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Abstract

This paper proposes to combine classical approaches to
the optimization of arithmetic expressions by choosing po-
larity of variables with the linearization of switching func-
tions (LSF).

Experimental results presented in the paper, show that
in classical approaches, transition from Positive-polarity
arithmetic expressions to Fixed-polarity arithmetic expres-
sions may provide for 30-40% of reduced number of coeffi-
cients. However, when combined with LSF another 20% of
reduction in the non-zero coefficients count can be achieved.

1 INTRODUCTION

Arithmetic expressions (ARs) for switching functions
are an alternative way to represent binary valued logic func-
tions efficiently in terms of space and time. These expres-
sions were used in the description of logic networks from
the beginning of development of this area [2], [14], [27],
see also discussions in [15], and [35] and related references
in [36]. Although ARs for switching functions are hybrid
expressions in the sense that the coefficients are integers for
the logic-valued functions, there is apparent a renewed in-
terest in application of ARs, partially due just to this feature,
for the following reasons.

1. ARs are useful in parallelization of algorithms for cal-
culations with switching functions [15],

2. ARs can represent the multi-output switching func-
tions by a single expression which cannot be done with
bit-level expressions [16], [21].

3. ARs belong to the class of word-level expressions for
switching functions in form of which some word-level
decision diagrams represent the switching functions
[31], [37]. For detailed considerations of this subject,
see [33].

4. ARs can be used to estimate the error probability
in logic networks [15], and can be useful in testing,
equivalence checking, and verification [13], [20], [29].

Applications of ARs in logic design and related areas of
signal processing and digital systems design are discussed
in [1], [15], and several related papers in [16], [17]. The
most recent applications are briefly reviewed in [6]. Various
extensions to multiple-valued logic functions are discussed
in [16], [17], [38], and [39]. For recent applications, we
refer to [29], and [13] and references given there.

In practical applications of ARs, given a function f , it
might be of an immense importance to determine an arith-
metic expression for f with the minimum number of non-
zero coefficients, since this determines the complexity of
the overall application procedures in terms of both space
and time. Therefore, similar as in applications of Reed-
Muller expressions, a lot of efforts should be paid to the
minimization of ARs. This paper considers the minimiza-
tion of ARs and points out that combination of FPARs and
the method for linearization of switching functions (LSF)
by autocorrelation functions [10] can be useful in determi-
nation of reduced ARs in terms of the non-zero coefficients
count.

2 ARITHMETIC EXPRESSIONS

Arithmetic expressions can be defined in different ways.
For example, they can be derived from Boolean expressions
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by replacing the Boolean operations with the correspond-
ing arithmetic operations assuming that switching variables
and binary logic values for functions are interpreted as in-
tegers 0 and 1 instead of logic values 0 and 1 [14], [38].
Thus, calculations over GF (2) are replaced with calcula-
tion over the field of rational numbers Q. Alternatively, ARs
can be considered as integer counterpart of the Reed-Muller
expressions for switching functions, see for example, [33].
Therefore, ARs can be derived by the recursive application
of the integer counterpart of the positive Davio expansion
f = 1 · f0 + xi(−f0 + f1) to all the variables in a given
function f , where f0 and f1 are co-factors of f with respect
to the variable xi. This interpretation of ARs is useful, since
many methods that have been already developed for Reed-
Muller AND-EXOR synthesis and related minimization al-
gorithms [25] can be transferred to ARs directly or under
some appropriate modifications. For example, the exact
minimization of Reed-Muller expressions through EXOR
ternary decision diagrams (EXOR-TDDs) [5], is extended
to ARs assuming introducing the corresponding data struc-
ture as Arithmetic spectral transform ternary decision dia-
grams (AC-TDDs) [32].

In a more general setting, AR-expressions can be re-
garded as the Taylor expressions in the space of complex
functions on finite dyadic groups [9], with switching func-
tions considered as a particular subset of two-valued com-
plex functions on these groups. In this interpretation, coeffi-
cients in AR-expressions are the partial Gibbs derivatives on
finite dyadic groups [8], the complex-valued counterparts of
the Boolean differences [9].

