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2 Dept. of Electrical and Computer Engineering, Boston University
8 Saint Marry’s Street, Boston Ma 02215, USA

Abstract. The paper considers calculation of autocorrelation functions
on finite dyadic groups over decision diagrams. The methods exploit
recursive structure of both autocorrelation matrices and decision dia-
grams. First, it is discussed calculation of the autocorrelation through the
Wiener-Khinchin theorem implemented over decision diagrams. Then, it
is proposed a method for calculation of separate autocorrelation coef-
ficients over decision diagrams with permuted labels at the edges. For
the case of restricted memory resources, a procedure with in-place cal-
culations over the decision diagram for the function processed has been
defined.

1 Introduction

Autocorrelation is an important operation in signal processing and systems the-
ory [1], [2]. In particular, the autocorrelation on finite dyadic groups, denoted as
dyadic autocorrelation Bf , (see Definition 1) is useful in switching theory and
design of systems whose inputs and outputs are represented by functions defined
in 2n, n ∈ N points, including switching functions as an example [6], [8], [7],
[11], [14], [16], [17], [19], [20], [25]. Recently, some new applications of dyadic
autocorrelation in spectral methods for switching functions, [5], testing of logic
networks [9], and optimization of decision diagrams (DDs) for representation of
discrete functions have been reported [21].

In this paper, we define and discuss a method for calculation of the dyadic
autocorrelation through decision diagrams, the use of which permits processing
of functions of a large number of variables. Then, we discussed calculation of
separate autocorrelation coefficients over decision diagrams with permuted labels
of the edges. In case of restricted memory resources, these calculations can be
performed by traversing in a suitable way the decision diagram for the function
whose autocorrelation coefficients are required.
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2 Background Theory

Denote by Cn
2 the finite dyadic group, where Cn

2 = ×n
i=1C2, and C2 = ({0, 1},⊕),

where ⊕ denotes multiplication modulo 2 (EXOR).

Definition 1 For a function f : Cn
2 → R, where R is the field of real numbers,

the autocorrelation Bf is defined by Bf (τ) =
∑2n−1

x=0 f(x)f(x ⊕ τ), where τ =
0, . . . , 2n − 1. In binary notation, x = (x1, . . . , xn) and τ = (τ1, . . . , τn), where
xi, τi ∈ {0, 1}.

In matrix notation, if a given function f and the corresponding autocorrelation
function Bf for f are represented by vectors F = [f(0), . . . , f(2n − 1)]T and
Bf = [Bf (0), . . . Bf (2n − 1)]T , respectively, then,

Bf = B(n)F,

where B(n) is the dyadic autocorrelation matrix for f . The recursive structure of
the autocorrelation matrix will be exploited in calculation of the autocorrelation
coefficients.

The Walsh transform for functions on Cn
2 is defined by the Walsh matrix

W(n) =
n⊗

i=1

W(1),

where ⊗ denotes the Kronecker product, and W(1) =
[

1 1
1 −1

]
is the the basic

Walsh matrix [6].
The relationship between the autocorrelation function and Walsh coefficients

can be expresses as [6]

Bf = 2nW−1(Wf)2,

where W denotes the Walsh transform operator.
This theorem we are using is called the Wiener-Khinchin theorem in classical

Fourier analysis, and by this analogy the same term is used also in this paper.
However, it seems that this theorem for the Walsh transform, was formulated for
the first time by Franz Pichler in the paper [12], and also, in a mathematically
more satisfying paper based on sal and cal functions in [13].

3 Decision Diagrams

Decision diagrams are data structures providing compact representations of dis-
crete functions defined in a large number of points [22]. In this paper, we assume
that a given function f with binary-valued variables is represented by a Multi-
terminal Binary DD (MTBDD(f)) [4], [22]. A MTBDD is a directed acyclic
graph consisting of non-terminal nodes and constant nodes connected by edges.
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Each node has two outgoing edges labeled by the negative and positive literals
xi and xi of the decision variable assigned to the node. Nodes to which the same
variable is assigned form a level in the MTBDD.

If f is a switching binary-valued function, instead of MTBDDs [4], Binary
decision diagrams (BDDs) [3] are used, since there are two possible values for
constant nodes. MTBDDs and BDDs are derived by the reduction of the Multi-
terminal binary decision trees (MTBDTs) and Binary decision trees (BDTs),
respectively. The reduction is performed by deleting the redundant information
and sharing isomorphic subtrees in the MTBDT, respectively BDT, for a given
function f [22]. Notice that in calculations over decision diagrams, the impact of
the deleted nodes should be taken into account through the cross points defined
as points of intersections of paths from the root node to the constant nodes
with the imaginary lines showing levels in decision diagrams, which means lines
connecting nodes to which the same decision variable is assigned [24]. Complexity
of a decision diagram is usually expressed in terms of the number of non-terminal
and constant nodes, called the size of the decision diagram. In this paper, the
notion of MTBDTs and MTBDDs will be introduced by the following example.

