design. Apart 
from guaranteeing correct functionality this 
assumption lowers the effect of parameters variation 
on the design parameters. As long as individual cells 
are designed to handle variation across the cell no 
system-wide constraints are necessary. It is also 
noteworthy that the variation across any given cell is 
generally smaller and therefore easier to handle than 
across a chip.  

Communication protocol is uniform among the 
submodules of any module and in the protocol tokens 
are separated with spacers. (The flow cannot handle a 
library designed for non-RTZ protocols like phased 
logic since the synthesis procedure would be quite 
different). 

Data encoding is dual-rail (DR) one-hot. Single-
rail (SR) logical ‘1’ corresponds to DR‘01’, SR‘0’ – 
to DR‘10’ while DR‘11’ is an invalid combination 
(this fact can be used for error detection and testing) 
and DR‘00’ is a spacer. Channels denote sets of 
signals (two for dual-rail) carrying data and up to two 
handshake signals (request propagating in the same 
direction as data and acknowledge – in the opposite) 
associated with that data. Handshake signals’ 
synchronization cells (usually Muller C-elements) 
must be available in the library in at least two 
versions: resettable to both 0 and 1. 

Apart from the handshake synchronization cells 
the library must implement at least the equivalent of 
AND2 cell (or OR2 assumed to be dual to AND2) 
and an identity function stage (buffer stage). 
(Inverter is implemented as the cross-over of data 
wires). There must be at least three versions of the 
buffer stage implementation (resettable to data1, 
data0 and spacer) and at least one resettable to 
spacer version of cells implementing other logic 
functions.  

3.2. Flow architecture 
 
We have implemented an EDA flow [20] 

maximizing the use of commercial design tools. It 
executes three steps. 

Library preparation. From the physical (GTL) 
library a virtual library (srGTL) is created to be used 
on the first design compile step in such a way that it 
contains single rail conventional gates functionally 
equivalent to GTL cells. VHDL representations of 
GTL gates are generated to enable the GTL 
implementation simulation. The GTL library must be 



specified in Synopsys Liberty format. We used 
extensibility of the latter to describe the GTL gates 
interface: mark pins as acknowledge, request, reset, 
etc and also to define channels the pins belong to, the 
equivalent single-rail function implemented by the 
GTL cell, initialization and other specific attributes. 

First, conventional RTL implementation is 
synthesized for the high-level behavioral 
specification, optimized and mapped using srGTL 
library. As opposed to the attempts to express 
asynchronous formal models in HDL (Martin’s CHP 
in case of [21] and others or Signal Transition Graphs 
in case of [22]) we are using DC Ultra on this step to 
ensure quality support for a variety of high-level 
specification formats including complete 
synthesizable HDL subset. 

On the second step, Weaver Engine (WE) 
automatically expands the single-rail netlist into a 
dual-rail QDI fine-grain pipelined (GTL) 
implementation and generates all local wiring related 
to the expansion and handshake implementation.  

Finally the GTL netlist is mapped using currently 
the same DC Ultra to the GTL library. The use of a 
commercial engine on this stage ensures support of 
standard formats of library specification facilitating 
library development and of output file formats for 
smooth interfacing with place and route and other 
tools following synthesis in the design flow.  

Most of the asynchronous cells are complex 
sequential devices. As such they are visible as black 
boxes for the RTL synthesis engine. No optimization 
is allowed on this stage. The GTL architecture 
optimization algorithms are implemented in the 
Weaver Engine.  

The flow consists of the Weaver Engine (WE), a 
set of Tcl scripts and a set of VHDL packages in 
conjunction with physical library specifying the 
target pipeline architecture.  

Tcl scripts implement new commands within the 
host compiler command set to automate library 
retargeting, calling WE etc. For instance the 
wvr_acs_compile_design command 
implements the same functionality as the 
acs_compile_design from Synopsys 
Automated Chip Synthesis but synthesizes GTL 
implementation.  

Weaver Engine is a VHDL compiler and a 
synthesis engine on its own based on the Savant 
VHDL compiler.  