Fixed-polarity Reed-Muller expressions (FPRMs) were
introduced in order to reduce the number of coefficients
in these representations by changing polarity of literals for
variables, see for example [21]. The analogy of ARs with
Reed-Muller expressions and an alternative interpretation
of AR-coefficients as Fourier-series like coefficients, see
for example [3], [28], [30], permits introduction of Fixed-
polarity AR (FPAR) expressions, as the integer counterparts
of Fixed-polarity Reed-Muller (FPRM) expressions, see for
example [15], [24], [39]. In this spectral interpretation,
FPAR-expressions are defined through permutation of ba-
sic functions used in definition of AR expressions. Note
that the discrete Walsh series (Fourier series on finite dyadic
groups) become the AR-expressions if the Walsh functions
are written in terms of switching variables [30].

Definition 1 (Arithmetic expressions)
For n-variable switching functions given by truth-vectors
F = [f(0), . . . , f(2n − 1)]T , the arithmetic expression is
defined as f = XA(n)F, where X =

⊗n
i=1 Xi, with

Xi =
[

1 xi

]
, and A(n) =

⊗n
i=1 A(1), with A(1) =[

1 0
−1 1

]
.

Definition 2 (Arithmetic spectrum)
The coefficients in the arithmetic expressions are usually de-
noted as the arithmetic spectrum represented in matrix no-
tation as a vector Sf = [Sf (0), . . . , Sf (2n − 1)]T defined
as Sf = A(n)F.

3 MINIMIZATION OF AR

Similar as in Reed-Muller and other spectral representa-
tions, applications of ARs are based upon the same simple
principle. Manipulations and calculations with function val-
ues are replaced by dealing with spectral coefficients, hop-
ing that this will possibly

1. Reduce complexity of the problem/solutions by reduc-
ing its dimensionality (number of coefficients),

2. Permit exploiting some properties and relationships
that are not obvious or do not exist in the original do-
main,

3. Provide for faster methods due to fast calculation algo-
rithms for spectral coefficients.

When, searching for some solutions or solutions better
than existing with respect to some appropriate criteria, we
decide to use arithmetic expressions, then a usual way of
reasoning would be as follows.

1. Given a function f , determine AR for f .

2. If the number of coefficients is acceptable for the avail-
able space and time resources, start the applications
using this AR, otherwise try to minimize AR for f .

Minimization of ARs can be performed by selecting lit-
erals of different polarity for switching variables in the same
way as that is done in Reed-Muller expressions [22], [26].
In this way, Fixed-polarity ARs (FPARs) are defined, as-
suming restriction that a variable can appear as either the
positive or the negative literal, but not both in the same
expression for a given switching function f . FPARs with
all the variables appearing as positive literals are zero-
or positive-polarity arithmetic expressions (PPARs), short
ARs. There are 2n possible FPARs for an n-variable func-
tion f . The negative literal xi for a variable xi corresponds
to the permutation of columns in the basic transform ma-
trix A(1) at the i-th position in the Kronecker product gen-
erating A(n), the same as in FPARs [30]. Alternatively,
this permutation in the transform matrix can be expressed
as a permutation of function values in the truth-vector for
f . This interpretation of the influence of negative literals
to the coefficients in ARs will be exploited further in this
paper.

In spectral interpretation of ARs, FPARs correspond
to Fourier series-like expressions defined by permutation
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and/or shift of the same set of basis functions described,
as in the Reed-Muller expressions, by primary products of
switching variables, however, over Q instead GF (2) [33].

Whatever is the interpretation of the basic minimization
principle, the minimization by FAPRs is restricted to 2n

possible combinations. An alternative to overcome this re-
striction is to enlarge the set of decomposition rules by us-
ing the integer equivalent of the Shannon expansion f =
xif0 + xif1, which leads to the Kronecker ARs permitting
3n combinations. However, the disadvantages are lack of
criteria how to select and assign decomposition rules to vari-
ables in a given function f and increased complexity of ma-
nipulation with such representations due to the overhead of
storing these assignments and always taking them into ac-
count. This problem is even stronger in the case of further
generalizations as Pseudo-Kronecker ARs [33] derived by
allowing further freedom in assigning decomposition rules
in the same way as in the Pseudo-Kronecker Reed-Muller
expressions [26].

Due to the above mentioned lack of assignment criteria,
the exact minimization algorithms perform the exhaustive
search of all possible expressions and count the number of
coefficients in each of them to select the minimum expres-
sion for the given function. Although efficiency of these
algorithms can be assured by selecting suitable data struc-
tures for functions and spectral coefficients, complexity of
them can be considerable.

