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BSTRACT

+

Detectiun of signals corrupted by noise is cnnsidered. A family of suboptimal group
ilters 1s constructed using two opposing performance criteria of computational effect-
véness and of a.ppmximating (in Hilbert-Schnidt norm) the optimal Wiener filter. The
eneral equations of such a group filter are given andthe numerical solution of the
roblem of choosing the best suboptimal group filter is discussed for small values of n,

or a variety of groups ‘and for the first order Markov and random sinus processes cor— °
upted by white noise.

.  INTRODUCTION - | - |

Fast Transforms are playing an increasingly impnrtant role 1n applied engineering
practice. For example, the matrices of the DFT (Discrete Fourier Transform) are com-
pnsed of eigenvectors of linear time-invariant systems That fact together with the
existence of Fast Fourier Transform Algorithms provides a powverful means for spectral
analysis and synthesis of such systems. [1,2]. As another example we mentfon the WHT
{Valsh-Hadamard Transform) whose representing matrix ;I.s cnmpuseﬁ of eigenvectors of
lnear dyadic-invariant systems and it provides a powerful means for spectral anallysis'.
synthesis and optimization of such systems, wnich find wi&espréad applications in
Computer Engineering [3]:' These two are émples of use of group transforms {the cyeclic
group in t'he case of DFT and the dyadic group on the case of WHT) in the theory of

froup-invariant systems and signals, Elements of a general theory of such systems and
8ignals are presented in [4,5,10].
Y In [2,4,5,6,7,8,18,19] such group-invariant systems have been used to'approximate classi-

tal discrete time-invariant systems. The advantages of a group system approximant are
due to convenience of implementing a group operation as compared with usual arithmetic
of addition/subtraction and because group transforms possess fast algorithms for multi-
plication of their representing matrices by vectors. The latter is due to the Kronecker
-prnduct representation of these matrices by some other matrices of smaller dimension.

It has been shown that the computational performance of group transforms is of the same L
: m '

oxder of ‘magnitude niflni computer operations to multip;l.y a matrix of a group transform

_ =

by an n~vector, if the underlying group G is of order’ n=| [ n_, where n

. i=]

of a2 normal subgroup G in the direct product representation of the group G = ] l G
i=]

lnd the transforms which perform “best" computationally are the DFT and WHT for which

the matrix multiplication mentioned above

i is the order

il

requires n lnpqn computer nneratinns only.

As to nccuracy of apprnximatinn, which is
:ruup n}'stem,

] -

annther criterinn of perfarmance of a
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‘ind "the group among all the groups of a given order n which maximizes the accuracy
f approximation of a Biven system., That {is conjectured to be an extremely difficult

roblen [5] and several eppreaehee to its nunerical solution for emell values of n-and

or special classes of systems have been undertaken i2,5,6, 7 8-12,13,14;13,19].
In that paper we consider the classical problem of Wiener filtering of

1d.15t order Markov preeess in the presence of white noise.
=rfermanee criteria of

random sfinus

Using the two opposing
computational effectiveness and statistical performance (which

3 identified as the accuracy of approximation in the Hilbert-Schmidt norm),
-

a variety
- suboptimal group filters is investigated for small n (up to n=64).

Some facts and
*finitinna frem harmenie analysis over finite groups are presented in the next sec-

lon. General equetiene of a group filter are given in Section II1I, where the problem of

wosing the best group 1s fernuleted. The results of its numerical.solution for n< 64

1d for a variety of Abelian and Hen—Abelian groups are given and enelyzed in Section 1V.
. 1s shown that the cyclic and the dyadic are often not the best groups to use and the

e of non—-commutative groups may be advantapeousto that of a commutative because for .

¢ 8arez speed we have a better approximation,

[ . - - - ) - J— L ]

[, FOURIER ANALYSIS OVER FINITE GROUPS

-+ let 'G-be an arbitrary finite group with n elements and K any field of character-

stic char K. In the space L ¢ « {f: G » K} the e;ements of the non-equivalent

- AT ¥
solutely irreducible representations of G over the field K will be used as an ortho-

mal basis. _
Recall (see [ 9]), that representation R, of degree dm in a linear space V over

(dim V = dm) is defined as a homomorphism R : G =+ GL (qm, K), where GL(dm.K) is the

roup of all invertible (dm x dm)-matriees over K., The value of representetien”Rmet

1e. point t€G will be denoted by R (t).

Two representations R ., R of the same degree dm =d are sald to be equiva~-

1“2 1“2
ent 1f there exists an invertible (dm x d J=matrix Q over X such that
Lﬁm (t)- Q --Rm (t) for every teQG.

