
Gate Transfer Level Synthesis as an Automated Approach to Fine-Grain
Pipelining

Alexandre Smirnov†, Alexander Taubin†, Mark Karpovsky†, Leonid Rozenblyum‡

†Boston University ‡ Harvard University
{alexbs, taubin, markkar}@bu.edu, leonid_rozenblyum@hms.harvard.edu

Register Transfer Level (RTL) synthesis method in
clocked designs simplified circuit design and allowed
design automation boosting VLSI progress for more than
a decade. Shrinking technology and progressive increase
in clock frequency is bringing clock to its crisis.
Asynchronous circuits, which are believed to replace
globally clocked designs in the future, remain out of the
competition due to the design complexity of some
automated approaches and poor results of other
techniques. This work sketches the Gate Transfer Level
(GTL) approach – it shows a general framework for
automated synthesis of pipelined asynchronous circuits,
presents certain aspects of GTL pipelines synthesis and
informally demonstrates the equivalence of resulting GTL
implementation to conventional RTL implementation of
the same behavior. Experimental results show average
4.3x performance increase on MCNC benchmarks
compared to synchronous RTL implementation.

Keywords: synthesis, asynchronous EDA, quasi-delay-
insensitive (QDI), ASIC, HDL.

1. Introduction

Popularity of synchronous design and its support by

EDA tools on one hand and the crisis of the synchronous
paradigm (process variation, signal integrity problems and
other physical limitations of synchronous designs) on the
other hand resulted in a number of approaches to
asynchronous reimplementation of synchronous design.
The main idea of such reimplementation is substituting
the global clocking by local control communications. It
has been explored in a number of publications [1-4].

The main distinctive features of our approach is that it
does not only solve the global clocking problem by
substituting it with local self-timed control but also
replaces the register transfer architecture by gate transfer
architecture. This automatically results in very fine grain
pipelined circuits regardless of the original synchronous
implementation architecture.

In synchronous designs automatic pipelining is
difficult to implement because it changes the number and
position of registers which finally results in a completely
new specification. There are no tools capable of
establishing the correspondence between the functionality

of synchronous pipelined and synchronous non-pipelined
designs. Besides, synchronous design pipelining is
reasonable only for more than eight levels of logic.
Further reducing the amount of logic per pipeline stage
reduces the amount of useful work per cycle while not
affecting the overheads associated with latches, clock
skew and jitter [5, 6]. For asynchronous circuits there are
no such issues since handshake based token propagation
and synchronization are internal for a design leaving its
interface behavior intact independently of implementation
granularity. This is a unique capability of clockless token-
based systems.

Phased logic [2, 7] is similar to our approach in the
sense of replacing every combinational logic (CL) gate
with its dual-rail implementation, however the phased
logic design procedure is more complicated. The
complexity comes from the encoding scheme ensuring
that the codes ‘00’ and ‘11’ can be followed by ‘01’ or
‘10’ and vice versa but ‘00’ is never followed by ‘11’ and
‘01’ by ‘10’ etc. Such an encoding scheme is beneficial
for power consumption since fewer transitions are
required per data token propagation through one stage. On
the other hand to ensure safeness it requires additional
feedbacks insertion in the original netlist [2] on the design
stage.

De-synchronization [3] is another approach addressing
designing asynchronous circuits from synchronous
netlists. However the focus of the approach from [3] on
low area overhead makes it use delay padding thus not
providing the robustness of quasi-delay-insensitive (QDI)
data driven designs. This approach results in circuits
architecturally equivalent to the RTL design.

Null Convention Logic (NCL) [1, 4] EDA flow from
Theseus Logic exploits the idea of synthesizing large
designs using commercial synchronous synthesis engine
and substituting globally clocked synchronous registers in
the data path by asynchronous registers communicating
asynchronously through delay insensitive handshakes. In
this flow the dual-rail data encoding has also been
employed to enable completion detection. The design
flow from [1, 4] is the most similar to our approach from
the EDA flow architecture point of view. However NCL
flow produces pipeline circuits architecturally equivalent
to the synchronous RTL implementation usually coarse-

grain pipelined. Heavy synchronization of completion
signals at registration points slows down the design.
Another NCL draback is restrictive behavior specification.
It requires the designer to manually specify some
handshake signals in the VHDL specification what makes
the existing RTL reuse hard.

None of the above approaches offer support for
automated pipelining therefore keeping the performance
on the level of the original design.

The GTL EDA flow implements the behavior specified
with regular HDL as a pipelined QDI asynchronous
circuit by synthesizing a synchronous implementation of
the specified behavior and ‘weaving’ it into a GTL
implementation as it is briefly explained in section 2. By
default pipelining is done on the gate level – the finest
degree of pipelining resulting in extremely high-
performance designs almost impossible to implement in
synchronous methodology.

2. Implementation basics

This work focuses on QDI implementations

constituting the largest practical class of designs that
effectively tolerate delay variations and are appealing for
deep submicron technology. QDI implementation
assumes a two-phase discipline in which data
communication alternates between set and reset phases [8]
while the state transitions from spacer (NULL) to proper
codeword (DATA or token) in the set phase, and then back
to NULL in the reset phase. A simple delay-insensitive
scheme is obtained by encoding DATA codewords with
one-hot codes, and the spacer NULL – with a vector with
all entries equal to ‘0’. Particular examples of delay-
insensitive encoding based on one-hot codes are: 1) dual-
rail encoding, in which each signal a is represented by
two wires a.0 and a.1 (i.e. a=’1’ encoded as a.0=’0’,
a.1=’1’, and a=’0’ encoded as a.0=’1’, a.1=’0’), or 2) n-
rail encoding, in which a n-value signal a is encoded by n
wires a.0,…,a.n. An attractive property of delay-
insensitive encoding is the capability for a receiver to
determine that a codeword has arrived by the codeword
itself, without appealing to timing assumptions. For
example, in the DI bus of Figure 1, as soon as one of the
wires in each dual-rail
pair (a.0 or a.1 and b.0 or
b.1) goes high, a valid
dual-rail codeword is
received. Detection of a
code completion for every
dual-rail pair is
implemented by OR gate
while the completion of
the whole bus is
implemented by a latch

with the function g = x1 ⋅ x2 + g ⋅ (x1 + x2), known as a
Muller’s C-element [9].