Heuristic algorithms reduce the search space by us-
ing some reasonable restrictions and preassumptions at the
price of providing non-minimum results, that, however,
may often be acceptable in practice.

4 LINEARIZATION OF SWITCHING
FUNCTIONS

Linearization of switching functions (LSF) assumes rep-
resenting a given system of Boolean functions as the su-
perposition of a system of linear Boolean functions and a
residual nonlinear part of minimal complexity. Lieariza-
tion assumes expressing a given function f in variables
xi, i = 1, . . . , n, in terms of another set of variables yi,
i = 1, . . . n, determined as linear combinations of pri-
mary variables [11], [19]. The linearization problem con-
sists in determination of a transformation σ that maps pri-
mary variables xi into assigned variables yi. In this way,
a function fσ(y1, . . . , yn) is assigned to a given function
f(x1, . . . , xn). A solution of this problem is given in terms
of the total autocorrelation functions [10]. Definition of the
autocorrelation functions and the linearization procedure by
using these functions [10] are given in the Addendum.

We note that the complexity of computing a total auto-
correlation function Bf (τ) by the Wiener-Khinchin theo-
rem [10] and by the fast Walsh transform [1], [10], ex-

pressed in the number of arithmetic operations does not
exceed O(n2n+k) and this approach is efficient only for
small k. The straightforward application of the definition
of Bf requires at most O(22n) computations for any k. It
should be noted that the Walsh transform, can be performed
over Multi-terminal binary decision diagrams (MTBDDs)
[4], [7], which reduces the limitations to the number of
variables in calculations related to the implementation of
Wiener-Khinchin theorem.

In LSF, linear combination of primary variables corre-
sponds to some permutation of function values in the vector
of function values F. The linearization method exploiting
the total autocorrelation function performs a permutation
that produces the maximum number of pairs of equal values.
Due to this feature, LSF permits a considerable reduction of
the number of non-zero coefficients in the Haar expressions
[10], since the half of the Haar transform coefficients is cal-
culated by subtracting successive function values. In matrix
notation calculation of these coefficients equals to the ap-
pearance of submatrices [1,−1]. In other coefficients, the
reduction to zero is possible if some combination of pairs
of equal values appear, since the corresponding Haar func-
tions are representable by sequences consisting of -1, 0, and
1 values. The arithmetic transform matrix A(n) used in cal-
culation of coefficients of arithmetic expressions is defined
as the Kronecker product of basic arithmetic transform ma-

trices A(1) =
[

1 0
−1 1

]
. Due to the appearance of the

row consisting of -1, and 1, in many cases, permutation of
function values by the autocorrelation function may result
in reduction of the arithmetic spectrum in the number of
non-zero coefficients count. Experimental results show that
this conjecture appears to be true.

5 LSF AND FPAR

Interpretation of the application of negative literals for
variables in ARs as a permutation of function values put
links between FPARs and LSF. In both cases, certain per-
mutation of function values is performed. In FPARs, the
permutations allowed are restricted to these corresponding
to the permutation of logic values for variables to which
negative literals are assigned. In LSF, a larger class of per-
mutation matrices can be applied to F, consisting of matri-
ces induced by various possible linear combinations of vari-
ables. Therefore, due to this unified interpretation of both
methods, and since different classes of permutation matri-
ces are exploited, it may be interesting to combine these
two approaches, FPARs and LSF, to get improved reduc-
tion of arithmetic spectra of switching functions in the num-
ber of non-zero coefficients count. Fig. 1 expresses the ba-
sic principles of minimization of ARs by combination of
FPARs and LSF. In this figure, Pv and PLSF denote per-
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mutation matrices determined by selecting negative literals
for variables and by linear combination of variables, re-
spectively. In practice, searching for a reduced arithmetic
expression for a given function f , we chose the minimum
among PPARs and FPARs with and without LSF. Features
of these approaches will be illustrated by the following ex-
ample.

It should be noted that the interpretation of FPARs and
LSF in terms of permutation matrices is used for the theoret-
ical considerations purposes. In practical implementations,
we do not actually perform matrix calculations, instead we
work with reduced representations for switching functions,
as cubes and decision diagrams.

Figure 1. Calculation of ARs spectra.

Example 1 Consider the following randomly chosen func-
tions of four variables given by the vectors of function val-
ues.