VHDL packages specify architectures of particular 
GTL stages and some compound standard modules. 
These packages are also used for the design VHDL 
simulation. The use of packages as opposed to hard 
coding the architecture in the WE facilitates synthesis 
retargeting from one physical library to another. 
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Figure 2 Design flow using Weaver 

3.3. Weaving: general approach 
 
Weaving is a procedure of re-synthesis of a 

synchronous single-rail implementation into a GTL 
implementation.  

During the mapping RTL implementation data 
wires are substituted by channels and  
(i) no additional data dependencies are added and 

no existing data dependencies are removed; 
Channels depicted in Figure 3 reflect the general 

case (both req and ack are used and their 
synchronization for multiple-input gates and for 
multi-fan-out cases respectively are shown). The req 
and ack synchronizers are shown as they are 
introduced by the Weaver Engine. Some templates do 
not use all four (handshake req, ack and data d0, d1) 
communication lines (e.g. PCHB from [17] does not 
use req). Those still fit in the framework as long as 
they satisfy the requirements given in section 3.1. 

Portions of combinational logic are substituted by 
functionally equivalent pipeline stages. Without loss 
of generality let every such portion be a single logic 
gate in synchronous implementation. In general, the 
portions can be of arbitrary size but currently every 
synchronous gate is replaced by a pipeline stage (very 
fine-grain pipelining) for a number of reasons: 
• fine-grain gate level pipelining results in the 

highest performance implementations; 
• smaller cells/macros have smaller routing 

overhead; 
• smaller number of stage inputs results in smaller 

synchronization overhead; 



• only cell/macro wide variation matters for QDI 
implementations delay insensitive outside the 
cell boundaries – so the smaller the cells the 
more optimized they can be; 

• large cells are very inefficient in terms of place 
and route so if the stage is large it must be 
composed of basic cells; this brings up the issue 
of isochronic forks outside the cell boundaries; 
no solution for this problem is currently 
implemented in the flow. 

Fine-grain pipelining has a large area overhead due to 
a very large number (one per each gate) of handshake 
control circuits. An alternative solution is necessary 
to allow for better area/performance trade-off. 
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Figure 3 Weaving a combinational gate 

Note that for instance inverters do not have to be 
implemented as stages using dual-rail encoding – 
their implementation is data wires cross-over (zero 
cost).  
(ii) every gate implementing a logical function is 

mapped to a GTL gate (stage) implementing 
equivalent function for dual-rail encoded data 
and initialized to spacer; 

Replacing a combinational gate implementing the 
AND2 function with a GTL gate (or stage) and the 
wires with channels is illustrated on the Figure 3.  

3.4. Weaving: mapping latches and flip-flops 
 
The section 3.3 addresses basic weaving – 

synthesizing a fine-grain pipelined GTL 
implementation for single-rail combinational netlists. 
However, RTL designs are not always combinational. 
Suppose that a synchronous RTL netlist produced by 
a commercial synthesis engine consists of 
combinational logic (CL) gates, D-latches (DL) and 
D-flip-flops (FF). Such an assumption is safe since 
we can limit the RTL target synthesis library to any 
set of gates as long as it satisfies the synthesis engine 

requirements. DFF and DL are sufficient for the DC-
Ultra to implement any design. 

Clocked registers (either composed of DFFs or 
DLs) are used in RTL implementations to separate 
concurrent processing of distinct consecutive data 
tokens which advance through the registers at the 
pace of the clock signal (shown on the Figure 4a with 
empty and shaded circles inside latches representing 
latching at two possible clock phases of ‘master’ and 
‘slave’ latches one of them being transparent when 
clock is low and the other – when it is high).  
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Figure 4 Weaving with clocked registers 

 
The handshake protocols we are considering 

already support consecutive data tokens separation 
(with spacer) what makes it possible to substitute 
every DL with one HB stage (DFF with two HB or 
one FB stages) at the same time applying basic 
weaving to the CL portions as with CL gates (basic 
pipelining). The result is shown in  Figure 4b where 
in the absence of clock the circles represent initial 
states of the stages (spacers – empty circles and 
tokens – shaded ones). 