Dual-rail encoding significantly simplifies synthesis of
a QDI datapath. Every gate with output function f in a
synchronous Boolean network is replaced by a pair of
gates implementing direct and inverse functions f.1=f and
f.0=f’ in dual-rail implementation. Handshake control
may be implemented uniformly independently from its
granularity. This suggests a synthesis approach based on a
set of pre-designed templates [10-13], where the inter-
stage handshake circuit is considered as a template
parameterized by the stage function.

An example of dynamic implementation of a GTL gate
implementing the AND2 function is shown on the Figure
2. Illustrated is the Reduced Stack Precharge Half Buffer
(RSPCHB) template from [11]. The only block specifying
the gate logical function is F. The rest is typical for most
of the stages. LReq and LAck stand for left and RReq and
RAck for right request (req) and acknowledgement (ack)
signals, ACK for handshake circuitry, PC for phase
(set/reset) control, CD for completion detection and M –
for memory. ‘Staticizers’ (or keepers) formed by adding
weak inverters as shown on the Figure 2, can store the
stage output value for an unlimited time eliminating
timing assumptions. At the same time keepers solve the
charge sharing problem and improve the noise margin of
pre-charge style implementations. The req line is used to
signal data availability to the following stages while the
ack indicates that the data portion has been consumed.
Depending on the communication protocol, some or all of
the handshake events can be transmitted over the data
lines so req and/or ack lines may not even be needed.

Several asynchronous pipeline styles exist [12-15]. In
this work we’ve chosen the simplest data driven style
presented in [16] for its minimal and local (inside the
stage) delay assumptions and robust (delay insensitive)
inter-stage communication.

A dedicated library with each cell representing an
entire GTL pipeline stage makes satisfying in-stage timing
assumptions a library design problem. If inter-stage
communication is delay insensitive the implementation
functionality no longer
depends on place and
route. A dedicated library
is under development at
this time. We used the
library from [17] as a
prototype for area
estimations, however the
library is not complete
for automated synthesis
(not fully characterized)
and resetting dynamic
gates to given values is
not addressed. These and

C

M

CDPC

ACK

F

RReq

RAck

parasitic capacitances

LAck

LReq

A0

B0

A1

B1

Z0

Z1

weak

Figure 2, GTL AND2
dynamic implementation

Figure 1, Completion
detection for DI bus

C

a.0
a.1

b.0
b.1

complete

some other issues encouraged us to start developing a new
library which is out of the scope of this paper.

The use of dynamic logic is attractive for synchronous
designs but no dynamic gate standard cell libraries exist
so far mostly due to the late input arrival, charge sharing
and noise problems eliminated in GTL designs thanks to
monotonic data transitions, completion detection and data-
dependent control.

From the example of the Figure 2 it can be seen that
memory and logic function implementation are of the
same cost and speed as synchronous domino-like
counterparts. The main sources of area overhead are the
dynamic C-element for handshake implementation (ACK),
CD and ack/req synchronization (can be seen from the
Figure 4).

3. Design flow

We have implemented an EDA flow [18] maximizing

the use of commercial design tools. It executes three steps.
First, a single-rail synchronous implementation is

synthesized for a high-level behavioral specification,
optimized and mapped into the library composed of
conventional single-rail gates functionally equivalent to
the target GTL library. Like in [1, 4] a commercial RTL
synthesis engine (currently only Synopsis DC Ultra) is
used. As opposed to the attempts to express asynchronous
formal models in HDL (Martin’s CHP in case of [19] and
[20] or Signal Transition Graphs in case of [21]) we are
using DC Ultra on this step to ensure quality support for a
variety of high-level specification formats including
complete synthesizable HDL subset.

On the second step, similarly to [4], the single-rail
netlist is expanded into a dual-rail QDI fine-grain
pipelined (GTL) implementation. This expansion called
‘weaving’ is the main topic of the present paper.

All local wiring related to dual-rail expansion and
handshake implementation is added on this stage by the
Weaver Engine (WE) and is invisible for RTL users – no
additional HDL code is necessary. Only the functionality
of F (AND2 on the Figure 4) is visible for RTL designer
and synthesis tool.

Finally the GTL netlist is mapped using a commercial
mapping tool (currently the same Synopsis DC Ultra) into
the asynchronous pipeline GTL library. Using a
commercial engine on this stage ensures support of
standard formats of library specification facilitating
library development and of output file formats for smooth
interfacing with P&R and other tools following synthesis
in the design flow.

The GTL cells (stages) are complex sequential devices
and as such are not recognized by synchronous tools (like
DC-Ultra). As a consequence the target GTL library is a
set of black boxes for the RTL synthesis engine and no
optimization is allowed on this stage. This makes it

necessary to implement the GTL architecture optimization
algorithms in the Weaver Engine.

3.1. Flow architecture

The Weaver flow architecture (Figure 3) is an

extension and generalization of that by Theseus [1, 4, 22].
Its architecture is shown on the Figure 3. The notation

is self-explanatory except for the srGTL lib – a library
containing single rail gates functionally equivalent to the
gates from target GTL library (can be seen as data1
function implementation) and their dual counterparts.

The flow consists of the Weaver Engine (WE), a set of
Tcl scripts to automate the engine interaction with the host
synthesis flow environment and a set of VHDL packages
in conjunction with physical library specifying the target
pipeline architecture.

Tcl scripts introduce new commands to the host
compiler command set to automate library retargeting,
calling WE etc. For instance the wvr_acs_compile_design
command implements the same functionality as the
acs_compile_design from Synopsys Automated Chip
Synthesis but synthesizes GTL implementation.

VHDL packages specify particular GTL stage
architecture – a layer unifying the physical target library
cells interface. These packages are also used for the
design VHDL simulation. The use of packages as opposed
to hard coding the architecture in the WE facilitates
synthesis retargeting from one physical library to another.