F = [0, 2, 2, 3, 2, 0, 3, 2, 2, 3, 0, 2, 3, 2, 2, 0]T

F1 = [0, 2, 3, 3, 1, 2, 1, 3, 3, 1, 1, 2, 0, 0, 2, 0]T

F2 = [0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0]T

F3 = [0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0]T

F4 = [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0]T

F5 = [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1]T

It should be noted that the vector F represents an in-
teger function f corresponding to a two output switching
function f = (f0, f1) and is determined as f = 2f1 + f0.

Therefore, binary representations for elements in F repre-
sents separate outputs. The same is for F1.

LSF procedure assigns the following functions to the
functions considered. For details about performing LSF
procedure and related calculations we refer to [10] and
[12].

Fσ = [0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3]T

F1,σ = [0, 0, 0, 3, 1, 1, 3, 2, 2, 1, 3, 3, 0, 3, 2, 2]T

F2,σ = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0]T

F3,σ = [0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0]T

F4,σ = [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1]T

F5,σ = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1]T

Table 1 shows the number of coefficients in the vectors of
function values, arithmetic expressions, FPARs, arithmetic
expressions and FPARs arithmetic expressions of functions
ordered by the autocorrelation functions.

For functions f3 and f5 we cannot get reduction in the
number of coefficients count. For f1 the reduction is small
and for f and f2 the reduction is considerable. For all func-
tions, the minimum FPARs with LSF are smaller or at least
equal to FPARs without LSF. For functions f and f2 the
reduction in FPARs by LSF is considerable.

As shown in [12], further reduction can be achieved if
LSF is performed recursively by encoding equal subvectors
in the reordered functions. We have found interesting to try
this for functions f1 to f4 by performing LSF over the func-
tions fi,σ , i = 1, 2, 3, 4. In this way, we get the reordered
vectors of function values as

F1,σ = [0, 0, 2, 2, 0, 3, 0, 3, 3, 3, 1, 1, 2, 1, 1, 2]T

F2,σ = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0]T

F3,σ = [0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0]T

F4,σ = [0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0]T

This reordering reduces the number of non-zero coeffi-
cients in both ARs and FPARs from 11 to 9 for the function
f1. For other functions, f2, f3, and f4, we cannot further
reduce the number of coefficients.

6 EXPERIMENTAL RESULTS

In this section, we present a number of experimental
results highlighting different aspect of the approach pro-
posed. We used a program for calculation of autocorrelation
functions and performing the Procedure for linearization of
switching functions working with vector representations of
switching functions. For this reason, the experiments are
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Table 1. Number of coefficients in the truth-vector (SOP), arithmetic expressions (AR), Fixed-polarity
arithmetic expressions (FPAR), arithmetic expression with LSF (AR-LSF), and Fixed-polarity arith-
metic expressions with LSF (FPAR-LSF) for two times applied LSF.

f In Out SOP AR FPAR Polarity AR-LSF FPAR-LSF Polarity
f 4 1 12 15 15 0000 4 4 0000
f1 4 1 12 15 12 0011 11 11 0000
f2 4 1 5 14 9 0111 4 3 0100
f3 4 1 5 6 4 0001 6 4 0001
f4 4 1 5 6 5 0101 3 3 0000
f5 4 1 3 3 2 1001 3 2 0011
av. 4 1 7 9.8 7.8 - 5.1 4.5 -

restricted to functions of a small number of variables. How-
ever, if the calculation are performed over BDDs by using
the DD-methods for computation of Walsh transform, and
therefore, to implement the Wiener-Khinchin theorem, the
number of variables corresponds to that which can be pro-
cessed in other DD-methods, since the main complexity of
the proposed method relates to the calculation of the total
autocorrelation functions.

We performed experiments by always taking the small-
est value for the assignment of input variables τf where the
autocorrelation coefficient takes the maximum value Bf .
Selection of other values for τf will be discussed in more
details in what follows. In some cases, different selection
of this parameter and the mapping σ for variables, may pro-
vide better solutions.

There are examples where reordering by autocorrelation
coefficients increases the number of coefficients. We may
assume that in these cases, the original ordering matches the
best the structure of the arithmetic transform matrix. Such
examples are in Table 2.

There are examples where arithmetic expressions re-
quire fewer coefficients than the number of non-zero func-
tion values, as for functions clip, mul2, mul3, rd73, and
rd84. Another interesting example, which is not shown
in this table since has 16 inputs, is the function t481, with
42016 non-zero values, for which AR and minimum polar-
ity FPAR require 5329 non-zero coefficients.