Example 1 Fig. 1 shows a MTBDT, the corresponding MTBDD, and the MTBDD
of the autocorrelation function Bf (τ) for the function f of n = 3 variables, which
is given by the vector F = [0, 0, 1, 2, 3, 3, 3, 3]T . In this figure, we also show the
cross points in the MTBDD for f .
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Fig. 1. MTBDT, MTBDD, and the MTBDD for the autocorrelation function for f in
Example 1.

4 Wiener-Khinchin Theorem over Decision Diagrams

The Walsh spectrum Sf of a given function f represented by a MTBDD is deter-
mined by performing at each node and the cross point of the MTBDD(f) the cal-
culations determined by W(1). For simplicity, we say the nodes and cross points
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in MTBDD(f) are processed by W(1). In this way, MTBDD(f) is converted
into the MTBDD(Sf ). We perform the multiplication of Sf by itself by replac-
ing the values of constant nodes Sf (i) with S2

f (i) [22]. Then, the MTBDD(Bf )
is determined by performing the calculations determined by W(1) at each node
and the cross point of the resulting MTBDD(Sf ) followed by the normalization
with 2n, since the Walsh matrix is self-inverse up to the constant 2−n.

4.1 Complexity of the method

Since in calculation of the Walsh spectrum, we perform an addition and a sub-
traction at each node and the cross point distributed over n levels, the com-
plexity is O(2n · size(MTBDD(f))). Notice that the number of cross points
in a MTBDD is on the average at about 30% of the number of non-terminal
nodes [22]. The result of these calculations is the MTBDD(Sf ). Then, we per-
form squaring of the values of constant nodes and perform the inverse transform.
Thus, since the Walsh transform is self inverse, the complexity of these calcula-
tions is O(2n · size(MTBDD(Sf ))). After multiplication with the scaling factor
2n, the MTBDD(Bf ) is derived.

Notice that the size of the MTBDD for the Walsh spectrum is usually greater
than that of the MTBDD for functions with a limited number of different val-
ues. Since in calculation of the autcorrelation function, MTBDD(f) is converted
into a MTBDD(Sf ), which is in many cases larger in terms of size than the
MTBDD(f), the space complexity of the method is O(size(MTBDD(Sf ))).

For an illustration, Table 1 shows the sizes of MTBDDs and Walsh transform
decision diagrams (WDDs) [24] for few standard mcnc benchmark functions used
in logic design. Notice that, due to spectral interpretation of decision diagrams
[23], WDDs are actually MTBDDs for the Walsh spectrum, and thus, this table
provides a relevant information for these considerations. This table shows the
number of inputs (In) of benchmark functions, number of non-terminal nodes
(ntn), constant nodes (cn), size (s), and number of paths (paths) in the MTBDDs
and WDDs.

Example 2 For the function f represented by the MTBDD in Fig. 1, the Walsh
spectrum is calculated as follows.

We first process the cross points and the node at the level for x3. For the
left cross point, calculation is trivial since the constant node shows the values
0, the result will be the zero valued vector of order 2. For the completeness of
presentation, we show also these calculations

W(1)
[

0
0

]
=

[
0 + 0
0− 0

]
=

[
0
0

]
.

For the node for x3

W(1)
[

1
2

]
=

[
1 + 2
1− 2

]
=

[
3

−1

]
.
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Table 1. Characteristics of MTBDDs and WDDs for some benchmark functions.

MTBDD WDD

f In ntn cn s paths ntn cn s paths

5xp1 7 127 128 255 128 41 14 55 128
9sym 9 43 3 46 125 101 30 131 224
add4 8 147 31 178 256 36 11 47 37
add5 10 387 63 450 1024 55 13 68 56
apex4 9 446 319 765 450 511 512 1023 512
bw 5 29 24 53 30 31 32 63 32
clip 9 339 33 372 498 449 170 619 464
con1 7 46 5 51 83 83 26 109 96
ex1010 10 899 178 1077 1887 1023 972 1995 1024
mul2 4 13 7 20 14 12 8 20 13
mul3 6 59 26 85 59 30 16 46 31
rd53 5 21 6 27 24 30 13 43 32
rd73 7 57 8 25 96 64 24 88 98
rd84 8 85 9 94 192 118 40 158 193
sao2 10 96 11 107 237 295 70 365 508
sqrt8 8 64 17 81 65 127 54 181 176
xor5 5 15 3 18 22 9 6 15 10

av. 7.55 163.44 49.05 210.27 297.72 167.50 111.72 279.22 201.33

For the right cross point

W(1)
[

3
3

]
=

[
3 + 3
3− 3

]
=

[
6
0

]
.

Then, we process the node for x2

W(1) ◦




[
0
0

]

[
3

−1

]




=




[
0
0

]
+

[
3

−1

]

[
0
0

]
−

[
3

−1

]




=




3
−1
−3

1




where ◦ symbolically denotes multiplication of a matrix by a vector consisting of
subvectors.

For the cross point at the level for x2

W(1) ◦




[
6
0

]

[
6
0

]




=




[
6
0

]
+

[
6
0

]

[
6
0

]
−

[
6
0

]




=




12
0
0
0


 .
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For x1,

W1 ◦







3
−1
−3

1







12
0
0
0







=







3
−1
−3

1


 +




12
0
0
0







3
−1
−3

1


−




12
0
0
0







=




15
−1
−3

1
−9
−1
−3

1




.