1 2

A.representatienlﬂuin.e linear space V over K is sald to be irreducible if V has
) proper Rh—invarient subspaces, and is absolutely irreducible,ifit remains irre-
sjcible in any extension of K. It is assumed that
{) eher K = 0, or char K.f-n - char K does not divide the order n of G,

ii} K is such that 1if Rm is an irreducible representation of G in a linear space V
ver K, thenRm is ebsnletely irreducible, i.e. K is the eefeelled splitting fleld
or §]91.

Conditions ¥or K to be 8 splitting field for a given group G and construction me-
hods  for absolutely irreducible representatinns of G in K, are considered in alge-
raic 11terature for a great variety of -groups G and fields K (see [9]). We note that
= g (€1s the field of complex numbers) is the splitting field for every G. In that

ase the enmplete-erthngnnal basis in L C consists of elementsof the non-equivalent
L
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I(GL(V) is the group of automorphisms of a linear space V of dim V = d nver €).. And

RIp 1s represented by the unitary (d x d )—matrix R (t), teG. The field € was usad
lin [5], where elements of the general theory of

systems over groups were presented and
finite Galois fields GF(qE) were used in

{10] 1in problens of error detection and error
Icurrectinn in computation channels and in error correcting codes, |

In the present work we usethe field € of complex numbers,. let & = {R }denote

Ithe set of 311 non~equivalent unitary representations of G, indexed so that{R Js uf

degree d . ©C1is the dval object for G, 1its cardinality equals the number uf conjugate
Iclasses uf G, and we have

2 :
E;: dm.- n,

[ | Rmec _ | (1)
where n is the cardinality of G. |

. A1l the irreducible unitary representations are listed for the symmetric éruup

of permutations G = S {0(132) (12),(13), (23}} in Tsble 1 and for the quaternion

group Qz {with generatars a and b, b2 = a2, bab~l = g~1 and with I as its fdentity)
in Table 2:

2% 1 -1 1 -l Io 1

=] 0
ab ] <1 =1 1 {0 i
1 0

Table 2, 1 = /=1
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In the important case of Abelian groups, G may be represented as a ‘direct pruduct
-

:£.its cyclic subgroups ° | . - :
G = Hlx --t- mel tEG, t = (tljtt-;tm), tirf:'[O,I,-..ﬂl- 1}'

11 is a power of a prime number, the group operation 1is component wise addition mod n

| L
L - 132,004,m. In. this case d = ] for all R EG = Hl X o xﬁm,-c is the multi-
rlicative group of characters'which is isnmurphic to G and H is isnmurphic to H .
N Iﬂ - (lej-l-ll RI.I.I )’- w E{O lllin£ -l} and we have |
1] L ' .
r - .
R(t) = | | exp (214R £ /n)), o | o (2)

Rm] 2

leit.tE {O’I,lli’.nl-l}’ 1-,,;3‘

nd, if N, &0) % eee =0, then R (:) areknown as Chresténson fuactions and for
1= 0, L., ™ n = 2 as Walsh functimn 13,.5,11), ‘
Let £: G+, Using the orthogonality relations [9] for the n functiuns {R (s, t)},

,t ™ 1,2, v, d , R EG ve can define the Fourler transform F f+f and the inverse

wo_Ne . G
ourier transform F—d : f-+f as follows:
- ?(m) 4 d/n ¢ f(tj R ( -1) A | -
| “ (67D, (3)
teG |
a _ :
£(t) = I.  trace (f(w) R (1)), | (4)
REE . “ ' :

ere t—l' s fﬁe inverse of t in G.

ymputation ef Fourier FG and inverse Fourier FEI transforms can be done using fast
lgorithms and it is based on the following representation of elements of G by Kronecker
roduct of matriceé over K. Lat G be a group, isomorphic to a direct product of some
rOups HL’ £=1,2,00e9m, G =:Ii1 H In that case (see [9]):

R (t) -l-}R (t,), | £5)
. =] 1

iy

lere RLEH‘V tf HR. ‘ L e

. al W=
i

r the case K » € it was proved in [11,15] that the computation of f or f requires

g~ R, oultiplications and additions and n memory locations. These results were
;%ralized in [10} for the case of an arbitrary field K such that char K = 0 or

ar K f n and K is a splitting field for G. For the Fourier transform over the group
defined by (3, (4) the usual properties of linearity, group translation, group con-

lution theorem, Plancherel, Poisson, Wiener-Chinchine Theorems, etc., are valid

ee e.g: i3]).