Reordering reduces the number of coefficients in arith-
metic expressions for functions 9sym, clip, rd53, sao2,
and xor5. For functions bw, ex1010, t481, we cannot
reduce the number of coefficients. For other functions,
reordering increases the number of non-zero coefficients.
However, this increasing is quite smaller than the reduction
achieved in the cases when it is possible.

In this table, we show the average number of coefficient
to represent the functions considered. FPARs provide re-
duction of 37.29% compared to ARs. When we compare

ARs and FPARs for functions reordered with LSF, we get
the reduction for 44.02%. LSF reduces ARs for 8.4% and
FPARs for 18.19%.

7 FEATURES OF THE METHOD

The method is sensitive to the choice of the values τf

and the matrices σ determined depending on these values.
It is the same as in the reduction of the number of nodes in
decision diagrams by autocorrelation functions [12]. In this
case, we are actually reducing the number of paths in the
Arithmetic spectral transform decision diagrams.

The following example illustrates that the method de-
pends on the choice of the value for τf .

Example 2 (Dependency on τf and σ)

For the function f3 in 1, Bf,max is achieved for τf,max =
1, 8, and 9. For τf,max = 8, we selected the matrix σ8 =⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎤
⎥⎥⎦ and we performed reordering by using

the inverse matrix σ−1
8 =

⎡
⎢⎢⎣

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎥⎥⎦. The resulting

spectrum has 6 non-zero coefficients, the same as for the
initial order of function values.

For τf,max = 9, we selected two matrices σ9,1 =⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 1 1
1 0 0 0

⎤
⎥⎥⎦ and σ9,2 =

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

⎤
⎥⎥⎦, and de-

termined the corresponding inverse matrices as σ−1
9,1 =
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Table 2. Number of coefficients in Arithmetic expressions, Fixed-polarity arithmetic expressions, and
Arithmetic expression and Fixed-polarity arithmetic expressions for reordered benchmark functions.

f In Out F Arith FPAR Polarity Arithr FPARr Polarityr
9sym 9 148 465 352 111100000 188 36 111111100
bw 5 22 32 22 10111 32 22 10110
clip 9 439 264 255 100001000 248 241 100001000
con1 7 20 21 18 1000000 21 18 1000000
ex1010 10 800 1023 1011 0010010010 1023 1008 0000010110
misex1 8 13 60 20 11111000 80 27 10110001
mul2 4 5 9 4 4 0000 6 6 0000
mul3 6 7 49 9 9 000000 12 12 000000
rd53 5 3 31 31 31 00000 25 21 00010
rd73 7 3 127 71 71 0000000 80 65 0000010
rd84 8 4 255 171 171 00000000 175 116 11111110
sao2 10 118 1022 100 0010110011 1010 89 0000110111
sqrt8 8 52 210 37 11011111 212 64 10111101
squar5 5 14 14 00000 14 17 17 00000
xor5 5 1 16 31 31 00000 15 15 00000
av. 7 140 228 143 - 209 117 -

⎡
⎢⎢⎣

0 0 0 1
1 0 0 0
0 1 0 0
0 1 1 0

⎤
⎥⎥⎦ and σ−1

9,2 =

⎡
⎢⎢⎣

0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

⎤
⎥⎥⎦. The re-

sulting spectra for σ9,1 and σ9,2 have 5 and 6 non-zero co-
efficients.

Table 3 summarizes the discussion in this example.

Example 3 (Dependency on τf )

The function misex1 has the maximum value for Bf =
240 at the points τf,max = 2, 4, 8. After reordering, the
arithmetic spectrum consists of 58, 60 and 80 non-zero co-
efficients, respectively. The arithmetic spectrum for misex1
for the initial ordering has 60 non-zero coefficients. It fol-
lows, that the method proposed can reduce the spectrum for
two coefficients if τf,max = 2 is selected.

However, there are functions where the size of the spec-
trum in the number of non-zero coefficients count does not
depend on the selection of τf,max. For example, the func-
tion ex1010 has Bf,max for τf,max = 7, and 10. In both
cases, the spectrum has 1023 non-zero coefficients, which
is the same size as for the initial order of function values.
However, minimum FAPR for the initial ordering has 1011
coefficients for the polarity 0010010010, and after reorder-
ing the minimum FPAR has 1008 coefficients for the polarity
0000010110. Thus, the proposed method reduces the FPAR
for three coefficients.