If S denotes the number of stages in a pipeline:  
(iii) 

(iv) 

(v) 

(vi) 

(vii) 

in HB pipelines distinct tokens are always 
separated with spacers (no two distinct tokens 
in any two adjacent stages); 

therefore 
closed asynchronous HB pipeline maximum 
token capacity is ⎡S/2⎤ - 1 (S – the number of 
HB stages); 
closed asynchronous FB pipeline maximum 
token capacity is S - 1 (S – the number of FB 
stages); 

and following from the above as it is also shown in 
[23] 

a live closed HB PPN has at least three 
transitions (HB stages); 
a live closed HB PPN has at least one token 
and at most ⎡S/2⎤  – 1 tokens; 

Now more tokens can simultaneously fit in the 
pipeline increasing its performance relative to the 



synchronous implementation. Let n denote the 
number of FFs and m denoting the number of CL 
levels in the synchronous implementation (RTL 
implementation token capacity is n) the resulting 
GTL implementation token capacity is n+m/2. By 
weaving:  
(viii) 

(ix) 

for each FF in RTL implementation in GTL 
implementation there exist two HB stages one 
initialized to a spacer and another – to a token; 
the number of HB pipeline stages in any cycle 
of GTL implementation is greater than the 
number of DLs (or half-FFs) in the 
corresponding synchronous RTL 
implementation; 

The initialization is unimportant for linear and 
loop free data paths since the tokens can enter until 
the pipeline is full and exit as long as it is not empty. 
In the presence of loops and/or nonlinearities 
initialization is crucial for liveness as shown in [23]. 

The condition (ix) is strict – the additional spacer 
(vacant position) is required for liveness. This 
condition is usually satisfied except for the cases like 
a circular shift register with no logic between FFs.  

As long as all necessary conditions are satisfied 
(the tokens moved to other stages) the identity 
function stages corresponding to FFs and DLs can be 
optimized out.  

Latches controlled by signals other than clock are 
often used to implement a selector between the old 
(stored) and new (input) values rather than separating 
consecutive data tokens. These obviously cannot be 
substituted by just HB stages. One of the possible 
mappings is shown on the Figure 5 (squares represent 
HB buffer stages while the MUX comprises one 
more HB stage). This way the loop supplies the 
previous value that can be directed to the output by 
the MUX. The value fed to the output is always 
stored (fed in the loop).  
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Figure 5 Weaving non-clocked latches 

The minimum of three HB stages in a loop is 
required by (vi).  

3.5. Weaving: mapping circuits with loops 
 
In this section let us consider a combination of 

loop(s) and combinational data paths, for example a 
design with a data path controlled by a state machine.  

Section 3.4 summarized the token capacity aspects 
of the loops mapping. From (ix), (vi), (vii) for HB 
implementation ensuring that every loop length is at 
least greater than twice the number of tokens in the 
loop is sufficient for correct operation.  

Consider the GTL implementation performance. 
In the presence of loops the entire circuit 
performance is limited by the latency through the 
loop divided by the number of tokens following each 
other in that loop. FSM usually has only one token 
per loop. Thus, the performance of our design is 
limited by the FSM cycle time (the time between 
acknowledging the ith output vector and arrival of the 
i+1th output vector). Thus the liveness requirement of 
three stages per loop should be approached as closely 
as possible. This can be solved automatically in our 
flow by identifying the FSM and re-synthesizing it 
with one-hot encoding style (WE is responsible for 
the FSM identification and the host synthesis engine 
is called to perform re-synthesis). 

Another problem is illustrated on the Figure 6 
(each square represent an HB stage). The design has 
two primary inputs (a, b), a 14-stage long data path 
and an FSM – a loop of some width and the length of 
three stages. In general in the FSMs particular bits of 
the state vector may depend on the subset (not the 
entire set) of bits of the state and input vectors. 
However for simplicity in this example we assume 
that the every bit of the state vector depends on the 
entire input and state vector.  