(1T, SUBOPTIMAL GROUP FILTERS. | ' B _

I. 1et u = {uf0), u(l), ... , u(n——l))T and e = (e(0), e(1),:49, E(n—-l})T_ be the zero-
ean vectors of the uncorrelated signal and noise with covariance matrices Buu and Bee
iespectively, where T stands for the transpuse of a row vector,

In Fig. 1 a unitary transform is_utiiized' which is represented by a matrix U

see [7,2]): : - .
.,., . 'I : ‘ - ——_‘——D . il

. A - _
ng.-i' € - o ._'“npt

Fig. 1
ln ¢ is the (nxn) matrix of optimal Wiener filter that is the solution of the following

problem:

min (1/n E (J[WE - u]]D} = VUnE (W . £ - ulb,
- | |

*ﬁeref('.) represents the expected value operator and for an (nxn) matrix A, the norm

AH = trace AA*, A* is the transposed and complex conjugate matrix for A, It is

(6)

I.nmm_ (see e.g. [2,7]) that W . can be computed from:

l Hupt (8,7 B,p) -_Buu ; (7)
and assuming invertibility of Buu + Bee.é By the minimal dispersion aquared in (6)
'E determined by: - '

“p ) - (8)

D(Enpt) Al/n E (l |antf = “l |) = 1l/n trace (Buu ~ By Bff uu

lfhe filtering in Fig, 1 using a transform U is performed in the following turee steps
‘hich determine the overall amount of computer operations:
i) vt
*
(1) (Wi U%) (UD)

Rt v can o0 @,

In the case of direct Wiener filtering (when U is and identity matrix

U=I) only n-
The direct

computer operations are required at step (11) for matrix multiplication.
Wlener filtering is therefore the fastest. If U is the KLT (Xarhunen-Loeve Transform

ich diagnolizes wnpf that is it diagonalizes both B, and BEE'and is generally

] . - G5
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th )

Iy the vector Uf at step (ii) and again n? for matrix multiplfcation at step (111). . That
amounts to 2112 + n computer operations,

natrix multlplication at step (1); n operations to multiply a diagonal matrix U‘I-J'{II

As to the statistical performancesthe transform U in Fig. 1 does not affect_D(e:npt)
:u {8) and (6). However, that mathematically optimal dispersion 1s not achievable in
eality (because e.g. r;f roundoff) and the idea of ;a suboptimal filter is to attribute
lhat acceptable degradation in performance to improving the computational abilities of

the filtering scheme, That is, the transform U must possesa fast algorithm for matrix
Iultiplica_tinn (like DFT or WHT) so that steps (1), (iii) can be performed fast. Then

[he suboptimal filtering results in reducing the amount of operations at step (i1) to

he order of n at the expense of nullifying all of the off-diagonal entries in Wn U

" pt
(in case of Abelian group based transforms) or by structuring UWoptU* fo a canonical

Ilm:k diagonal form, uniquely determined by the group ¢ (in case of non-cormutative
roup, see [5]). In that paper, group transforms will be compared with KLT based fil-
ers (in case of filtering the 1st order Markov process and random sinus corrupted by

white noise) for which the results are known [2,7,12,13]. The KLT is known to be sta-

listically optimal, that is, its matri?c consist of aig.envectnrs of ant defined by(7).
Other known transforms considered here are the DCT (Discrete Cosine Transform) which

ssymptotically equivalent to the KLT for the first order Markov process [16 /7] 1and'
che _DFT (Discrete Fourier Transform) which is represented by the matrix of characters
lf the cyelic group G = Cn' of integers 0,1,...n-1 with addition mod n as the group

peration. We shall consider two non-Abelian groups, namely 53 (the symmetric group

F i

if third order), and Qz (the quaterninn group of the order 8). Their duals Sas 52,' C_

re described in Section 2. We shall use the direct products SgxC., C x Sqs Qy x C_
Bn x._Qz, 53 X QZ’ Q2 x 53, 53 x 53, Q2 x Qz. The corresponding dusls are computed
’yn(.‘i} using the Kronecker product property of group representations. The number

A L n, of operations which is needed to compute the Fourier transform (3), (4) (see

i=]
Ll:tinn 2) is the upper bound on the computational complexity. The real amount of
perations depends unon the number of O's 1in all the elements of the dual G for a

tiven group G. or Ixample, for G = 53 there are four 0's among the elements of R = 2(see

