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Abstract— We will say that code C detects error e with
probability 1 − Q(e), if Q(e) is a fraction of codewordsy such
that y, y + e ∈ C. We present a class of optimal nonlinearq-
ary systematic (n, k)-codes (robust codes) minimizing over all
(n, k)- codes maxima ofQ(e) over all e 6= 0. We will also show
that any linear (n, k))-codeVwith n ≤ 2k can be modified into
a nonlinear (n, k)-code CV with simple encoding and decoding
procedures, such that setE = {e |Q(e) = 1} of undetected errors
for CV is a (k − r)− dimensional subspace ofV (|E|=qk−r

instead of qk for V). For the remaining qn-qk−r nonzero errors
Q(e) ≤ q−r for q ≥ 3 and Q(e) ≤ 2−r+1 for q = 2.

Index Terms— nonlinear systematic error detecting codes,
minimax criterion for error detection, robust error detection

I. INTRODUCTION

We present a construction for optimal systematic error-
detecting codes for the case where distributions of errors in
the channel are not known or difficult to model. A minimax
criterion such that an error-detection capability for a code
is optimized under the worst case scenario is the strategy
taken for designing these codes. We will use the following
probability as the measure for the error-detection capability of
a code.

Let C ⊆ GF (qn) be a systematic(n, k)- code and
e ∈ GF (qn). We define the error-detecting probability given
error e (wheree 6= 0) for the codeC as:

1−Q(e) = 1− q−k |{y |y, y + e ∈ C} | . (1)

(We assume that all the codewords have the same probability
of being transmitted).

The following lower bounds for error-masking probability
Q(e) have been proven in [1] for anyq-ary codeC of length
n and any errore:

Q(e) ≥ |C|−1 ⌈
(qn − 1)−1 |C| (|C| − 1)

⌉
for q ≥ 3 (2)

and

Q(e) ≥ 2 |C|−1 ⌈
0.5 |C| (|C| − 1)(2n − 1)−1

⌉
for q = 2.

(3)
For a given block sizen and number of information digits
k our goal is to construct an optimal code such that maxima
of Q(e) over all e 6= 0 are minimal. The problem can be
formulated as follows. For givenn, k, q construct a code based
on minC∈C(n,k,q) maxe 6=0 Q(e), whereC(n, k, q) denotes the
set of allq-ary (n, k)-codes.
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We note that a similar minimax criterion has been used
in the design of match filters to combat jamming and other
modeling uncertainties for communication channels [5]. This
criterion was used for error detection in computation channels
(VLSI chips), where the distributions of errors (errors are
manifestations of faults at the outputs of the chips) are difficult
to characterize [3]. Hence the presented codes are applicable
in the design of fault-tolerant devices. In the area of computer
hardware testing, optimal compression of test responses based
on the minimax approach was described in [2].

We present the solution of this problem for the cases
n = 2k andn = 2k − 1 for q = 2 andn = 2k for q ≥ 3.

We note that asymptotically optimal codes of length
n = 2m containingq2m−1 − qm−1 codewords and detecting
any error with probability at least
1−(q2m−1−qm−1)−1 (q2m−2 +qm−1) were described in [1].
But these codes are not systematic and have rather complicated
encoding and decoding procedures.

Let V be a linearq-ary (n, k)−code (q is a prime) with
n ≤ 2k and check matrixH = [P |I ] whereP is an(n−k)×k
matrix of rankr = n−k overGF (q) andI is ther×r identity
matrix.

We will also show in this paper that linear(n, k)-codeV can
be modified into a nonlinear(n, k)−code CV with simple
encoding and decoding procedures, such that set
E = {e |Q(e) = 1} of undetected errors forCV is a
(k − r)−dimensional subspace ofV (|E| = qk−r instead
of qk for V ). For the remainingqn − qk−r nonzero errors
Q(e) ≤ q−r for q ≥ 3 andQ(e) ≤ 2−r+1 for q = 2.

II. N ONBINARY CODES.

We will start with a nonbinary case since in this case the
construction is simpler.

Let V be a linearq-ary (n, k)−code (q ≥ 3 is a prime) with
n ≤ 2k and check matrixH = [P |I] with rank(P ) = n−k.

Theorem 1:
Let CV = {(x,w)

∣∣x ∈ GF (qk), w = (Px)2 ∈ GF (qr)} .
Then forCV the setE = {e |Q(e) = 1} of undetected errors
is a (k − r)− dimensional subspace ofV, qk − qk−r errors
are detected with probability 1 and remainingqn − qk errors
are detected with probability1− q−r.

Proof: Error e = (ex, ew) is not detected byCV when
message(x, (Px)2) is transmitted iff

(P (x + ex))2 = (Px)2 + ew. (4)
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From (4) we have

2(Px) (Pex) + (Pex)2 − ew = 0. (5)

Equation (5) is satisfied for allx iff Pex = ew = 0. Since
[P |I] is the check matrix forV andrank(P ) = r, the number
of errors e = (ex, ew) (including e = 0) satisfying (5) is
qk−r, and these errors form(k−r)-dimensional subspaceEin
V = {(x, w) |w = Px} .

If Pex = 0 andew 6= 0, then (5) is not satisfied for anyx.
The number of these errors is equal toqk − qk−r.