The design performance is limited by the 
maximum of the slowest stage and the FSM cycle 
time. However at the point f data depends on the 
result of computation at d. Both depend on the FSM 
outputs and for a data token computed at d it takes 8 
HB stages to arrive at the input of f. Assuming that 
the FSM cannot proceed until all its outputs are 
acknowledged, the delay of propagating through 9 
HB stages is added to the FSM cycle time drastically 
reducing the system performance. The problem is 
solved by slack matching first substantially explored 
in [24]. Slack matching consists in inserting 
additional identity function (buffer) stages 
represented by slim rectangles in Figure 6. These 
stages balance the length of paths synchronized later 
in the system. In our example in Figure 6b the buffer 
stages acknowledge the data token traveling to the 
point f so that the FSM can proceed. Similar 
procedure is applied to the data path to ensure its 
maximal token capacity. With proper slack matching 
and no loops the pipeline performance is limited by 
the total latency of the two slowest adjacent stages. 
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Figure 6 Slack matching 

In general the slack matching algorithm balances 
the number of stages in all converging paths starting 
from the token sources: primary inputs initialized 
flip-flops, and latches (as in the case with FSM). 

4. Experimental results 
 
To estimate the efficiency of our flow we compare 

the performance of synchronous and GTL 
implementations.  

It is important to show the speed-up achieved 
from pipelining a multilevel combinational circuit 
and the area penalty paid for the pipeline 
implementation. As it was explained above the GTL 
cells are specifically designed to meet the isochronic 
forks requirement satisfied inside the cells so that the 
communication is delay insensitive. Dynamic GTL 
cell implementation is advantageous comparing to 
static one for better area and performance. With that 
in mind we implemented a simple dynamic logic 
based library in TSMC 0.18 µm technology obtained 
through MOSIS. The library was optimized for speed 
and at this point has only an identity function stage 
(to be used for slack matching) and as a mapping for 
clocked DLs and DFFs, and an AND2 gate. With this 
library we ran the set of MCNC multilevel 
combinational benchmarks [25]. Timing results for 
relatively deep and for some shallow benchmarks are 
summarized in the Table 1. In the Table 1 d stands 
for the depth in gates of the combinational 
implementation, cl – for combinational (conventional 
gates) implementation latency, gc – for the cycle time 
of the GTL implementation and gl – for its forward 
latency. The area is shown in Table 2 where comb 
stands for the combinational (conventional gates) 
implementation. 

We compared the results with a synchronous 
implementation using 0.18µm library from Illinois 
Institute of Technology (sync). The GTL 
performance was measured using simulation. For 
synchronous circuits we used the data propagation 
time from the Synopsys DC report.  
As it can be seen from the table the GTL 
implementations performance is approximately the 
same for all benchmarks without loops that confirms 
our expectations – the performance is limited by the 
cycle time of the slowest stage. 

Table 1 Cycle time and latency figures for 
multilevel MCNC benchmarks 

time, ns Ratio Bench-
mark d cl gc gl cl/gc gl/cl 
C17 2 0.31 1.25 0.15 0.25 2.0 
C1355 12 2.72 1.35 1.03 2.01 2.6 
C1908 17 3.71 1.56 1.10 2.38 3.4 
C432 14 3.23 1.43 1.26 2.26 2.6 
C499 12 2.67 1.32 0.77 2.02 3.5 
C880 15 2.58 1.57 0.46 1.64 5.7 
cm162a 5 0.93 1.31 0.47 0.71 2.0 
cm163a 6 0.91 1.27 0.39 0.72 2.3 
cordic 6 1.01 1.25 0.39 0.81 2.7 
dalu 13 3.26 1.53 0.48 2.13 6.8 
sct 7 0.84 1.38 0.39 0.61 2.2 

Table 2 Area comparison for combinational 
MCNC benchmarks 

area, um3 x 103 Benchmark # of 
gates comb gtl 

gtl/ 
comb 

C17 6 0.2 1.4 6.97 
C1355 546 17.7 123 10.6 
C1908 880 14.6 109 7.46 
C432 160 6.0 73.6 12.3 
C499 202 14.9 92 6.17 
C880 383 11.4 111 9.79 
cm162a 19 1.2 6.9 5.64 
cm163a 16 1.2 7.8 6.52 
cordic 102 2.8 13.7 4.96 
dalu 1131 27.2 214 7.85 
sct 40 2.0 15.4 7.64 

 
Another comparison compares the automated 

pipelining in synchronous framework and a manually 
pipelined implementation of a deep combinational 
circuit with the results obtained with the Weaver 
flow. In this experiment we synthesized a 10-rounds 
implementation of the Advanced Encryption 
Standard. The charts in Figure 7 show the area and 
performance characteristics of several of its 
implementations. 

