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Abstract—We will say that code C' detects error e with We note that a similar minimax criterion has been used
probability 1 — Q(e), if Q(e) is a fraction of codewordsy such in the design of match filters to combat jamming and other
that y,y + ¢ € C. We present a class of optimal nonlineard- — 4qeling uncertainties for communication channels [5]. This

ary systematic (n, k)-codes (robust codes) minimizing over all iteri df detection i tati h |
(n, k)- codes maxima OfQ(e) over all e # 0. We will also show criterion was used Tor error aetection In computation channels

that any linear (n, k))-code Vwith n < 2k can be modified into (VLSI chips), where the distributions of errors (errors are

a nonlinear (n, k)-code Cy with simple encoding and decoding manifestations of faults at the outputs of the chips) are difficult
procedures, such that set? = {e |Q(e) = 1} of undetected errors - to characterize [3]. Hence the presented codes are applicable
{ggte(;‘(/j (')? qi,‘ f((fr :/)T)Ii_ordtlr:?ee?esrlrc\):iﬁlinzugfeq%(f r?g:]z(e‘f) ‘Z(:rors in the design of fault-tolerant devices. In the area of computer
Qe)<q " for ¢ > 3and Q(e) <2 "t for ¢=2. hardware testing, optimal compression of test responses based

. . _ on the minimax approach was described in [2].
Index Terms—nonlinear systematic error detecting codes, We present the solution of this problem for the cases
minimax criterion for error detection, robust error detection n =2k andn = 2k — 1 for ¢ = 2 andn = 2k for ¢ > 3.
We note that asymptotically optimal codes of length
[. INTRODUCTION n = 2m containingg®™ ! — ¢™~! codewords and detecting

We present a construction for optimal systematic errofly error with probability at least
detecting codes for the case where distributions of errors i ("' —¢™ ™)~ (¢ > +¢™") were described in [1].
the channel are not known or difficult to model. A minimaBUut these codes are not systematic and have rather complicated
criterion such that an error-detection capability for a cod@coding and decoding procedures.
is optimized under the worst case scenario is the strategy-€t V' be a linearg-ary (n,k)—code ¢ is a prime) with
taken for designing these codes. We will use the following < 2k and check matrid! = [P |I] whereP is an(n—k) xk
probability as the measure for the error-detection capability Bfatrix of rankr = n—k overGF(q) and! is ther x r identity

a code. matrix.
Let C C GF(q™) be a systemati¢n, k)- code and We will also show in this paper that lineét, k)-codeV can
e € GF(q™). We define the error-detecting probability giverpe modified into a nonlineafn, k)—code Cy with simple
error e (wheree # 0) for the codeC as: encoding and decoding procedures, such that set
E ={e|Q(e) =1} of undetected errors faf'y is a
1-Qe)=1—q¢ *{yly,y+eecC}. (1) (k — r)—dimensional subspace df (|[E| = ¢"~" instead

of q* for V). For the remaining;” — ¢*~" nonzero errors
(We assume that all the codewords have the same probabilify.) < = for ¢ > 3 andQ(e) < 27"*! for ¢ = 2.

of being transmitted).
The following lower bounds for error-masking probability
Q(e) have been proven in [1] for any-ary codeC of length

n and any errok: We will start with a nonbinary case since in this case the
S 1o (e — -1l (1C] — 1 -3 () Cconstruction is simpler.
Qle) = 1c1™ [ )7 lenier =Dl for a2 @ LetV be a linear-ary (n, k)—code ¢ > 3 is a prime) with
and n < 2k and check matri¥? = [P |I] with rank(P) = n—k.

Qle) > 2|0 [051C1(IC] = 1)(E" = 1)~ for g =2. Theorem 1:

(3) Let C _ . k _ 2 r
. . . . 7 v = {(z,w) |z € GF(¢"), w= (Px)? € GF(¢")} .
For a given block size: and number of information d|g|t§ Then forCy the setE — {¢|Q(e) — 1} of undetected errors

k:four goaillsr to”constrouctrann:)iﬁgpatl (_:rohde sruci)rll trt:at n;a)élmga (k — r)— dimensional subspace &f, ¢* — g*—" errors
of Q(e) over all e # 0 are al. 'he problem can be, . jetected with probability 1 and remainigy — ¢* errors
formulated as follows. For given, k, ¢ construct a code based . - r

X are detected with probability — ¢~ ".
ONMinc e (n,k,q) MaXexo Q(€), WhereC(n, k, q) denotes the

set of allg-ary (n, k)-codes.

Il. NONBINARY CODES.

Proof: Error e = (e, e,) is not detected byCy when

o . .
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From (4) we have Cy is a (k — r)—dimensional subspace df, and from
) the remaining2” — 2F~"errors 2n~1 + 2F-1 _ 2F—"gre
2(Pz) (Pey) + (Pey)” —ew =0. () detected with probabilityl and 2"~! — 2¢—! are detected
Equation (5) is satisfied for alt iff Pe, = e, = 0. Since With probability 1 — 277,
[P |I] is the check matrix fob” andrank(P) = r, the number _
of errorse = (eg, e,) (including e = 0) satisfying (5) is Proof: Error e = '(eI, ew) IS not detected for message
¢"~", and these errors fontk — r)-dimensional subspadgin (%, (Pz)?) from Cy iff

V={(z, w) |lw = Pz} . o (P(z 4 e,))® = (Px)® + ey (6)
If Pe, =0 ande, # 0, then (5) is not satisfied for any.

