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It is well known that the problem of test generation becomes

intractable (NP-hard) for complex circuits (with large numbers of

inputs, gatecs and connecting {ines), if one tries to find an

optimal specific test for any givan_cirnuiLJJ.ZI Even tO

construct a test which is not optimsl, but provides a good fault

I coverage (say, y 05%) is gmite difficult. It results psually in

an excessively large gize of a test (in some cases the tests

include tens of thonsands of test patterns), Test generation and

- gnd money - consuming

and threaten to tura jnto s real bottleneck of the computer

jndustry. The time and the cost of testing increascs

tremendously (in general, #Ipantntillly} with the complexity of

the devices to be tested., The cost of testing is already, in

many csses, higher than the cost of development and

wanufacturing. ‘The majority of direct labor time required to
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build an Apple III is straight test time.....Testing reguires 35%
of the direct labor time involved in building a system.....If the
test and the rework time is added together, 72% of the process
time ist accounted for.’[3] There is a common understanding among

specialists that efforts must be comcentrated to fight this

trend: ‘It has become evident to designers and test enginsers
that to combine development of VLSI, new technigues tackling the
problems of testing parts are neoded over and above mere

extensions.,'[4]

Thﬁ following three approaches have been traditionally nsed
for testing, namely: gate—-level testing, functional testing and
random tesfing. For the gate-level testing the input data for
test generation consist of a gate-level description of a device
under test and a gate—level description of a class of pul:ihlé
faunlts. This approach has been proved to be very efficient for
$ST and MSI circuits, [5,6,7)]. The classical D-algorithm [6] has
been widely used for gate—-level testing doring many years. ¥ith
the transition to VLSI technology the gate-level descriptionm of a
device under test becomes too complicated and in many cases {in
particular, foxr the pgser) is not available at all. Even if the

gate—level description is available to a test designer the cost

of test generationp in many cases begins to be prohibitively high
for VLSI devices [8I].

These considerations stimulated the development of

functional testing approach, especially for micreoprocessors

testing. In the case of functional testing, the input data for




testing is represented by a functional description of a device
ander test and of & class of fanlts {9,10,11,12,13,14,15] . Inh
[9,10] the functinﬁal testing approach has been used for testing
of microprocessors in a user's snviroament, This procedure was
based on a general graph-theoretical model of l.minruprucu:snr at
the register—transfer level. The functional faunlt model was
developed u;ing the re;istar—tr#nlfur level de;criptinn and the
instruction set. .

Binary decision diagrams have been used for functional
testing in [11], where this approach has besn applied to testing
of ALU. For functional testing the cost of test generation for
VLSI devices is still very bhigh, especially when & broad spectrum
of devices has to be tested. On the other hand, it is very
difficult, in general, to eostimaste fault coveragse in the case of
functional testing.

For random testing test patterns ire generated randomly
[16,17,18,19,20,21,22,23,24,25). For generation of psendorandom
test patterns linear feedback shift registers has been used [26].
Random testing has been msed both at the gate level and at the
functional level. In the latter case a random sequence of
instructions has been used for testing (soe ,e.3.,1241). The
major problem in random testing is to sstimate the test length
and the probability of fsult detection [23,24]. PFor random
testing the cost of test generation is not high but & number of
test patterns (testing time) may be very high for VLSI devices.

There.is one more approach for testing, when one does not




try to develop a test for a specific device, but constructs 8
deterministic standard test which camn be used for a large set of
devices. One example of this approach is presented in {27] where
exhaustive testing and simple data compression schemes have been
ased for testing. Ia [28,29,30] standard tests have been
developed for combinational devices such that every output

depends only oxn a small subset of imputs,
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~. Fortunately, the same rtasons that make the prodblem of
generation of individual test forx various VLSI circuits so
difficonlt — namely, the incressing complexity and large diversity

of the circuits - open a way to & different approach to test

gensration. This approach has been recently developed . in
[31.32.33.54]. and called universal tosting. To explain the
basic 1d§l nf this new approach we need to turn from the
deterministic concept of testing to the probsbilistic one. It is
somewhat similar in ‘ideology’ to the transition from mechanics
to statistical mechanics. Indeed, it igs well known that only

