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Abstract: We present two architectures for protecting a hardware implementation of 
AES against side-channel attacks known as Differential Fault Analysis 
attacks.  The first architecture, which is efficient for faults of higher 
multiplicity, partitions the design into linear (XOR gates only) and nonlinear 
blocks and uses different protection schemes for these blocks.  We protect the 
linear blocks with linear codes and the nonlinear with a complimentary 
nonlinear operation resulting in robust protection. The second architecture 
uses systematic nonlinear (cubic) robust error detecting codes and provides 
for high fault detection for faults of low and high multiplicities but has higher 
hardware overhead. 
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1. INTRODUCTION 

Cryptographic algorithms are designed so that by observing only the 
inputs and outputs of the algorithm it is computationally infeasible to break 
the cipher, or equivalently determine the secret key used in encryption and 
decryption.  Thus, the algorithm itself does not leak enough useful 
information during its operation to compromise its security.  However, when 
a physical implementation of the algorithm is considered, additional 
information like power consumption, behavior as a result of internal faults, 
and timing of the circuit implementing the algorithm can provide enough 
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information to compromise the security of the system.  Attacks based on the 
use of this implementation specific information are known as Side Channel 
Attacks (SCA) [1,2].  

In this paper we focus on the SCA’s known as Differential Fault Analysis 
(DFA) attacks against the Advanced Encryption Standard (AES) [3].  DFA 
attacks are based on deriving information about the secret key by examining 
the differences between ciphers resulting from correct operations and faulty 
operations. DFA attacks have been applied to AES in [4-8].  Several 
methods for protection of AES have been developed.  However, the current 
methods do not provide an adequate solution since they either require 
duplication in time or space [9], or they are not effective for all fault attacks 
[10,11].   

We propose two methods for the protection of one round of AES.  The 
first is a hybrid method which partitions AES into linear (XOR only) and 
nonlinear blocks and uses different protection techniques for the two 
different types of circuits.  We protect the nonlinear blocks by performing 
nonlinear complimentary operation with respect to the function of the 
original block.  The linear block is protected with linear codes.  Using this 
hybrid partitioning method allowed us save on redundant hardware.   

The second method uses systematic nonlinear robust codes.  For the 
robust codes used in the design the probability of error detection depends not 
only on the error pattern (as in the case for linear codes) but also on the data 
itself.  If all the data vectors and error patterns are equiprobable, then the 
probability of injecting an undetectable error if the device is protected by our 
robust codes is r22−  versus r−2  if the device is protected by any linear code 
with the same r (r is a number of redundant bits which are added for data 
protection). 

The error detection procedures of both designs can be used to detect a 
DFA attack and disable the card preventing further analysis.   

2. DFA ATTACK FAULT MODELS 

We refer to a fault as a physical malfunction of a part of a circuit.  An 
error is a manifestation of fault at the output of the device.  An error is the 
difference (componentwise XOR) of the correct and distorted outputs of the 
device.  

In this paper, we consider protection against a probabilistic attack.  This 
attack does not necessitate chip depackaging nor expensive probing 
equipment and is therefore one of the more accessible attacks.  In this model 
the attacker subjects the device to abnormal conditions which will generate 
faults in the circuit (radiation, high temperature, etc).  We consider that 
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under these conditions the locations of faults is uniformly distributed 
throughout the circuit and that the probability that a fault will occur in any 
wire is characterized by the wire distortion rate p which is a characteristic of 
the attack performed. Thus the number of actual faults injected into a circuit 
is dependent on the size N of the circuit and the expected number of faults 
(multiplicity of faults) is pN   where N is the number of gates in the circuit.  

We present two architectures for the protection of a round of AES from 
probabilistic attacks.  The first method, based on partitioning, is an efficient  
and effective method under an assumption that probabilistic attacks have a 
high wire distortion rate and therefore result in the injection of many faults at 
a time.  For the cases where no assumptions can be made about the wire 
distortion rates, we propose an architecture based on robust codes which is 
effective for all fault multiplicities, but has a higher hardware overhead than 
the first.  