Weaver engine – the heart of the flow is a VHDL
compiler and a synthesis engine on its own. It is based on

Single -rail (synchronous) netlist synthesis

Weaving

GTL netl ist mapping

srGTL lib

Single -rail netlist

GTL netl ist

Mapped QDI netlist P&R constraints

H
os

t s
yn

th
es

is
 e

ng
in

e

HDL design specification

P&R, etc tools following synthesis in EDA flow

GTL lib

VHDL
packages

lib cells ,
GTL stages W

ea
ve

r

Figure 3, Weaver flow architecture

the Savant VHDL compiler [23] using AIRE (Advanced
Intermediate Representation with Extensibility) – standard
internal VHDL representation. Currently WE is relying on
a commercial HDL compiler and synthesis engine to
perform synthesis and mapping. WE mostly operates on
the synthesized netlist to perform ‘weaving’ explained
further.

Like RTL, GTL does not define any particular kind of
circuitry but rather a wide-known idea of gates
communicating through handshakes. This is reflected in
the Weaver flow built with the assumption that gates are
converted to stages communicating with req/ack signals
requiring synchronization.

3.2. Weaving: general approach

Weaving is a procedure of synthesis of a GTL

implementation for a certain behavior from a synchronous
implementation of the same behavior.

To transform an RTL implementation into a GTL the
data wires are substituted by channels generally
comprising req, ack, data0 and data1 lines.
(i) no additional data dependencies are added and no

existing data dependencies are removed during
weaving;

Channels depicted in Figure 4 reflect the general case
(both req and ack are used and their synchronization for
multiple-input gates and for multi-fan-out cases
respectively are shown). The req and ack synchronizers
are shown as they are introduced by the Weaver Engine.
Some pipelining styles do not use all four (req, ack, data0,
data1) communication lines (e.g. PCHB from [11] does
not use req). Those still fit in the framework.

Portions of combinational logic are substituted by
functionally equivalent pipeline stages. Without loss of
generality let every such portion be a single logic gate in
synchronous implementation. In general the portions can
be of arbitrary size but replacing every gate a pipeline
stage provides the finest grain gate level pipelining
resulting in the highest performance implementations. The
only gates not mapped to stages are inverters – these are
implemented as data wires cross-over when dual-rail one-
hot encoding is used and as such require no additional
hardware.
(ii) every gate implementing a logical function is

mapped to a GTL gate (stage) implementing
equivalent function for dual-rail encoded data and
initialized to NULL (spacer);

Replacing a single-rail combinational gate
implementing the AND2 function with a GTL gate (or
stage) and the wires with channels is illustrated on the
Figure 4. On this figure ACK stands for handshake
circuitry, PC – for phase control, CD – for completion
detection, M – for memory and F – for dual-rail
implementation of the AND2 function.

Many pipeline styles suit GTL framework. Most
efficient ones are dynamic cells designed as whole stages
like in [11].

Dual-rail (DR)
data encoding is
used to simplify
completion
detection. Single-
rail (SR) logical ‘1’
corresponds to
DR‘01’, SR‘0’ – to
DR‘10’ while
DR‘11’ is an invalid
combination (this
fact can be used for
error detection and
testing) and DR‘00’
is a NULL or spacer representing ‘no data’ state.

3.3. Weaving: mapping latches and flip-flops

The section 2 addresses general weaving –

synthesizing a fine-grain pipelined GTL implementation
for single-rail combinational netlists. However RTL
designs are not always combinational. Suppose that a
synchronous RTL netlist produced by a commercial
synthesis engine consists of CL gates, D-latches (DL) and
D-flip-flops (DFF).

The pipeline cells can be divided into two categories
full-buffer (FB) and half-buffer (HB) [11]. The two are
distinct by the token capacity – the number of data
portions that can fit in a pipeline of a given length where
the length is measured in the number of stages S.
(iii) closed asynchronous HB pipeline maximum token

capacity is S/2 - 1 (where S is the number of HB
stages);

(iv) closed asynchronous FB pipeline maximum token
capacity is S - 1 (S is the number of HB stages);

therefore
(v) in HB pipelines distinct tokens are always

separated with spacers (there are no two distinct
tokens in any two adjacent stages);

“Distinct” in (v) is important since in real pipeline the
token propagation does not occur immediately letting the
same token occupy more than one stage for some time.

HB pipeline stage implementation requires smaller
area than a functionally equivalent FB stage so in search
for smaller area overhead in this work we mostly consider
HB GTL implementations.

Combinational logic (CL) in RTL implementations is
often pipelined to increase the implementation
performance. Figure 5 (a and b) illustrate that. As it is
shown on the Figure 5 the CL is broken into two stages by
inserting a DFF. This way the performance is increased
approximately by the factor of two (Figure 5b) since the

Figure 4 Weaving

AND2

A

B

X

Z

weaving

GTL_AND2

ACK

PC CD

F: AND2 M

A0
A1
B0
B1 Z1

Z0

X0
X1

XReq
ZReq

XAck
ZAck

AReq
BReq

AAck
BAck

dual-rail impl-n

intermediate
result is stored in
the DFF. Empty
and shaded
circles in the
latches (consider
a DFF as a pair
of D-latches)
reflect alternative
clock phases of
‘master’ and
‘slave’ latches
(one of them is in
storage mode
when clock is
low and the other
– when it is
high). As with
CL gates (basic pipelining) we can substitute every DL
with one HB pipeline stage. At the same time basic
weaving is applied to the CL portions and the result is
shown on the Figure 5c At this point there is no clock so
the circles represent alternating NULL (empty circles) and
DATA states (shaded circles) as explained in section 4.

Now more data portions can simultaneously fit in the
pipeline increasing its performance relative to the
synchronous implementation. This way the original
implementation is fine-grain pipelined. Let n denote the
number of DFFs and m – of CL levels in the synchronous
implementation (RTL implementation token capacity is n)
the resulting GTL implementation token capacity is
n+m/2. Therefore by weaving:
(vi) for each DFF in RTL implementation there exist in

GTL implementation two HB stages one initialized
to a spacer and another – to a token;

(vii) the number of HB pipeline stages in any cycle of
GTL implementation is greater than the number of
DLs (or half-DFFs) in the corresponding
synchronous RTL implementation;

Note that the condition (vii) is strict (the number of
stages is strictly greater). This is because the closed
pipeline token capacity for synchronous pipelines is one
greater than that of asynchronous pipelines where the
tokens propagation is not synchronized and an additional
spacer (vacant position) is required. This condition is
usually satisfied except for rare cases like a circular shift
register with no logic between DFFs (e.g. Figure 6 and
Figure 12). Therefore:
(viii) GTL pipeline token capacity is greater or equal to

that of the synchronous implementation;

4. Modeling behavior with Petri nets

We use Petri nets (PN) [24] to model the behavior of

the original synchronous and resulting GTL circuits. In

the subsection 5 we demonstrate the correctness of the
resulting GTL implementation.