8 CLOSING REMARKS

Arithmetic expressions has been used for long in switch-
ing theory and logic design. Ever increasing complexity of
circuits and systems in these areas, demands for the opti-
mization in terms of space and time, power consumption,
etc., and search for alternative solutions bring some new
interest to this transform. For the same reason of complex-
ity, it is interesting to provide for given switching functions
arithmetic expressions as compact as possible in the number
of non-zero coefficients count.

This paper proposes to combine classical approaches to
the optimization of arithmetic expressions by choosing po-
larity of variables with the linearization of switching func-
tions (LSF).

Experimental results presented in the paper, show that in
classical approaches, transition from Positive-polarity arith-
metic expressions to Fixed-polarity arithmetic expressions
may provide for 30-40% of reduced number of coefficients.
However, when combined with LSF another 20% of reduc-
tion in the non-zero coefficients count can be achieved.

LSF can be performed by an algorithm, which although
deterministic, allows freedom in choosing parameters for
reordering of function values. Due to this feature, when
interest, further reduction of arithmetic expressions for par-
ticular given functions can be achieved by selecting appro-
priately the corresponding parameters.
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Table 3. Function f3 and the arithmetic spectra.
f Spectrum # r Polarity
f3 [0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0]T

f3,8 [0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0]T

f3,9,1 [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0]T

f3,9,2 [0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0]T

Sf3 [0, 0, 0, 0, 1, 0,−1, 0, 0, 0, 1,−1, 0, 0,−1, 1]T 6 (0000)
Sf3,min [0, 0, 0, 0, 1, 0,−1, 0, 0, 0, 0, 1, 0, 0, 0,−1]T 4 (0001)
Sf3,8 [0, 0, 0, 0, 0, 1, 0,−1, 1, 0, 0, 0,−1,−1, 0, 1]T 6 (0000)
Sf3,8,min [0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0,−1, 0, 0,−1]T 4 (0010)
Sf3,9,1 [0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0,−1, 0, 0,−1]T 4 (0000)
Sf3,9,1,min [0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0,−1, 0, 0,−1]T 4 (0000)
Sf3,9,2 [0, 0, 0, 0, 0, 0, 1,−1, 1, 0, 0, 0,−1, 0,−1, 1]T 6 (0000)
Sf3,9,2,min [0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0,−1, 0, 0,−1]T 4 (0001)
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ADDENDUM

Autocorrelation Function

For a given n-variable switching function f , the autocor-
relation function Bf is defined as

Bf (τ) =
2n−1∑
x=0

f(x)f(x ⊕ τ), τ ∈ {0, . . . , 2n − 1},

The Winer-Khinchin theorem [10] states a relationship
between the autocorrelation function and Walsh (Fourier)
coefficients

Bf = 2nW−1(Wf)2.

Total autocorrelation function

For a system of k switching functions f (i)(x1, . . . , xn),
i = 0, . . . , k−1, the total autocorrelation function is defined
as the sum of autocorrelation functions of each function in
the system. Thus,

Bf (τ) =
k−1∑
i=0

Bf(i)(τ).

Note that for any τ �= 0, Bf (τ) ≤ Bf (0). The set
GI(f) of all values for τ such that Bf (τ) = Bf (0) =∑k−1

i=0

∑2m−1
x=0 f (i)(x) is a group with respect to the EXOR

as the group operation which is denoted as the inertia group
of the system f .

LSF Procedure

The following procedure provides for a solution of the
linearization problem.

Linearization procedure

1. Construct by the Wiener-Khinchin theorem and Fast
Walsh Hadamard Transform (FWHT) the autocorrela-
tion function Bf (τ) =

∑
x f(x)f(x ⊕ τ),

2. Find τ0 such that B(τ0) = maxτ �=0B(τ).

3. Find τi, i = 1, . . . , n − 1, such that B(τi) =
maxτ /∈Ti

B(τ), where Ti = {c0τ0 ⊕ c1τ1 ⊕ · · · ⊕
ci−1τi−1}, ci ∈ {0, 1}.

4. Construct T =
[

τ0, τ1, ·, τn−1

]T
, and determine

σ = T−1, where all the calculations are in GF (2).

Complexity of solving the linearization problem for a
given f in terms of the arithmetic operations does not ex-
ceed O(n2n) and may be much smaller than this if we have
a compact description of f [10].
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