3. PROTECTION OF ONE ROUND OF AES BY 
HYBRID PARTITIONING 
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Fig. 1. Transformations involved in one typical round of encryption of AES 

 
Encryption in AES-128 (AES with a 128-bit key) involves performing 10 

rounds of transformations on a block of 128 bits with the last tenth round 
having one less transformation and with the first round being preceded by a 
round key addition. (The complete AES specification can be found in [3])  In 
each of the nine typical rounds there are four transformations: SBox, Shift 
Rows, Mix Columns, and Add Round Key.  The last round differs from the 
rest in that it does not contain the Mix Columns transformation.  The SBox  
transformation actually involves two operations:  inversion in 8(2 )GF  
followed by an affine transform which involves a matrix multiplication M 
over (2)GF , followed by addition of a constant vector τ .  With the 
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exception of inversion, all other transformations and operations are linear 
(Fig. 1).  That is, they can all be implemented using XOR gates only.   

When considering only one round, the 128-bit data path can be divided 
into four identical independent 32-bit sections.  Furthermore, in each of the 
four partitions the nonlinear inversion is performed on 8-bit data block.  
Thus, the nonlinear section is composed of 16 disjoint blocks and the linear 
portion composed of four identical disjoint blocks (Fig. 2). 

Based on this partitioning, we designed redundant protection hardware for 
each of the two types of blocks in the design.  The details of each block’s 
method of protection are discussed in the next section.   
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Fig 2. The nonlinear portion of one round can be separated into 16 identical independent 
blocks.  The linear portion can be separated into 4 identical independent blocks. 

3.1 Protection of Nonlinear Blocks 

The nonlinear block performs inversion in 8(2 )GF .  Since zero does not 
have an inverse it is defined that the result of the inverse operation on zero is 
zero.  

Our proposed fault detection circuitry for inverters is based on 
multiplication in 8(2 )GF  of input and output vectors to verify the condition  
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Instead of computing the whole eight bit product, we compute only the 
least r=2  bits of the product. 

 
 
 
 
 
 

Inverse *

X

B 01?  
Fig 3. Architecture for protection of nonlinear block.  The redundant portion performs partial 

multiplication in 8(2 )GF  
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3.2 Analysis of Error Detecting Probabilities for 

Nonlinear Blocks 

The number of bits, r, (r<9) in the signature (the number of bits resulting 
from partial multiplication), directly translates into the error detection 
capability of the protection scheme.  

The probability that an error in the inverter will be missed is equal to the 
probability that two uniformly distributed random 8-bit vectors multiplied 
together will produce the expected r- bit constant rI .   

This protection scheme also has the advantage of being robust with 
respect to the (8 r+ )-bit output of the protected inverter (The probability of 
missing an error in the inverter depends not just only on the error itself but 
also on the input X).  An error ,( )B Re e e= of (8 r+ )-bits, where Be  is an 
error at the output of the inverter and Re  is an error at the output of the 
redundant portion, is missed iff 

1[ ]*[ ]B r RX e X I e− ⊕ = ⊕    
where 8(2 ), (2 )r

R Be GF e GF∈ ∈ and ⊕ is bitwise XOR, or iff 
* B RX e e=     where * BX e   denotes r least significant bits of the product 

between X and Ie  in 8(2 )GF . 
Thus, with the exception of an input X of all zeros, all error patterns e  

are detectable with probability of 1 2 r−−  for any given input X.  Also, since 
error detection is dependant on the data X, the probability that an error will 
be missed after m random inputs is 2 r m− . 

In one round of encryption of AES there are T=16 disjoint inverters, each 
with its own independent error detection.  While for a single inverter the 
probability of missing an error is constant for all fault multiplicities that is 
not the case when multiple inverters are considered together.  The 
probability that a fault will not be detected if it affects t inverters is tq  where 
q is the probability of missing a fault in one inverter.   

Assuming that the distribution of faults is uniform, the probability that a 
fault of multiplicity l will affect t out of T  inverters can be determined as: 

( , )( , )
2

T
T l

N t lP t l =     where     
1

1
( , ) [ ( , )]

t
l

T t
j

T
N t l t N j l

t

−

=

 
= − 
 

∑   . 