We use high level abstraction where PN markings
represent position of tokens (data portions) in the pipeline
and not the states of signals (as in Signal Transition
Graphs).

With the low computational complexity requirement in
mind in contrast to [2, 7] our flow does not utilize PN
based model for synthesis. We are only using the Petri
nets to proof the correctness of weaving algorithms.

4.1. Linear case.

In synchronous implementations each pipeline stage is

implemented with a D-flip-flop (DFF) or two D-latches
(DL) with alternating clocks to store the result of data
processing in the CL. It is almost the same since a DFF
comprises two D-latches and an inverter to provide
alternating clock for them as shown on the Figure 6a, b.
Synchronous pipeline model is shown on the Figure 6c
where t1 represents the DL1 state change, t3 – DL2 state
change etc while the transitions clk0, clk1 represent clock
edges.

For asynchronous pipeline implementations the model
from [8] (Figure 6d) can be used. It restricts PN in such a
way that for every two transitions ti, tj for which there
exists a place pk such that pk is a postcondition for ti and a
precondition for tj, there exists pl such that it is a
postcondition for tj and a precondition for ti. We refer to
such PNs as Pipeline Petri nets (PPNs) [8]. Since the
pairs of conditions like pk, pl model a pipeline stage we
denote the pair as a stage state and the stage state with
adjacent transitions as a stage. A PPN consists of stages in
such a way that
(ix) no stage state is shared between any two stages.

To ensure liveness and safeness initial PPN markings
are restricted to those where
(x) exactly one place is marked in every stage state.

Depending on whether the post- or precondition is
marked for a stage the latter is said to contain a token or a
spacer. In the course of PPN execution adjacent stages
having opposite markings can exchange their states by
firing transitions. Tokens propagate in one direction (the
direction of data propagation) while spacer – in the
opposite. The PPN feedback arcs along with proper initial
marking M0 preserve PPN 1-safeness. Non-safe model is
useless since with current interpretation every PPN token
represents a data portion held by the pipeline stage.
Multiple tokens in one stage would mean that more than
one data portion is stored in a given stage what is
impossible.

On the PPN firing the transition t1 corresponds to
processing data in the CL1 and storing it in DL1, t3 –
storing data in DL2, t4 – processing at CL2 and storing in
DL3. Clearly PPN stages represent pipeline stages and the

Figure 5 Latches and flip-flops
mapping: deep CL

CLCL

CL

DL DL DL DL

HB

(a) Combinational circuit

(b) Pipelined synchronous combinational circuit

(c) Fine-grain pipelined GTL circuit

HBHB HB HB HBHBHBHBHB HBHB

PPN tokens –data portions. Even if the data does not
change on the input from one clock cycle to another the
new token is still introduced in the pipeline. The nature of
synchronization makes the tokens always alternate with
spacers. Every edge of the clock cycle causes half of
latches to be transparent propagating all data one step
forward, the next edge makes the other half of them
transparent propagating data one more step. This way,
unless we distinguish tokens every two steps the pipeline
state is the same.

One can observe that transitions are shared by adjacent
stages. This is because transitions are interpreted as the
events of exchanging a token with a spacer between
adjacent stages.

On the Figure 6 stages are delimited by vertical lines.
To model HB GTL pipelines we modify the PPN

model to preserve the property (iii) of HB pipelines.
Indeed in the PPN one token can immediately approach
the previous one thus allowing for the token capacity of S-
1 natural for FB pipelines.

Linear PPNs and HB PPNs are marked graphs (MG)
[25]. Thus starting from the Figure 6d we imply PN places
on arcs without depicting them and put markers on the
arcs themselves where necessary.

By making the PPN feedbacks twice as long (to span
over one stage) we reduce the modeled pipeline token
capacity by the same factor of two. We call this model HB
PPN and use it to model HB pipelines (Figure 6e).

In HB PPN every two adjacent stages can be in one of
the three stable states: token-spacer (TS), spacer-token
(ST) and spacer-spacer (SS). TT would violate (v). Every
such a pair is modeled by tree HB PPN transitions, two
forward (relative to the data propagation direction) and
one feedback arks. (CL1, DL1) on the Figure 6f are in SS
state stages are modeled by the feedback arc (t3, t1)
marked (forward arcs are unmarked) on the Figure 6e.
Observe the markings corresponding to the pairs (DL1,
DL2) and (DL2, CL2) – in both cases the feedback arc is
unmarked while (t3, t4) being the second forward arc for
(DL1, DL2) and the first for (DL2, CL2) is marked.

Similarly to the stage notation in PPN we denote every
ti, tj, tk such that (ti, tj) and (tj, tk) are forward and (tk, ti) –
feedback arcs along with the arcs connecting them as FB-
stages. A valid marking would assigned to a FB-stage
defines one of its three states (TS, ST or SS) i.e.
(xi) a HB PPN marking is valid iff every FB-stage in the

HB PPN has exactly one marker;
Based on the token capacity equivalence of HB PPN

model to the HB pipelines as well as on the intuition
provided above we assume that:
(xii) GTL style pipeline is properly modeled by HB PPN.

Note that during weaving both DL and portions of CL
(by default individual gates) are mapped to HB GTL
stages (increasing the pipeline token capacity) hence
starting from the pipeline on Figure 6e there are 8 stages
(assuming CL1, CL2, CL3 are one gate each).

4.2. HB PPN liveness

From (iii) it follows that

(xiii) a live closed HB PPN is at least 3 HB stages long;
It is easy to see that a two stage closed HB PPN cannot

be live. Similarly from (iv) it follows that the shortest live
PPN must be at least two stages long (S=2). On the other
hand a FB stage can be considered to comprise two HB
stages, thus the liveness condition for HB PPN (xiii) is
stronger.

The Figure 7 illustrates the
only valid (satisfying the
properties (iii), (v), (ix) and
(xi)) three-stage HB PPNs
initial markings possible.
Other (than reachable from
those shown) initial markings
are not valid due to the token
separation condition (v).