very simple mechanicsal systems can be trested in s deterministic

way {(the famous 'three~-body problem’ of celestial mechanics has

no general solution). On the other hand, when the number of

psrticles (or degreoes of freedom) of a system becomes VvVery large,

the methods of statistical mechanics can be applied. Statistical
mechapics describes the behavior of a large ensemble of systems

of a given kind, rather than the details of the trajectory of an




{ndivideal system. The remarkable fact is that the larger 1is the

system the more exactly the vast majority of all such systems

follows the same typical pattern of behavior, s0O that the

probability that an jndividoal system will deviate considerably

js vanishingly small. Thus, the laws of statistical mechanics

(thermodynamics), though being probabilistie in nature, become

fully determimnistic for all practical purposes. The major

breakthrough in cummnnicntinn-unginaaring owing to Shannon's

jnformations theory was based op very similar ideas

[35,36,37,38]., The sameo philosophy was successfully applied inm

some other areas, such as collective behavior of automatas

139,40], neural networks [41], etc.

This way of reasoning brings us to the jdes of universal
tests — the tests that are able to detect all the faunlts of =«
given class in almost all circnits of = given ensemble of

circuits. The fraction of the circuits in which a gniversal test

detects all the faults of a given class approaches one when the

circnit complexity increzses. The rigoroms definition of

aniversal sequence of tests is givun.in'SEn.E. Preliminarily,

the concept of universal testing can be explained inmn the

following way. Let Cl = {cij] be a finite set of circuits o4 of

a given complexity, the complexity jncressing with i. Suppose

that a circuit €jj canm be chosen randomly from the set C; with

probability P, (g pyj = 1). Denote by F; a set of faunlts of

given type F which can occux in any ¢€;,. Denote DY P(T;, F3., Cy)
i3 i» Fi» €y

the probability that the tost T; detects ai1 the errors from Fj
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in a circuit €jj randomly chosen from C; with probability pyj-
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Def. 1. A sequence of tests (T3) is called mniversal for

detection of 211 faults of type F if

}iﬁ P(T,, Fi' c;) =1 (1)

To avoid misunderstanding, we would like to stress that the
probability P is the fractionm of the circuits for which the
geniversal test provides complete (100%) fault coverage {(and not

the measure of fawlt coverage for a given circuit).

One should distingnish between nﬁr use of the term universal

tosting on one hand, and nniversal tests, on the other as the

l]atter term is used in [42, 43]1. Our approach is essentially

probabilistic, and the universality is understood in the

asymptotic meaning, as expressed in Def. 1. No use of additionsal

hardware and no special design is assumed to improve testability

of the circuits., The auvthors of [42, 43) suggest tests which can

detect some classes of faults in all PLA with given numbers of
inputs and product terms (in a deterministic way), but they can
PLA's in a special way. Thus the interesting approach adopted in
(42, 43], belongs, in essence, to the 'design for testability'
nra;. and differs in principle from our approsach.

One should not confuse universal testing with asnother

probabilistic approach ~ random testing. The comparison of gate-

level testing, functionmal testing, random testing and universal
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testing is given in Sec. 5 of this paper, Universal tests are
somewhat similar to standard tests and aimed to £ill the gap
between the functional and random testing, combining the
.advantages of both of them. For universal testing the input dasta
for test generation consists of parameters of a device under test
(e.2.,numbers of input and output lines, numbers of flip-flop,
etc,) and description of a class of possible fanlts (e.g.,stuck-
at faults of a2 given multiplicity). Universal tests may be very
efficient for a testing of a broad spectrum of devices Or AS a
first step in a testing procedure,

Tke use of the concept of 'almost all devices’ needs some

Justification. Indeed, it implies that universal testing methods

divide a given set of circuits into two subsets: circuits in

which all the faunlts of a given class are detectable by the test:

(let ns call them *sheeps’), and those wvhich azre not completely

testable ('goats’). It might happen that, though the latter ones
constitute only an infinitesimelly small fraction of the totsal
set, practicalliy we are dealing Just with these 'exceptional’,
'non-typiceal’ circuits. In faot, a2 similar situstion is not at
811 wvnusual in coding theory, logic design, etc. {(One may cill
it 'Shannon paradox’, since it appears, in particunlar, in
information theory). To illustrate this point, let us consider a

L

relevant example from the theory of complexity of Boolean

functions,

It is well Xnown that for almost all Boolean functions of m

drguments, the minimal number G(m) of two—input gates in network




m
jmplementing these functions is G{(m) ~ £ 2 (r is & constant)

[44], but not even one ¢lass of Boolean functions which reguire
for their implementation more than a polynomial number of gates
is known vyet.

The second example relates to Shannon’s basic coding theoreom
which states that almost all block codes of a given leangth
provide dats transmission rate arbitrarily close to the channel

capacity with probability of esrror tendimg to zero when the

length increases. But in spite of the fact that 211 dut
infinitesimal small fraction of codes are "good’, nnt l single
clpss of such codes was known until quite recently [45].
Fortunately, this is not the case in universal testing. A
number of examples considered below will demonstrate
applicability of universal testing to some practically important
classes of circuits. Though examples of 'goats’ can be indicated
among practical circuits, they seem to be relatively rare.
Universal tests for terminal stuck-at and bridging faults in
cnmbinatinﬁnl circuits have been developed in [31-34]. Congider
the standard combinational circuits regarding their testability
by these universal tests. A circuit is called 2 'sheep’ (s), if
gniversal fasts provide 100% coverage of favlts of a given class,
and it is called t';ulf'{g] otherwise. The claszsification is
given in Table 1, One can see that 'sheeps’ with respect to one

class of faults may be ‘goats’ with respect to nnothpr class.,




J CLASS OF FAULTS
| Input I Iaput
| Stuck-at | Bridgings
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AND, OR, NAND, NOR gates [ g
Parity checker s 3
Majority gate (m=2n) g s
Shifter (with 2 control s s
| inputs)

Code convertors (binary to

BCD, binary to Grey
code, eteg.)

Counter with rarallel 1load

Up-and-~down counter
Adder

s 5

5 s

s $

Subtractor ’ '
P s

s s

E 8

Multipiier
Decoder
Multiplexzer
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An arbitrary digital binary circuit with memory may be
represented by a block—diagram of Fig. 1,

Hero m is the number of input lines, k is the number of
output 1ines, and s is the number of feedback lines (the number
of binary memory cells)., Such a device will be referred to as an
(m,k,8) - circuit so that an (m,X,0) - circunit is a combinational
circuit, I

Dencte also:

= (11.....:m) is an input binary vector,

- I

J = (?1.....yk) is an output binary vector,

I N

= {11.....251 is a feedback binary vector.

For a given circuit c at discrete time <:

?j{t)=yg(£(t). z(t-1)), j=1,...,K,
{(2)

II{T)::IE{E{T}’ E{f-l)), r=1.....l‘-.

wvhere y? and z£ are Boolean functions of (m+s) variables, which
are specified by the structure of the circuit c¢. A test T(“'H) =
(5{1}.”..£(N)} i1s a sequence of N binary m - dimensional
vectnrs_f(s} = (tI{S).“u.tn{S}}._;=1.LH.N. which are applied to
the input lines of the circuit. In the absence of input fanlts,
obvionsly, E(S]?ifsj_

We denote by T‘klﬂj=(z(1).".hgtﬂ)) the sequence of outpnut

vectors produced by application to the circuit a sequence of test

patterns T("N) = (t(l}.“..t(H)}. provided that the memory was

cleared before testing, For a fault-free device Y(E,N) ;,

10
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uniquely determined by T(m.N)  However, if a fault f occurs in

the circuit, Y(k.N) may depend on the fault: Y(E,N=y(k,N)(f),

Dencte by f, ¢the situation when circuit ¢ is fanlt—free.
Definition 2. It is said that test T=T(m,N) detects a fault £ in

a given circuit ¢, if for this circuit
Y(k.H?{f} # gik.H?(fn). (3)