Thus, for AES and its T=16 inverters the probability of missing a fault of 
multiplicity l in the whole nonlinear portion of encryption of one round is 

min( , )

1

( ) ( ( , ))
T l

i
T T

i

Q l q P i l
=

= ∑    
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The detection probabilities for the sixteen inverters of AES with two bit 
signatures (r=2) were simulated using C++.  A two input gate level C++ 
model of the circuit was built with the ability to induce faults at the output of 
each gate.  The model was simulated for different multiplicities of faults. 
Two types of simulations were performed.  The first considered each of the 
inverters to have an independent error signal.  That is, it was assumed that 
the circuitry which checked the 32 bits of the total error signature for 16 
invertors was fault free.  Another simulation was performed with each of the 
error outputs of the nonlinear block being combined together to produce only 
two error signals for the whole nonlinear portion.  In this simulation, the 
error signals which were expected to have a value of one (the least 
significant bit) were ANDed together while the other bit, which was 
expected to be zero, was ORed together.  In this simulation this circuitry was 
not assumed to be fault free. In both of the simulation types, a XOR type of 
fault was induced (the output of the faulty gate was flipped from its correct 
value).  

As Fig.4a shows, the computed and the experimental miss rates for the 
case of independent errors in the inverters are quite similar but are not 
exactly equal.  Their difference can be accounted to the approximation in the 
calculated value of q, the miss rate for one inverter.  In the calculation it was 
assumed to be constant for all multiplicities l.  This approximation was not 
completely correct.  As Fig.4b shows there are variations in this probability 
for small fault multiplicities, but a constant value of 2 0.25r− =  was used in 
the calculations. 
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                               (a)                                                        (b) 

Fig 4. a. Theoretical and experimental miss rates for 16 inverters with independent error 
signals (dotted line) and with combined signals (dashed line) for r=2 bits in inverter’s 

signatures for 1 input text.   b. Experimental miss rate for one nonlinear block as a function of 
multiplicity of faults. 
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The simulation results in which the error outputs were combined together 

are significantly worse (dashed line).  For fault multiplicities of ten and 
higher the miss rate reached a constant of about 0.1 % for one input text.    

3.3 Protection of Linear Blocks 

Each on of the four linear blocks has 64 bits of input (32 bits from the 
nonlinear portion and 32 bit of round key) and a 32 bits of output.  Due to its 
large number of inputs and outputs and a relatively small gate count, a linear 
code proved to be the most cost efficient in terms of its hardware overhead 
to error detection ratio.   The linear block performs three transformations: 
affine transform, mix columns, and add RoundKey.  

 The outputs Y can be written in terms of the inputs B in the following 
way: 

1 02 ( ( 1) ) 03 ( ( 2) )Y M B M Bτ τ= • ⊕ ⊕ • ⊕ ⊕                      
        ( 3) ( 4) 1M B M B RKτ τ⊕ ⊕ ⊕ ⊕ , 

2 ( 1) 02 ( ( 2) )Y M B M Bτ τ= ⊕ ⊕ • ⊕ ⊕  
         03 ( ( 3) ) ( 4) 2M B M B RKτ τ• ⊕ ⊕ ⊕ ⊕ , 

3 ( 1) ( 2)Y M B M Bτ τ= ⊕ ⊕ ⊕ ⊕  
         02 ( ( 3) ) 03 ( ( 4) ) 3M B M B RKτ τ• ⊕ ⊕ • ⊕ ⊕ , 

4 03 ( ( 1) ) ( 2)Y M B M Bτ τ= • ⊕ ⊕ ⊕ ⊕  
         ( 3) 02 ( ( 4) ) 4M B M B RKτ τ⊕ ⊕ • ⊕ ⊕ , 

 
where • is multiplication in 8(2 )GF , M is the binary (8x8) matrix , 
( )M Bi is multiplication over GF(2),  τ is a constant as defined in AES  and 

RKi  are round keys[6]. 
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Fig 5.  Transformations performed in one linear block. 
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The design of the linear code for the block was based on the observation 
that an implementation of the sum 1 2 3 4Y Y Y Y⊕ ⊕ ⊕  is much simpler than 
of the original block. Indeed: 

1 2 3 4S Y Y Y Y= ⊕ ⊕ ⊕  
   ( 1 2 3 4) 1 2 3 4M B B B B RK RK RK RK= ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ . 

 
This function S is computed by the linear predictor and used as an eight- 

bit redundant signature for the original linear block (see Fig.6).   Under fault- 
free operation, the output of the linear predictor should be equal to the sum 
of the output of the original linear block.  The Error Detecting Network 
(EDN) sums the output (block P in Fig 6) and compares it to the expected 
value. 

 
 
 
 
 
 
 
 
 
 

Original
Linear

Linear
Predictor

P =
Error
Detecting
Network (EDN)

B

Y Error
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32

32

8
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1

 
Fig 6.  Architecture for protection of linear block. 