If Pex 6= 0, then for anye = (ex, ew) there exists a unique
Px satisfying (5). The probability that for a givene such that
Pex 6= 0 randomly selectedx ∈ GF (qk)is not satisfying (5)
is 1− q−r, and the number of errorse = (ex, ew), such that
Pex 6= 0 is qn − qk.

For the casek = r the proposed codes arerobust, i.e. have
the same probability,Q(e) = q−r, for the detection of any
nonzero errore. Comparing these codes with codes proposed
in [1], one can see thatCV has more simple encoding and
decoding procedures and for the same size of a code has a
twice smaller maximal probability of not detecting an error.

We will show now that the proposed codes are optimal for
the minimax error detection and rate1/2, i.e. these codes
minimize maxima of error-masking probabilityQ(e), e 6= 0,
defined by (1).

Corollary 1: CodesCV are optimal for rate1/2 and any
q ≥ 3.

Proof: Corollary 1 follows from Theorem 1 and (2),
since for codesCV with rate 1/2 we haveQ(e) = q−k for
all e 6= 0.
We note also that encoding and decoding procedures for code
CV require multiplication byP over GF (q) and computing
(Px)2 in GF (qr). This last operation requires not more than
O(r2) additions and multiplicationsmod q.

Example 1:Let q = 3, n = 3, k = 2 and P = [21].
Then CV ={000, 011, 021, 101, 110, 121, 201, 211, 220}.
The following 3k−3 = 3 errors are not detected byCV : 000,
110 and 220. ( For these errorsPex = ew = 0). Errors 001,
002, 111, 112, 221, 222 are detected for any message. (For
these errorsPex = 0 andew 6= 0). Any one of the remaining
3n−3k =18 errors withPex 6= 0 is detected with probability
1 − 3−r = 2/3. For example, error 121 is detected when
any one of the following 6 (out of 9 possible) messages are
transmitted: 011, 021, 101, 121, 201 and 220.

III. B INARY CODES

For the binary case we will slightly modify our construction
for CV .

Let V be a binary linear(n, k)−code with n ≤ 2k and
check matrixH = [P |I] with rank(P ) = n− k.

Theorem 2:
Let CV = {(x, w)

∣∣x ∈ GF (2k), w = (Px)3 ∈ GF (2r)}.
Then the setE = {e |Q(e) = 0}of undetected errors for

CV is a (k − r)−dimensional subspace ofV , and from
the remaining 2n − 2k−rerrors 2n−1 + 2k−1 − 2k−rare
detected with probability1 and 2n−1 − 2k−1 are detected
with probability 1− 2−r+1.

Proof: Error e = (ex, ew) is not detected for message
(x, (Px)3) from CV iff

(P (x + ex))3 = (Px)3 + ew (6)

or
(Px)2(Pex) + (Px)(Pex)2 + (Pex)3 + ew. (7)

It follows from (7) thate = (ex, ew) is not detected for any
x iff Pex = ew = 0, andE = {(ex, ew) |Pex = ew = 0} is
a (k − r)−dimensional subspace inV = {(x, w) |w = Px}.

If Pex = 0 andew 6= 0, thene is detected byCV for any
x. There are

N1 = 2k − 2k−r (8)

errors, satisfying this condition.
For any givene = (ex, ew) such thatPex 6= 0 quadratic

equation (7) has 2 solutions forPx iff

Tr((Pex)−3 ((Px)3 + ew)) = Tr(1) + Tr((Pex)−3 ew) = 0
(9)

and has 0 solutions iff

Tr(1) + Tr((Pex)−3 ew) = 1, (10)

whereTr(y) is the trace ofy ∈ GF (2r) [4].
Since out of2n−2k errorse = (ex, ew) such thatPex 6= 0

N2 = 2n−1 − 2k−1 (11)

satisfy (10), we have from (8) and (11) for a number,N , of
errors which are detected for anyx

N = N1 + N2 = 2n−1 + 2k−1 − 2k−r.

Finally, the remaining2n−1 − 2k−1errors satisfying (9) are
detected with probability1− 2−r+1.

Example 2:Consider (7,4) Hamming codeV with

P =

 0111
1011
1101

. Then the corresponding (7,4)-code

CV does not detect only one nonzero error 1110000. Errors
0000w0w1w2 and 1110w0w1w2 , wherew0w1w2 6= 000
are detected with probability 1, and , since in this case
Tr(1) = 1, we have by (9), (10) that out of remaining
112 errors 56 errors(ex, ew) with Tr((Pex)−3 ew) = 0
are also detected with probability 1 and 56 errors with
Tr((Pex)−3 ew) = 1 are detected with probability 0.75.

Example 3:Consider(2k, k) repetition codesV with
P = I. For these codes, which are widely used in fault-tolerant
computing, errore = (ex, ew) is not detected iffex = ew.
(This may be the case when both copies of the device have a
common source of errors, such as variation in power supply,
temperature, etc.).
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The corresponding nonlinear(2k, k)-codesCV detect all
nonzero errors,22k−1 + 2k−1 − 1 of them are detected with
probability 1 and the remaining22k−1−2k−1 with probability
1− 2−k+1.

Corollary 2: Binary codesCV are optimal forr = k − 1
andr = k.

Proof: Corollary 2 follows from Theorem 2 and (3)
since forr = k − 1 andr = k we have
|CV | (|CV | − 1) ≤ 2(2n − 1).
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