L

[l]:le 1), I'hei-e‘fnre, to compute {2} or (4) for 83 x CZ we need not 12(6I+ 2) = 9§ cuﬁ—
lter operations but only 12-8 - 2+4 = 88 operations, Analogously, there are sixteen
's among the elements of R,= & ¢ 62 (see Table 2}, Hence, e.g., to compute (3) or
!4) for Q, x Q, we need 6416 -~ 8°16 - 8°16 = 328 = 768 computer operations,

To obtain the suboptimal group filter which isthe pest approximation to a given

r°Pf- defined by (7) we denote (see [5]) the following set of all impulse response
trices” of group systems over a given group G:

-
1
] ;!
- -
- B
- N
.
1 " 1
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cic(e) = (H]H = cuftfqi,uft")=ﬂ(c'1ut).‘h:_ G +C} | | (9)

Herf o denotes the group operatioci, _
¢ can be shown then that'the best group filter apprnximatinn to the optimal Wiener

{1ter is the unique solution of the following minimization problem:

min {1/n g(|lH(u+e) - u|]) = 1/n E(|[prt(u+e) -~ ul]) i pf (e, ) (10)

eCir(G) _ opt
hat is the action of a group filter is described by group convolution:

y(£) 2 @@ u)(t) = £ h(z "o BYu(D). - . an
LeG

heré(a.stands for group convolution of h, us G+ €, y: G-+ € is the outpufy the input
ignal vector u = (u(D),.,.,u(n-l)T is treated as a centralized random function defined
n the group G 1i.e. uzt G+ €. The problem {10) was-considered in {2,4,7] for dyadic
nd cyclic groups. It*wil; be shown that by using other Abelian and non-commutative

roups, the approximation error wmay be reduced (see also [51).

We denote for the uncorrelated signal and nolse respectively:

B 2 EGW S = E@P/aT 3 u) RGETH T WO BT

el teG
2,2 (c,t) -1 .
s d° /o° I B R( ot) , ReG;
- . “ :'tEG @ w (12)
'hEI'E Buu - (Buu(': ,t)) _' Buu(;'l t) E E(c » t) (uu*) o

e () = a2 fnz I B (t?E) R (t-lnt) . R G (13) ]
ee w ee w w
T,Lel

(g;t)), s (£,t) 4 p(gst) (ee).

here B = (B
“ee ee ee

¢t can be shown (see [6]) that the minimal dispersion in (10) is being achieved for
Iﬁpte Cir(G) defined as follows:

A | a
nhpt (m)((B;;(m) + Baa(w)) = dm/n Bﬁﬁ(m) » R €G . . (14).

he dispersion squared achieved by utilizing the optimal group filter is computed by:

e, )= I 1/d, trace (Balu) - B(w) (Bog(w) + Bep @)Y Bg(w)) . (1)




Iciven the group G of order n, all the computations in optimal group filters are belng
l\:ane using the corresponding algorithms of Fast Fourier Transforms.[10,11,15]. The

esvlts of comparing computational effectiveness of different transforms in the pro-
blem of suboptimal filtering of Fig. 1 are given in Table 3 (see [2,14,16] fnr the com-
l:utatinnal requirements of DFT and ICT in that prublem).

ransform .
- T — P
KLT DCT Cn(DFT) cnfﬂl x Q, Q, x Q,
. 136 92 56 104
528 252 144 272
I 32 2080 . 652 352 . 736 ;
64 - B256 1612 - 832 2048 1600
I _ Table 3; Number of operations required for various suboptimal filters. |,

IStﬁtistical performance of different transforms will be compared in the next section.
It follows that the cyclic group (DFI) is the best coémputationally and the dyadiec group
I:aa the same computational complexity. _

The KLT is assumed to be represented by an arbitrary (nxn)-unitray matrix and
l‘.lt requires 21712 + n computer operations to perform the optimal filtering in Fig, 1. -

‘The dispersinn Bc(eh ) In (15) depends upon the choice of the group G. That poses
opt
difficult pruble-m of selecting the optimal group G' ' of the given order fur which

the dispersion D (Eh ) is maximal, In the next section we are going to use the groups
opt :
Isa, QZ, Cn and thelr direct products in order to investigate the statistical performance

nf the corresponding group filters for small values of n.

IHL. NUMERICAL RESULTS.