3.4 Analysis of Error Detection Probabilities for Linear 
Blocks 

A gate-level model of the linear block was built and simulated in C++.  
Like in the simulations for nonlinear blocks, faults were injected randomly 
(with equal probabilities of a fault at outputs of the gate) into the circuit with 
random and uniformly distributed multiplicities in range from 1 to 50.  The 
results of these simulations are presented in Fig.7. 

Similarly to the simulations performed on the nonlinear blocks, 
simulations for fault detection probabilities for one linear block (Fig.7b) and 
four linear blocks (Fig.7a) with independent and combined error signals 
were performed.  The fault miss rate for one linear block resulted in a miss 
rate of 5 6%±  for one text input.  In the case of 4 linear blocks the design 
where the error signals from each linear block were not fault-free (Fig.7a, 
dashed line) were significantly worse than when the errors signals were 
independent for each block (Fig.7a, dotted line) 
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Fig 7.  a. Experimental miss rates for 4 linear blocks with independent error signals (dotted 
line) and with combined signals (dashed line) for one input text.  b. Experimental miss rate for 

one linear block as a function of multiplicity of faults. 

3.5 Complete Round of Encryption 

One typical round of encryption was constructed from the protected linear 
and nonlinear blocks.  Fig.8 shows one forth of one round of the encryptor.  
The complete round is composed of four identical blocks arranged in 
parallel.  The error signals of the nonlinear portion are chained together to 
output only a 2 bit signature for all of the 16 inverters.  Likewise, the error 
signal from the four linear blocks is chained together to produce 1 error 
signal for the whole linear portion of the round.  Thus there are 3 error 
outputs for the whole round. Under fault free operation the nonlinear error 
outputs should have a value of 01 (excluding an input of all zeros in the 
input) and the linear error output should have a value of 0. 

 
 
 
 
 
 
 
 
 
 
 
 
 

^-1 * ^-1 * ^-1 * ^-1 *

Linear LP

=

Round
Key
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Nonlinear Error

Linear Error

Input (32 bits)

Output (32 bits)  
Fig 8.  One forth of a typical round of encryption. 
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The complete protected round has a total hardware overhead (in terms of 

2-input gates) of 35%.  Table 1 summarizes the overheads for each type of 
block. 

A C++ model of one complete protected round of encryption was built.  
For random and uniformly distributed texts and round keys, faults of 
different multiplicities were injected into the circuit.  The results for stuck-
at-one, stuck-at-zero and XOR fault simulation are presented in Fig.9.   

Table 1. Sizes of Components of One Complete Round of Encryption in Terms Two-Input 
Gates 

Component 
Gate Count for 
Original AES 

Gate Count for the 
Redundant Portions Overhead 

Linear Portion  
(4 blocks) 896 460 51.3% 

Nonlinear Portion 
(16 blocks) 2800 800 28.5% 

Error Chaining 0 33 - 
Total 3696 1293 35% 
 

When fault detection is considered for one input text, as in Fig.9, the 
experimental miss rate for stuck-at-one (sa1) and stuck-at-zero (sa0) faults 
was higher than that for XOR faults.  For the unidirectional faults (only sa1 
or only sa0), not every injected fault will manifest itself in the circuit.  On 
average, only about 50% of the injected unidirectional faults will manifest 
themselves at an output of a gate.  For XOR faults, since the fault involved 
flipping a value, 100% of the faults are manifested.  Thus, the miss rate 
curves of the unidirectional faults presented in Fig.9 should be shifted to 
more precisely reflect the fault multiplicity.   
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Fig 9. Fault Miss Rates for one complete round of encryption for one input text. 
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As mentioned in Section 3.2, the design of the nonlinear block resulted in 

robust protection with respect to its output.  Since the nonlinear blocks 
account for a large portion of the total hardware, it was expected that the 
whole round will exhibit partial robust behavior.  That is, as long as fault 
affects the nonlinear blocks, it is expected that the detection of that fault is 
dependent on the input text.  Thus, fault miss rate should decrease when 
multiple random text inputs are considered for the same fault.  Simulation 
results for multiple text inputs for unidirectional and XOR faults are 
presented in Fig.10. 