The first implementation is a purely combinational 
non-pipelined implementation by Synopsys DC-Ultra 



synthesized from a hierarchical behavioral 
specification. 

Retiming is a technique used to balance stages in 
synchronous pipeline. Synopsys DC-Ultra includes 
the pipeline_design –period 0 command 
to automatically insert in the initially combinational 
design as many registers as possible. This command 
inserts a register at the output of a circuit and tries to 
move it backwards reducing the clock cycle. Then 
another register is inserted and moved until the 
constraints are satisfied. The results of this command 
were poor for the hierarchical design so we flattened 
it to get the most of the tool performance. The next 
(second) columns on the chart present the area and 
performance of the automatically pipelined flattened 
design. Here pipelining improved the performance 
drastically – about 25 times. The area was doubled.  

The next implementation running at 
approximately 578 MHz is manually pipelined [26] 
and synthesized by the DC-Ultra for the same library.  

PerformanceArea

unpipelined

pipelined with DC

manually pipelined

Weaver with mpchb018 library

15

371

578

714
1847

270
419

207

 
 

Figure 7 10-round AES implementations 
comparison 

Finally the last bar corresponds to the GTL 
implementation area and performance. The 
implementation was synthesized by the Weaver flow 
using (the same as in MCNC benchmarks) mpchb 
library developed in our lab [20].  

5. Conclusion 
 
In this paper we’ve briefly presented a framework 

for synthesis of fine-grain pipelined QDI circuits 
from high-level specification. We have implemented 
techniques for efficiently re-synthesizing 
architectures with clocked registers and no loops or 
where the only loops are inside the FSM. The 
efficiency of such architectures after re-synthesis is 
defined by the library.  

The behavior specification can be written in 
VHDL, Verilog HDL or other languages supported as 
input by Synopsys DC-Ultra. Theseus Logic NCL 

flow used the same approach utilizing industrial 
synthesis engine to perform logic synthesis. However 
in the NCL flow some specific programming is 
required on the level of input specification e.g. 
handshake signals for non-linear data paths had to be 
explicitly specified by the designer. In our flow the 
initial specification does not need to be tailored for 
asynchronous implementation allowing for the HDL 
code reuse.  

The architecture of NCL, phased logic and in the 
de-synchronization implementations mimics the 
architecture of the synchronous design usually 
coarse-grain thus not improving the performance of 
the original design. NCL also adds significant 
synchronization overhead for wide data paths. GTL 
circuits are fine-grain pipelined regardless of whether 
the synchronous implementation was pipelined or 
not. In addition GTL avoids unnecessary 
synchronization which even more improves the 
implementation performance.   

Lastly, NCL flow only used proprietary NCL cells 
while the Weaver flow can be retargeted to any QDI 
pipeline library. 

The experimental results show that GTL synthesis 
contributes high performance with robustness to 
process, temperature etc variations and the design 
automation allowing low-latency domino-like logic at 
the expense of area overhead and automatic fine-
grain pipelining (Table 1, Table 2 and Figure 7). 

The performance of synthesized implementation is 
limited by (1) the cycle time of the slowest stage for 
the circuits with no internal loops or (2) the worst 
loop cycle time over the number of tokens in the 
loop. GTL cell cycle time is slower than the latency 
of a conventional static gate. This fact makes GTL 
performance higher only compared if a 6-10 gate 
deep circuit is pipelined (Table 1). On the other hand 
the GTL cell latency is lower than that of static gates 
since our dynamic cells are domino style. This 
suggests two main applications of GTL circuits – 
those that take advantage of deep pipelining and 
those where the forward latency is important. 

We did not include any tables on the FSMs in this 
paper but the performance of a one-hot GTL FSM is 
usually on the level of 500MHz. The area overhead is 
about the same as with combinational benchmarks. 

The area and performance figures heavily depend 
on the quality of the library so development of 
libraries for the flow remains crucial for the 
methodology to succeed in industry. 
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