Thus determined vector is multiplied by 1/8 to get the Walsh spectrum for f .
Notice that matrix calculations are used for the explanations of the method.

In practice, each step of the calculation is represented by a decision diagram
which is a subdiagram in a decision diagram representing the Walsh spectrum
for the function f .

5 In-place Calculation of Autocorrelation Coefficients

We define a transformation of nodes in MTBDDs that consists of permutation
of labels at the outgoing edges as shown in Fig. 2 The i-th row of the autocor-

S2 S2

xi xi
xi xi

_ _

fi=0 fi=0
fi=1 fi=1

Fig. 2. Transformation of nodes.

relation matrix is the vector of function values f(x ⊕ i), where ⊕ denotes the
componentwise EXOR over the binary representations for x = (x1, . . . , xn), and
i = (i1, . . . , in). In decision diagrams, this shift of the argument for f implies
permutation of labels at the edges of some nodes in the decision diagram for f .
Nodes whose edges should be permuted are situated at the levels whose position
within the decision diagram corresponds to the position of 1-bits in the binary
representation for the row index i.

Example 3 Fig. 3 shows MTBTDs for the first four rows of the autocorrelation
matrix Bf for a function of n = 3 binary-valued variables.

The i-th autocorrelation coefficient is calculated by the multiplication of the
i-th row of the autocorrelation matrix Bf by the vector F of function values
for f . When f and rows of Bf are represented by decision diagrams, it follows
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Fig. 3. MTBDTs for the first four rows of the autocorrelation matrix for n = 3.

that the i-th autocorrelation coefficient is calculated by the multiplication of the
decision diagrams for f and f(x⊕ i). This can be performed by the classical pro-
cedure for multiplication of decision diagrams. However, since decision diagrams
for f(x) and f(x ⊕ i) differ in labels at the edges, in practical programming
implementations, calculations can be organized over a single diagram similar as
calculations of FFT can be organized in-place [1]. The complexity of calculation
is proportional to the number of nodes in the decision diagram for f .

Fig. 4 shows a procedure for in-place calculation of the autocorrelation func-
tion through decision diagrams with permuted labels at the edges. In this proce-
dure, f is represented by a MTBDD which is then traversed in such a way to mul-
tiply values of constant nodes in the MTBDD for f with the values of constant
nodes in the MTBDD for f(x⊕τ) and perform the addition of these values. The
way of traversing is determined by the binary components τi, i = 0, 1, . . . , n−1 of
τ . A flag is associate to each non-terminal node, to show if the node was already
traversed. In this manner, the coefficient Bf (τ) is calculated. The procedure has
to be repeated for each coefficient.

5.1 Complexity of in-place calculations

In-place calculations are performed over the MTBDD(f) and, therefore, the
space complexity is O(size(MTBDD(f)). Since for each coefficient we perform
a multiplication at each constant node and an addition at each non-terminal



8

int AUTOCORREL(∗node1, ∗node2, level)
{

r = level − node → level
if (node NOT TERMINAL)

{
if (node → flag = 0)
{
if(τi = 1)
{
pom1 = node2 → right
pom2 = node2 → left
}
else
{
pom1 = node2 → left
pom2 = node2 → right
}
i = i + 1
a = AUTOCORREL(node1 → left, pom1)
+ AUTOCORREL(node1 → right, pom2)
node → sub− value
node → flag = 1
return (2r−1 · a)

}
else
{
return node → sub− value
}

}
else
a = node1 → value · node2 → value
return (2r−1 · a)

}
End of pseudocode.

Fig. 4. Calculation of the autocorrelation coefficient Bf (τ).
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node, the number of multiplications is O(cn), and the number of additions is
O(ntn), where cn and ntn are the number of constant and non-terminal nodes,
respectively. Therefore, the total complexity of in-place calculation of an autocor-
relation coefficient is O(size(MTBDD(f))). Table 1 shows number of constant
nodes and non-terminal nodes in the considered set of benchmark functions. The
procedure is performed for each coefficient. Thus, it is suitable for calculation of
a single coefficient or a subset of coefficients.

6 Closing Remarks

In this paper, we discussed calculation of autocorrelation functions over de-
cision diagram representations of functions with binary-valued variables. Two
approaches are considered, calculation of the autocorrelation functions by per-
forming Wiener-Khinchin theorem over decision diagrams, and in-place calcula-
tions by decision diagrams with permuted labels at the edges. In the implemen-
tation of the Wiener-Khinchin theorem, the complete autocorrelation function
is determined and represented by a decision diagram. The time complexity of
calculations is O(2n · size(MTBDD(f))), and since the interim calculations
involve determination of the Walsh spectrum, which is also represented by a de-
cision diagram, the space complexity is maximum of O(size(MTBDD(f)) and
O(size(MTBDD(Sf ))).

Calculation over decision diagrams with permuted edges permits determina-
tion of a single coefficient with both space and time complexity proportional to
the size of the diagram for a given function f .
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