Only the HB PPN on the
Figure 7a is live for there are no tokens to exchange on
the Figure 7b. Clearly
(xiv) a live closed HB PPN has at least one token and at

most S/2 – 1 tokens;
Thus for liveness a closed linear HB PPN requires the

following conditions: (xi), (xiii) and (xiv).

Figure 7 Closed HB
PPNs

(b) Non-life pipeline (token deficient)
t2 t3t1

(a) Life pipeline
t2 t3t1

HB stage

DL2

HB stage

CL2

HB stage

DL3

HB stage

DL1

HB stage

CL1

(f) Simplified pipeline representation with initial marking (tokens are shaded)

ACK
PC CD

MCL1

ACK
PC CD

M

ACK
PC CD

MCL2
CD

ACK
PC

M

ACK
PC

M
CD CD

(g) GTL stages pipeline representation

(d) Pipeline Petri Net MG representation (places not shown)

t3 t4t1

Q

QSET

CLR

D

L

DL1

CL1

Q

QSET

CLR

D

L

DL2
Q

QSET

CLR

D

L

DL3

CL2

clk0
clk1

(b) Synchronous (DL) pipeline implementation

Q

QSET

CLR

D

DFF1

CL1

clk

CL2

Q

QSET

CLR

D

DFF2

(a) Synchronous (DFF) pipeline implementation

(e) Half Buffer PPN model

(c) Synchronous pipeline PN model

t3 t4t1

...

...
...
...

clk0/clk<=’0’

clk1/clk<=’1’

t3 t4 t5t1 t2

HB stage

DL4

HB stage

CL3

HB stage

DL5

ACK
PC CD

MCL3
CD

ACK
PC

M

ACK
PC

M
CD CD

t5 t6

Q

QSET

CLR

D

L

DL4
Q

QSET

CLR

D

L

DL5

CL3

CL3

Q

QSET

CLR

D

DFF3

t5 t6

...

...

t7 t8t6

Figure 6 Modeling pipeline with Petri Nets

4.3. Nonlinear pipelines and conditional
behavior

We will distinguish conditional and unconditional

pipeline branching.
Consider only unconditional branching first. It

corresponds to deterministic behavior where:
(xv) the token flow is deterministic and does not depend

on data itself;
Unconditional branching is shown for HB PPN, PPN

and PN on the Figure 8a, b and c respectively. Empty
pipeline (no tokens) is shown in all three cases.
Deterministic HB PPN contains no choice points therefore
it is a marked graph. It is proven in [25] that
(xvi) a marked graph is live iff M0 assigns at least one

token on each directed loop (or circuit);
Consider directed circuits in HB PPN. Every FB-stage

is a directed
circuit by itself
but it is always
marked by
definition (xi).
The only
circuits
remaining are
the loops
consisting of
only feedback
or only forward
arcs – design
loops (circuits).
A situation
when no
feedback arcs are marked corresponds to overloaded
pipeline with S/2 tokens which is not valid as it violates
(xiv). Another case where none of the forward arcs are
marked corresponds to a token deficient pipeline also
violating (xiv). The number of tokens in a pipeline can be
counted as the number of markers on the forward arcs
(shown on the Figure 8c separate from any other arcs).
Thus:
(xvii) for a HB PPN to be live each of its directed circuits

composed of forward arcs as a closed HB PPN
must satisfy the conditions (xi), (xiii) and (xiv);

Data flow steering is performed by means of
multiplexers (MUX) and demultiplexers (DEMUX). The
data value of the MUX/DEMUX control channel defines
which input/output data channel is chosen. What the
“chosen” means here depends on the MUX (DEMUX)
implementation. There are two ways of implementing
such a device. Consider an example of a 2-to-1
multiplexer (MUX12).

Combinational implementation of MUX12 would be
an implementation of the function Z=AC+BC’ where Z is
the output, A, B – input data channels and C is a control

channel. The channels A, B and C will be acknowledged
once the data tokens are present at all of them. Thus such
a MUX behaves as a 3-input gate and does not affect the
token flow. The choice of the channel only affects the data
in the token generated at the output channel Z.

On the other hand selective implementation would
acknowledge only the “selected” channel (thus either A
and C or B and C are acknowledged every time a token is
produced on the channel Z). The latter makes the token
flow dependent on the data itself or in other words non-
deterministic relative to the design architecture what
makes it impossible to guarantee the overall
implementation liveness. Selective multiplexing however
is rarely needed and currently is left as a tuning option for
experienced designers.

Combinational implementation of multiplexing token
flow-wise is equivalent to the case of unconditional
branching and as such creates no liveness problems. It is
used by default in or flow.

5. Correctness

Similarly to [3] we define the correctness of weaving

to be three-fold. The GTL implementation must be:
1. safe as it follows immediately from (x);
2. live to ensure continuous operation (pipeline never

halts);
3. flow equivalence ensures that in both RTL and GTL

implementations the order in which corresponding
data portions appear in the corresponding storage
elements (latches in RTL and HB stages in GTL) is
the same.

To show the weaving correctness we need the
following assumption which to the best of our knowledge
holds for the circuits synthesized by contemporary RTL
synthesis engines we may use as host synthesis engines:
(xviii) every feedback loop in synchronous implementation

contains at least one DFF (or a pair of DLs);
Liveness. We are using HB PPN model for the proof of

liveness as we primarily target HB pipelines for which
this model is adequate according to (xii).

Finally as follows from (vi), (vii), (xvii), (xviii) the
GTL implementation is live as long as all the mentioned
conditions are satisfied. Thus, weaving guarantees the
implementation liveness.

Flow equivalence can be proven along the ways of [3]
since the communication protocols are compatible. The
difference comes from the fact that in the de-synchronized
implementation (asynchronous) has the same set of
latches as the original (synchronous). This is in general
not true for the GTL circuits exhibiting the property (vi).
However in a closed linear pipeline the number of tokens
stays the same regardless of the number of stages in
accordance with (v).

fork

t1

t3

t2
merge

t3

t1

t2

merge
t3

t1

t2

fork
t1

t3

t2

fork

t1

t3

t2
merge

t3

t1

t2

(a) HB PPN branching

(b) PPN branching

(c) PN branching

Figure 8 Modeling nonlinear
pipelines

We omit the rigorous proof here as it would repeat that
of [3] but rather include the Figure 9 illustrating the data
portions propagation through the pipeline shown on the
Figure 5. In each case the first line shows the state of
storage elements after initialization (numbers are random
and represent data tokens). In RTL implementation (a) the
tokens propagate simultaneously – one DL at a time.