The simulation results in Fig.10 show considerable improvement for 
unidirectional faults when multiple text inputs are considered.  XOR faults 
showed limited improvement.  The manifestation of stuck-at-faults is 
different depending on the data, resulting in a different error distribution for 
each input.  That is not the case for XOR faults.  XOR fault error 
manifestation is much less dependant on the data.  
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Fig 10. Simulated miss rates for one round of encryptor for multiple texts with a. XOR faults 
b. Stuck-at-zero faults c. Stuck-at-one faults 

 



12 Mark Karpovsky, Konrad J. Kulikowski, Alexander Taubin
 

The simulation results show that the miss rate improves as fault 
multiplicity increases.  With 4 random text inputs the miss rate drops to 
0.0001% for stuck at one faults with a fault multiplicity of 14 (see Fig.10c).  
The detection for small fault multiplicities is considerably worse since they 
will affect a small number of blocks.  When only one block is affected the 
detection is only as good the detection in one block.   

The design and simulations were only performed for one block of 
encryption.  

4. PROTECTION OF AES BY NONLINEAR 
SYSTEMATIC ROBUST CODES 

4.1 General Robust Architecture 

Robust codes [12] can be used to extend the error coverage of linear 
prediction schemes for AES.  Only two extra cubic networks computing 

3 8( )  in (2 )y x x GF=  are needed, one in the extended device, and one in the 
Error Detection Network.  The architecture of one round AES encryption 
with robust protection is presented in Fig.11. 
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Fig 11.  General architecture which uses systematic nonlinear robust protection. 
 

In the architecture in Fig.11 a single linear predictor (block P1) is required 
for the encryptor.  (Note that in this context a linear predictor is such that it 
generates a signature, which is a linear combination of the outputs of the 
round.  It does not mean that the predictor contains only linear elements.)  
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The r-bit signature of the linear predictor, is cubed in )2( rGF  to produce an 
r-bit output signature  (block ^3 in Fig.11), which is nonlinear with respect 
to the output of the round.  

For the robust architecture we have designed a linear predictor which can 
be used to generate a r=32-bit signature.  The predictor P1 is designed in a 
similar fashion to the linear predictor for the linear block presented in the 
previous section.  For four bytes of the output, the predictor predicts one 
byte, '( )L j  ( 0,1,2,3)j = .  For encryption this simplifies to eliminating the 
mix columns transformation in the predictor P1. 

 
The output of the linear predictor, '( )L j ,  is a 4-byte word which is 

linearly related to the output of one round of AES.  The function of '( )L j  
with respect to Out(i,j) can be written as: 

 3

0
'( ) ( , )

i
L j Out i j

=
=⊕  where  }3,2,1,0{∈j . 

    
Thus, the following expressions are valid for AES: 

 
'(0) 01 ( (0,0)) 03 ( (1,0)) ( (2,0)) ( (3,0))L Sub In Sub In Sub In Sub In= • ⊕ • ⊕ ⊕ ⊕            

( (0,0)) 02 ( (1,0)) 03 ( (2,0)) ( (3,0))Sub In Sub In Sub In Sub In⊕ • ⊕ • ⊕ ⊕  
( (0,0)) ( (1,0)) 02 ( (2,0)) 03 ( (3,0))Sub In Sub In Sub In Sub In⊕ ⊕ • ⊕ • ⊕          

03 ( (0,0)) ( (1,0)) ( (2,0)) 02 ( (3,0))Sub In Sub In Sub In Sub In• ⊕ ⊕ ⊕ •  
   (0,0) (1,0) (2,0) (3,0)RK RK RK RK⊕ ⊕ ⊕ ⊕  

 
 ( (0,0)) ( (1,0)) ( (2,0)) ( (3,0))Sub In Sub In Sub In Sub In= ⊕ ⊕ ⊕  
      (0,0) (1,0) (2,0) (3,0)RK RK RK RK⊕ ⊕ ⊕ ⊕ , 

 
where • is multiplication in )2( 8GF , ),( jiIn is a text input byte to the round, 

( , )RK i j  is one byte round key, and )),(( jiInSub  is the SubBytes 
transformation on the byte ),( jiIn  as defined in the AES standard [6]. 
 

Since  1( ( , )) ( ( , ) )Sub In i j M In i j τ−= ⊕ ,  
 
We have '(0)L : 

 
1 1 1 1'(0) ( (0,0) (1,1) (2,2) (3,3) )L M In In In In− − − −= ⊕ ⊕ ⊕  

               (0,0) (1,0) (2,0) (3,0)RK RK RK RK⊕ ⊕ ⊕ ⊕ . 
 