We consider various group filters in this section in the problem of filtering the

Ilat order Markov process with the covariance -matrix

I B A = (pl““‘1),o <p <1, 6,8 %= 0y1,000,n-1; (16)

and the random sinus process x(t) = a sin(it +a) with the phase « distributed uniformly
Inn+.l:he segment [0,27] and with the covarliance matrix:

2 |
uu - (ﬂ 12 COE (1(5 "&)), E,!‘ - 0.1.-.-,“"1; ' (1?)
lﬂ'here azfz =1, |
These signals are assumed to be corrupted by the white noise with identity as its covariance

Itatrix. The signal and noise are assumed to be uncorrelated.,

9-8
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Iﬁe KLT is computed for the lst order Marcov process in {7)]. In the case of the

1ﬂdcm sinus, the matrix of ?igeuvectﬂrs of the corresponding wupt in (7) (the XLT) was
yuputed for each n, - : .
The DCT is asymptotically equivalent to the KLT of the Markov process (see [i71).
The statistical performances of suboptimal group filters for the lst -order

irkov process uurrupted by white nolse, are compared in Table 4 (see also Figures 2

d 3). Those for the random sinus corrupted by white nn:lse, are given in Table 5

ee also figures &4 and 5).

8 12 16 18 264 30 - 32 36 40 42 48 54 56 60 64

il

5, Q C,x83 Cip C33 €y C3p U3z
99 53 Q2 02x53 szqz C xS3 Caxqz C 353 4xQ2 S xSs szc 53167 53xQ2 3xcg sz 7 3 10 szqz

c C C

Cog  © 56

c 3 Cw G2 s ss 60 64

Table 4: Group with the optimal stétistical performance for
the lst' order Markov process.

6 8 12 16 18 2% 30 32 36 40 42 4B 5& s6 60 64
XC3 $5%C;p Qp%C,

i — _un—-—

01{C. C_ . C Clﬁ 3::(33 S ,%C, 83385 Q,xC, 3:-:06 szC S4xC, SSxC 9 Q,

S Q) 5%y Qpx Q,x0,

C xS szqz

Ce Q, C, XS5 C,xQ, S,XCg 54%C, S3xC5 Q,xC, Syx85 QpxCq S4xC; 54%Q, 54%Cg Q%C; S3xCyq QpxQy

3

W15, Q, C,x5; C,xQ) S4Cy S4xC, 53xCg C,xQ, CexS3 C5xqy €383 O G5 56 Ceo C

64

Table J: Group with the optimal statistical performance for
the random sinus.

In the case of 1lst order Markov process (see Table 4), the use of various non—-Abelian

groups, as p increases, results in improved statistical performance as compared with DFT.

fhat is compensated for by the increased number of computations, For example, (see

iigures 2,3) for p=0.9, n=64, the replacement of 664 by Qz x Qz results in 10.82% improve-

The price for that however (see Table 3) is nearly
rm the filtering.

ut in statistical performance.

ML loss of speed: 1600 computer operations instead of 832 to perfo

§h'iinilarlj,a*,} in the case of random sinus, as A decreases, the use of varfous non—Abelian

e as compared with DFT. For example,

.I!nups results in improved statistical performanc
17,59% (nr 20.95% for)

figures 4,5} for n=64 and A=0,01 (or A=0,05) the statistir.:al gain is

% 2_: Qz as compared with 064 That is however compensated for by the increase 1n speed

1002 1in DFT as compared with the group Q, x Q, (see Table 3).
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‘ ' We note that DG(Eh ) increases as p decreases (incase of the lst nrder*thknv

opt ) .
process) and as A Increases (In.case of the random sinus), See, for example, Table 6
Fbr the 1st’ order Markov for G = S xCZ. . . ; -
| 0.5 - 0.5 ﬁ.? 0.8 0:9 0.92 0.94 0.96 0.99

Lg“‘, ‘ y } 0.4545 0.4294 0,3944 0.3437 0.2628 0.2398 0.2128 0.1800 0.1111

F

‘Table 6

L ER I, -

hat hapfens because Buu apprﬂaches.the identity matrix as g decreases in case of lst
yrder Markov process. In the corresponding case of random sinus, B = approaches the
211 1's matrix as A decreases i.e, correlation between u-components increases and the

dispersion decreases. In other words, as A increasa:lﬂuu approaches the identity

matrix and the disperslon increases, |
.- The order of groups Gl’ G, in their direct product affects the dispersion without

affecting the computational effectiveness, That gives the designer more freedom iIn
rhoosing cnrqespunding transfnrqs and a great.vériety of fast group transforms can
a]ways be used to choose the best from using (14) and (15). Group filters might
s1so find their use in practical situaticns in which ve do not know computationally

sood approximating transforms for the KLT for a given stochastic process.
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Fig. 2: Dispersion for the lst order Markov process, p = 0.9.
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