In GTL implementation (b, c) the latency of different
stages can be different so the tokens can propagate at
different paces. The speed depends on the latency of the
stages being passed. However functional dependencies do
not allow the result to be computed before both operands
are present ensuring the correctness. Thus, as long as two
channels in a bus are not functionally related in the
module their outputs arrive independently at different
times but the order of the tokens is always preserved i.e.
the ith token in certain HB in GTL implementation carries
the same data as the corresponding DL of synchronous
implementation on the ith clock cycle thus weaving
preserves the flow equivalence.

It follows from the flow equivalence and the property
(i) that the corresponding data portions pass through the
same set of CL blocks what in turn would guarantee that
the same output data sequence is obtained from both
implementations for a given input data.

The Figure 9 demonstrates pipeline filling i.e. tokens
are not consumed (acknowledged) by the receiver on the
output.

6. Optimizing the number of stages

Let us examine the resulting fine-grain pipeline for the

area overhead. The stages corresponding to DFFs and/or
DLs carry no functionality (identity function stages) and
can be optimized out as redundant to reduce the area and
latency overhead as long as the initial marking can be
transferred to other stages, the data dependencies are not

affected (since the stages to be removed implement
identity function) and all the conditions necessary for the
implementation liveness are satisfied.

Suppose the Figure 10a depicts the initial state – two
identity function
stages are
initialized to
tokens. If the CL
portions are deep
enough (greater
than 2 levels)
redundant stages
can be optimized
out with the
initialization
moved to the
previous stages
implementing logic functions (Figure 10). We
demonstrated how pipelined RTL code can be reused. The
synthesis result (in terms of pipelining) is the same for
both initially pipelined and not pipelined specification.
Thus the designer’s pipelining effort can be saved and
existing pipelined design specifications reused.

In the example from Figure 10 for simplicity it is
assumed that the CL portions have four layers of
combinational gates each. Such an assumption is barely
practical. A more realistic example is shown on the Figure
11. The combinational gates can be topologically sorted
with respect to their mutual dependency in such a way
that the gates that only depend on the primary inputs
(relative to the CL block) are placed on the leftmost level
(marked as 1), those that depend on the gates from the
level 1 and/or primary inputs – on the level 2 etc (Figure
11a). The HB stages corresponding to DFFs in registers
are no longer synchronized so (Figure 11b). Data
dependencies that span over layers of stages will
introduce token propagation delays (distinct paths will
have different lengths). Such dependencies are broken by
introducing identity function stages (lightly shaded
rectangles on the Figure 11b). This procedure is known as
slack matching [10]. It consists in balancing distinct
independent paths along the pipeline to balance their
token capacities and thus increase the performance. In this
example the outputs of the first CL are fed only to the
second CL. This makes it possible to merge the two
blocks in such a way that (vi) is satisfied.

Generally the best performance is achieved if the
‘shape’ of a module is rectangular i.e. all paths along the
pipeline have the same slack. However the area overhead
induced by slack matching can be significantly reduced if
the advantage can be taken of the shape of the modules to
be connected as it is shown on the Figure 11c. The
resulting module is made rectangular (Figure 11d).

Current implementation of the slack matching in our
flow assumes that HB stages found in the library have

HB

(a) Fine-grain pipelined GTL circuit

(b) GTL circuit: redundant stages removed, marking translated

HBHB HB HB HB HB HBHB HB

HB HB HB HB HB HB HB HB

HB HB

Figure 10 Removing redundant
stages

354

1 3N2N7 N 4 N 5N N

5 3NNNN 5 N N N4 N
5 3NNNN N N N NN N

9

4
4

(a) Pipelined synchronous combinational circuit

(b) Fine-grain pipelined GTL circuit

HB HBHBHBHBIN HB HB HB HB HBHB HB

DLDLIN DLDL

(c) Fine-grain pipelined GTL circuit (no redundant stages)
31N2 N 4 N 5N N

35NN 5 N N N4 N
35NN N N N NN N

7

4
4

HBHBHBHBIN HB HB HB HBHB HB

541
4
1 4

5

..

..

Figure 9 Data portions propagation

approximately the same delay so the path lengths are
measured in the number of stages.

The slack
matching is
currently only
performed on non-
cyclic paths.

The procedure
always preserves
the shape of
submodules in
hierarchical
designs and only
the top module is
forced to have
rectangular ‘shape’
(white rectangles
represent the stages
added on this
stage). Note that
two tokens are
added to the initial
state of two stages
in each path to
correspond to the
number of DFFs in each path in the original RTL
implementation.

The complexity of such analysis is roughly O(|X||C|2)
where |X| is the number of primary inputs and |C| is the
number of connection points in the netlist (not the number
of gates to support subdesigns of non-trivial ‘shape’ and
hence different distances between distinct input-output
pairs of a module).

Another example (Figure 12) presents a shift

register/counter style design where the combinational
logic between flip-flops is shallow (one level to none) in
the synchronous implementation (Figure 12a). Here the
stages corresponding to synchronous flip-flops are no
longer redundant and cannot be optimized out as in the
previous examples.

Indeed since the fork modules are only ack
synchronizers and represent no data buffering (not stages)

the implementation achieved by removing the flip-flops
Figure 12b violates the condition (vi) and has the
functionality distinct from the specification and the
synchronous implementation: the last three parallel output
bits represent the same bit branched to three while the
synchronous implementation is a shift register outputting
three consecutive distinct data portions.

In synchronous implementation a DFF (or a pair of
DLs) holds one token. Due to the nature of synchronous
implementation it is initialized with one token per DFF.
To ensure liveness a GTL implementation with loops
(circuits) must be initialized so that every pair of HB
stages (or an FB stage) corresponding to a DFF in
synchronous implementation is initialized to a token
(DATA). For performance reasons a GTL
implementations can be initialized with more tokens than
the original RTL implementation but this topic is left out
of the scope of the paper.