Extending the procedure to the rest of the bytes of encryption yields: 

 
1 1 1 1'(1) ( (0,1) (1,2) (2,3) (3,0) )L M In In In In− − − −= ⊕ ⊕ ⊕  

       (0,1) (1,1) (2,1) (3,1)RK RK RK RK⊕ ⊕ ⊕ ⊕ , 
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1 1 1 1'(2) ( (0,2) (1,3) (2,0) (3,1) )L M In In In In− − − −= ⊕ ⊕ ⊕  
   (0, 2) (1,2) (2,2) (3,2)RK RK RK RK⊕ ⊕ ⊕ ⊕ , 

1 1 1 1'(3) ( (0,3) (1,0) (2,1) (3,2) )L M In In In In− − − −= ⊕ ⊕ ⊕  
   (0,3) (1,3) (2,3) (3,3)RK RK RK RK⊕ ⊕ ⊕ ⊕ . 

 
In the Error Detecting Network (EDN) the block P2 compresses the 128 

bits into r=32 by bitwise XOR to match the output of the predictor P1.  The 
output of the block P2 is also cubed in )2( rGF .  It is this cubed compressed 
output which is compared to the cubed output of the predictor P1.  Under 
correct operation these two outputs should be equal.  It was shown in [12] 
that the introduction of the nonlinear cubic operation resulted in the 
reduction of the fraction of undetectable errors at the extended output from 
2 r−  to 22 r−  without increasing the redundancy r of the original linear code. 

4.2 Analysis for Error Detecting Probabilities for 
Robust Architecture 

A gate-level model of this design was simulated using C++.  Two types of 
simulations were performed. In the first faults were injected into all parts of 
the circuits.  The other assumed that the error detecting network (block P2, 
the second cubic network and the comparator) were fault-free.  The results of 
these gate level simulations are presented in Fig.12. 

To explain the results of simulations of Fig.12 we note that the EDN in 
simulated architecture was unprotected.  As a result, it had a significant 
impact on the overall fault detection for the proposed design.  As Fig.12 
shows, when faults were included in the EDN (dashed and dotted lines for 
stuck-at-zero and stuck-at-one respectively), the fault detection probabilities 
remained almost constant for higher fault multiplicities.  In contrast, when 
the EDN was considered to be fault free, the fault miss rate quickly dropped 
as fault multiplicity decreased.  The EDN accounts for about 25% of the 
complete protected round. 

The detection performance differed substantially for this approach than 
that of the first.  In this design, even for low fault multiplicities the miss rate 
remained at a low 0.1%.  This improvement came at a price.   When a single 
round of encryption is protected using this approach the overhead of the 
protection exceeds 150% in terms of the gate count.  This high overhead is a 
result of the high cost of the cubic networks.  The overhead can be decreased 
when the complete AES is protected using this method, including decryption 
and key expansion.  Protecting a larger design offsets the large cost of the 
cubic networks.   
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Fig12.  Simulation results for one round of encryption with robust protection for one input 
text. 

 
We note also that this architecture  provides for robust detection of XOR 

faults such that the corresponding errors do not depend on input texts (these 
may be faults in the linear parts or in the output register of the round).  For 
these faults the probability of missing a fault for one input text is 

1 312 2r− + −=  and probability of missing a fault for all texts is 2 642 2r− −= . 

5. CONCLUSIONS 

We presented two methods for protecting the Advanced Encryption 
Standard against Differential Fault Attacks.  The two methods had different 
overheads and different fault detection probabilities characteristics.  We 
presented also gate-level simulation results for one round of encryption for 
both architectures.   

The first method, which is useful for attacks with high wire distortion rate 
and based on a hybrid partitioning, had a low hardware overhead of 35%.  
This method was able to achieve a fault miss rate of 0.01% for one stuck-at-
fault with multiplicity of 30 for one text input.  For faults of small 
multiplicity the method’s detection rate was substantially worse.   

The second method, which is efficient for all wire distortion rates and is 
based on systematic robust codes, had a high hardware overhead of 150%.  
However, this method had a much lower miss rate for faults of small 
multiplicities.  Even for faults of multiplicity of one, the miss rate was only 
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about 0.1%.   This method is also very efficient for XOR faults resulting in 
errors which do not depend on input texts.   
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