The number of these errors is equalgfo— ¢*—. or
If Pe, # 0, then for anye = (e, e,,) there exists a unique (Pz)?(Pey) + (Pz)(Pey)” 4 (Pey)® + ew. )

Pz satisfying (5). The probability that for a givensuch that It follows from (7) thate = (e., e.,) is not detected for any
Pe, # 0 randomly selected € GF(q")is not satisfying (5) , i« p. _ o — 0. andE :w{’(; ew) |Pey = ey = 0} i
is 1 —¢~", and the number of errors= (e, e, ), such that a (k- r)fdimensio’nal subspace i’ﬁ o {(z, w) w = Pz}

Pe, #0is ¢" - q". " If Pe, =0 and 0, thene is detected byCy, for an
For the casé& = r the proposed codes arebust i.e. have " Theiz are w70, ¢ v Y
the same probabilityQ(e) = ¢~", for the detection of any = Ny = 2k — k= 8)

nonzero errok. Comparing these codes with codes proposed
in [1], one can see thaf’y, has more simple encoding anderrors, satisfying this condition.
decoding procedures and for the same size of a code has Bor any givene = (e,, e,) such thatPe, # 0 quadratic
twice smaller maximal probability of not detecting an error.equation (7) has 2 solutions fdtz iff
We will show now that the proposed codes are optimal f _3 3 _ _3 _

the minimax error detection and rate’2, i.e. these codes% (Pea)™ (P)” + ew)) = Tr(1) + Tr((Pex) ™" ew) _(9(;
m|q|m|ze maxima of error-masking probability(e), e # 0, and has 0 solutions iff
defined by (1).

Tr(1) + Tr((Pey) 2 ey) = 1, (20)

Corollary 1: CodesC), are optimal for ratel/2 and any )
whereT'r(y) is the trace ofy € GF(2") [4].

> 3.
1= Since out of2" — 2% errorse = (e, e,,) such thatPe, # 0
Proof:  Corollary 1 follows from Theorem1 and (2), Ny = 2n—1 _ ok—1 (11)
since for codegy with rate 1/2 we haveQ(e) = ¢~* for
all e # 0. m satisfy (10), we have from (8) and (11) for a numhaf, of
We note also that encoding and decoding procedures for cGdECrs which are detected for any
Cy require multiplicgtion byP over GF(q). and computing N =Ny + Ny =271 4 ok=1 _ gk—r,
(Pz)? in GF(q"). This last operation requires not more than
O(r?) additions and multiplicationsnod ¢. Finally, the remaining2"~! — 2*~'errors satisfying (9) are

detected with probability — 2" +1, [
Example l:iLet ¢ = 3, n = 3, k = 2 and P = [21].
Then Cy ={000, 011, 021, 101, 110, 121, 201, 211, 220
The following 3—3 = 3 errors are not detected ly,: 000,  Example 2:Consider (7,4) Hamming codg with

110 and 220. ( For these erroRe, = e,, = 0). Errors 001, 0111

002, 111, 112, 221, 222 are detected for any message. (For = 1011 |. Then the corresponding (7,4)-code
these errorsPem =0 ande,, # 0). Any one of the remaining 1101

3n 3k —18 errors withPe, + 0 is detected with probability Cydoes not detect only one nonzero error 1110000. Errors

1 - 3 " — 2/3. For example, error 121 is detected wheff00Qvowiw2 and 111@ow wy , wherewowiwy ~ # 000

any one of the following 6 (out of 9 possible) messages & %e detected with probability 1, and , since in this case
transmitted: 011, 021, 101, 121, 201 and 220. Tr(l) = 1, we have by (9), (10) that out of remaining
112 errors 56 errorge,, e,) With Tr((Pe;) 2 e,) = 0

are also detected with probability 1 and 56 errors with
Ill. BINARY CODES Tr((Pe;) 3 e,) = 1 are detected with probability 0.75.
For the binary case we will slightly modify our construction
for Cy .
Let V be a binary linear(n, k)—code withn < 2k and Example 3:Consider(2k, k) repetition coded” with
check matrixH = [P|I] with rank(P) =n — k. P = I. For these codes, which are widely used in fault-tolerant
computing, errore = (e, e,,) is not detected iffe, = e,.
Theorem 2: (This may be the case when both copies of the device have a
Let Cy = {(z,w) |z € GF(2¥), w = (Pz)® € GF(2")}. common source of errors, such as variation in power supply,
Then the setE = {e|Q(e) = 0} of undetected errors for temperature, etc.).
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The corresponding nonlinedRk, k)-codesCy, detect all
nonzero errors22s—1 4 9k—1 _ 1 of them are detected with

probability 1 and the remaining?*—! —2*—1 with probability
1— 27k+1.

Corollary 2: Binary codesCy are optimal forr = k — 1
andr = k.

Proof:  Corollary 2 follows from Theorem 2 and (3)
since forr = k — 1 andr = k we have
Cv(ICv]—1) < 2(2" - 1). m
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