The condition (vi) is clearly met for the
implementation on the Figure 12c. For the stages with no
combinational logic every flip-flop has been mapped to
two HB stages initialized with one token and one spacer.
Note that in the first bits combinational gates mapped to
GTL HB stages already provide one stage each. Hence
one HB corresponding to a DL (half DFF) is optimized
out. The stage number optimization is performed
automatically in our GTL flow.

The clock signal is optimized out in the final design.
Such an optimization does not result in any loss of
functionality. Time separation of data tokens is replaced
by controlled separation – instead of supplying a clock
signal and squeezing the data portions between its
transitions indicating the presence of data with an enable
signal every data portion is signaled as soon as it is ready.
Weaver uses clock recipients to automatically determine
the data initialized stages (‘1’ for set and ‘0’ for reset).

7. Experimental results

To estimate the efficiency of the flow we compare the

performance of several synchronous and GTL
implementations of benchmark circuits from the set [26].
The examples in the Table 1 are combinational multilevel
circuits. These are used to optimize pipeline balancing
technique. Similarly to slack matching [27] it balances the
number of tokens in the propagation paths increasing the
performance up to the performance of the slowest stage.
With gate-level pipelining the number of pipeline stages
equals the logic depth after synthesis. Synchronous
implementations are not pipelined so the gain is
proportionate to the logic depth – the deeper the logic –
the greater the pipelining effect. The results are still
preliminary since the pipeline balancing implementation
is not fully complete.

(c) Slack matching: applied inside the resulting logic block

(a) Topologically sorted CL gates

HB HB HB HB

level 1 2 3 1 2 34 5 4 5

(d) Slack matching: enforcing rectangular shape

level 1 2 3 3 4 5

(b) Topologically sorted CL gates with slack matching applied

level 1 2 3 1 2 34 5 4 5

Figure 11 Slack matching

Figure 12 Latches and flip-flops mapping: shallow CL

StSt St StStSt F F F FSt St

DL DL DL DLDL DLDL DL
CL CL

F F F FStSt

(a) RTL implementation

(b) GTL implementation with identity function stages removed

(c) Correct GTL implementation

Table 1. Performance comparison on MCNC
benchmarks

Performance,MHz
Benchmark gates # rtl gtl

g/r Depth

C17 6 2857 667.6 0.23 2
C1355 546 37 120.6 3.26 12
C1908 880 21.7 105.2 4.84 17
C432 160 189.9 351.0 1.85 14
C499 202 43.0 122.0 2.84 12
C5315 2307 44.8 181.3 4.04 16
C880 383 66.5 246.4 3.71 15
apex6 238 65.8 158.9 2.80 11
cm162a 19 63.0 388.0 6.16 5
cm163a 16 63.2 491.2 7.78 6
Cordic 102 47.8 289.1 6.04 6
Dalu 1131 38.2 268.0 7.02 13
frg2 526 44.7 223.3 5.0 10
Lal 71 40.2 215.6 5.36 8
Sct 40 55.0 242.6 4.41 7
X4 136 60.9 283.0 4.65 7

Avg 4.37

With no dedicated library, a straightforward stage

implementation using a standard cell library [28] (TSMC
0.25 process) extended with Muller C-elements was used
in experiments. Such an implementation generates
significant area overhead which will be much smaller with
future dynamic logic library. Performance parameters
were obtained from simulating a mapped netlist with
timing parameters generated for the library (VITAL
VHDL specifications).

Table 2 Performance comparison

Performance, MHz Area, um2 xE+06 Example
gtl Rtl g/r gtl rtl g/r

Inverter 350 9.58 36.5 0.17 0.02 12.0
mix_128 666 176 3.78 0.50 0.06 8.23
sbox_128 350 47.9 7.3 0.31 0.27 11.4
keyexpansn 353 44.5 7.93 1.00 0.08 12.0
normal_rnd 350 44.8 7.81 3.78 0.35 10.9
last_round 352 47.4 7.42 3.25 0.29 11.4
aes10rnds 349 9.58 36.4 47.9 4.28 11.2

We also compared the synthesis results for an

Advanced Encryption Standard (AES) [29]
implementation. Unlike the logic synthesis benchmarks
the AES example requires hierarchical pipeline balancing.
AES was chosen for a design example because: (1) it is a
rather large and complex hierarchical design involving
various synthesis aspects including state machine and
non-linear pipelines in data path design; (2) fine-grain
pipeline asynchronous implementation of a security
application is potentially advantageous for being less
prone to side-channel attacks [30] because it has a
balanced power dissipation independent from the data
patterns at bit lines.

The synchronous implementation numbers were
obtained with the same library (1/delay*106). The

synchronous circuit should have been pipelined to achieve
better results (at least by placing registers between
rounds) but this requires manual design with pipeline
stage balancing where as asynchronous design is pipelined
automatically.

Even in the stage of preliminary (without dynamic
logic library) design where our area results are far from
final we could observe a promising area overhead versus
performance increase trade-off that may be explored using
different timing assumptions and different pipelining
granularity. In our AES10 example synchronous design is
not pipelined and use non-local timing assumptions,
asynchronous fine-grain pipelined implementation do not
rely on timing assumptions and reach a finest degree of
pipelining with high area expenses. We did not compare it
with NCL implementation because NCL tool required
significant code change and is not able to accept
hierarchical designs. However we know from previous
experience and [1, 4, 22] that performance of circuits
generated by NCL flow is not better than that of the
synchronous counterpart and the area is 2.5-3.5 times
bigger.

8. Conclusion

In this paper we’ve briefly presented a GTL framework

and weaving technique to compile fine-grain pipelined
QDI circuit from a synchronous implementation. We’ve
shown how the basic synchronous constructs are mapped
into asynchronous pipeline. By modeling pipeline
behavior with Petri nets we’ve shown that such a
translation leads to a functionally equivalent QDI
implementation with the same or greater degree of
pipelining.

Increasing the pipelining degree leads to performance
improvement as it can be seen from experimental results.
Obviously the performance increase is due to fine-grain
pipelining and slack matching and as such is proportional
to the depth of the RTL implementation. AES
implementation is very deep, what explains the drastic
performance improvement.

The automatically synthesized asynchronous Advanced
Encryption Standard implementation with static standard
cell library demonstrated a performance increase of up to
36.4x (Table 2) compared to automated synchronous RTL
implementation of the same VHDL specification, and
reached performance of the fastest to our knowledge AES
IP core from North Pole Engineering performing at
350MHz specifically designed for performance.

Our future research will concentrate on a reliable rich
dynamic standard cell library. The use of such a library in
the GTL flow will combine the high performance of the
fine-grain pipelines with competitive area overhead of
dynamic library with design automation provided by the
Weaver engine.

9. References

1. Ligthart, M., et al., Asynchronous Design Using
Commercial HDL Synthesis Tools, in Proc. International
Symposium on Advanced Research in Asynchronous
Circuits and Systems. 2000, IEEE Computer Society
Press. p. 114--125.
2. Linder, D.H. and J.C. Harden, Phased Logic:
Supporting the Synchronous Design Paradigm with
Delay-Insensitive Circuitry. IEEE Transactions on
Computers, 1996. 45(9): p. 1031--1044.
3. Blunno, I., et al. Handshake protocols for de-
synchronization. in International Symposium on Advanced
Research in Asynchronous Circuits and Systems. 2004.
4. Kondratyev, A. and K. Lwin, Design of Asynchronous
Circuits using Synchronous CAD Tools. IEEE Design &
Test of Computers, 2002. 19(4): p. 107--117.
5. Hrishikesh, M.S., et al. The Optimal Depth Per
Pipeline Stage is 6 to 8 FO4 Inverter Delays. in 29th Int'l
Symp. Computer Architecture. 2002: IEEE CS Press.
6. Hartstein, A. and T.R. Puzak. Optimum
Power/Performance Pipeline Depth. in MICRO-36
International Symposium on Microarchitecture. 2003.
7. Reese, R.B., M.A. Thornton, and C. Traver. A Fine-
Grain Phased Logic CPU. in IEEE Computer Society
Annual Symposium on VLSI (ISVLSI 2003). 2003. Tampa,
Florida.
8. Varshavsky, V.I., et al., Self-timed Control of
Concurrent Processes. 1990: Kluwer Academic
Publishers.
9. Muller, D.E. and W.S. Bartky, A Theory of
Asynchronous Circuits, in Proceedings of an International
Symposium on the Theory of Switching. 1959, Harvard
University Press. p. 204--243.
10. Martin, A.J., et al., The Design of an Asynchronous
MIPS R3000 Microprocessor, in Advanced Research in
VLSI. 1997. p. 164--181.
11. Ozdag, R.O. and P.A. Beerel, High-Speed QDI
Asynchronous Pipelines, in Proc. International
Symposium on Advanced Research in Asynchronous
Circuits and Systems. 2002. p. 13--22.
12. Singh, M. and S.M. Nowick, Fine-grain pipelined
asynchronous adders for high-speed DSP applications, in
Proceedings of the IEEE Computer Society Workshop on
VLSI. 2000, IEEE Computer Society Press. p. 111--118.
13. Singh, M. and S.M. Nowick, High-Throughput
Asynchronous Pipelines for Fine-Grain Dynamic
Datapaths, in Proc. International Symposium on
Advanced Research in Asynchronous Circuits and
Systems. 2000, IEEE Computer Society Press. p. 198--
209.
14. Sutherland, I. and S. Fairbanks, GasP: A Minimal
FIFO Control, in Proc. International Symposium on
Advanced Research in Asynchronous Circuits and
Systems. 2001, IEEE Computer Society Press. p. 46--53.

15. Williams, T.E. and M.A. Horowitz, A Zero-Overhead
Self-Timed 160ns 54b CMOS Divider. IEEE Journal of
Solid-State Circuits, 1991. 26(11): p. 1651--1661.
16. Cummings, U., A. Lines, and A. Martin, An
Asynchronous Pipelined Lattice Structure Filter, in Proc.
International Symposium on Advanced Research in
Asynchronous Circuits and Systems. 1994. p. 126--133.
17. USC’s PCHB Based Asynchronous Gate Library.
http://jungfrau.usc.edu/AsyncLib.html.
18. Weaver: GTL synthesis flow.
http://async.bu.edu/weaver/. 2004.
19. Renaudin, M., P. Vivet, and F. Robin, A Design
Framework for Asynchronous/Synchronous Circuits
Based on CHP to HDL Translation, in Proc.
International Symposium on Advanced Research in
Asynchronous Circuits and Systems. 1999. p. 135--144.
20. Saifhashemi, A. and H. Pedram. Verilog HDL,
powered by PLI: a suitable framework for describing and
modeling asynchronous circuits at all levels of
abstraction. in Design Automation Conference. 2003.
21. Blunno, I. and L. Lavagno, Automated synthesis of
micro-pipelines from behavioral Verilog HDL, in Proc.
International Symposium on Advanced Research in
Asynchronous Circuits and Systems. 2000, IEEE
Computer Society Press. p. 84--92.
22. Smith, R. and M. Ligthart, High-Level Design for
Asynchronous Logic, in Proc. of Asia and South Pacific
Design Automation Conference. 2001. p. 431--436.
23. Martin, D.E., et al., Analysis and Simulation of Mixed-
Technology VLSI Systems. Journal of Parallel and
Distributed Computing, 2002. 62(3): p. 468-493.
24. Murata, T., Petri nets: Properties, analysis and
applications. Proceedings of the IEEE, 1989: p. 541-580.
25. Commoner, F., et al., Marked directed graphs. Journal
of Computer and System Sciences, 1971. 5: p. 511-523.
26. Yang, S., Logic Synthesis and Optimization
Benchmarks Version 3.0. 1991, Microelectronics center of
North Carolina.
27. Kim, S. and P.A. Beerel, Pipeline Optimization for
Asynchronous Circuits: Complexity Analysis and an
Efficient Optimal Algorithm, in Proc. International Conf.
Computer-Aided Design (ICCAD). 2000.
28. Sulistyo, J.B. and D.S. Ha, Developing Standard Cells
for TSMC 0.25um Technology under MOSIS DEEP Rules.
2002, Department of Electrical and Computer
Engineering, Virginia Tech.
29. FIPS PUB 197: Advanced Encryption Standard,
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf.
30. Hess, E., et al. Information Leakage Attacks Against
Smart Card Implementations of Cryptographic Algorithms
and Countermeasures - A Survey. in EUROSMART
Security Conference. 2000.