Consider now a set of faults F={f_}, w=0,1,..., ¥, W=|Fl-1, whieh
may occur in the circnit c.
ggjigigign 3. It is said that test T=T(m.N) detects all the

faults from set F in the circuit ¢ if for any t eF, wto,
f{k:H)(f'} £ g(k.N)(fn) (4)

Definition 4. It is said that test T=T(®.N) jgentifies all the

favlts from set F in the circuit ¢ if for any f?, f eF, viw,

Now let us consider & set of circuits c=[¢n}, n=1,...,M, and a

probability space (E,B,P), where E is the space of elementary

events E=[¢n}. the elementary event ¢, is the application of »
given test T to the circuit €y B is a Borel field on E, and P is

a probability measure on E, defined by the probabilities of

elemontary events p(e,). For a given set of faults F there
¢xists an element Biot(F) (respectively B;4(F)) of the Borel
field B which is the set of all the elementary events e_ such

that (4) (respectively, (5)) is satisfied for the circuit Co.

12
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Then the nurraépnnding probabilities

P{Bdﬂt{F)l = E pley), {6)

©heBget (F)

P[Bid(F)]

X pleg), (1)

eneBj g (F)

have 8 meaning of probabilities that the test T detects

{respectively, iddentifies) all the faults from set F being

applied to 2 circuit chosen randomly from ¢ according to
probability distribution p(e_ ). Henceforth we shall assume that
¢ = Cgeq is the set of all possible (m,k,s) — circuits, i.e,,

each circuit c sl is a releization of (k+s) (not necessarily

seq
distinct) Boolean functions of (m+s) input variables, and exactly
one circunit corresponds to any possible nrdurad.{k+1)-tnp1u of

2{k+l)2‘+'

Boolean functions. Thus, lc:eql = M = . We zassunme

also that the probability distribution is uwniform: ple,) =%
Then P{B,, (F)}=P4,.¢(T.F,m,k,s,) and P{B;4(F)}=P;4(T,F,m,k,s) are
equal to the fractions of all the (m,k,s) ; circnifs in which
test T detects (respectivley, identifies) all the faults from set
F. |

| Now let m be a (natural) variable, and k and s be functions
of m (in particwlar, constants). Congider 2 sequence of sets
(C'Eq=C(m.k,l)} where m takes on increasing natural values, and a
sequence of corresponding tests {T{E’Hj).‘IhEIH N is a fonction
of m,

Definition 5. A sequence of tests (T(m’N?} is called universal

13




for detection (respectively, for identification) of all fanlts
from set F = F(m,k,s), if

Lim Py, ¢ (T,F,m,k,3)=1 (8)

\Cfwl LY SAKe Vi S1@Opiicrey, we sSndii SAy 2050 “vUniversal tests’
iﬁstend of "universal sequence of tests'), It is seen from
"Definition 5, that the performance of universal tests becnmalrthﬂ
better, the larger are VLSI devices under test., This asymptotic
property of universal tests makes this approach especially
relevant for complex VLSI circuits.

The following notations will be used throughout the paper:
£ - multiplicity of faults.
T - test matrix formed by test patterns from T as rows.
Nget(Fim,k,8) (N;, (F,m,k,s)) - asymptotic minimunm number of test
pnttﬁrn: in unjiversal tests for detection (respectively,
identification) of all fault from F,
¢{(a) — an arbitrary function such that e(a)+= when a-m,

Two different conmstructions of universal sequence of tests

will be used. In the first sequence the test of size N has the

following structure:

til} = 0’ i=1,...,m ;

t£2h+1) = Il' ti2h+1)=nl i#hl i=1lii'lml hr']-:---.l -1 {10}

?

£(20) o $(22-1) poq, .. H

14
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Here T is a binary vector which is the complement (negation)of
t. Note that the order of test patterns (indicated by the upper
induil is essential in the case of networks with memory.

The second construction makes use of Hadamard matrices. Let
n be the minimum number such that n2>m and there oxists a binary
Hadamard matrix in of order n [44]. ¥e use the conjecture {proved
for all n<{268) that a Hadamard matrix exists for all n wkich are

multiples of 4, Consider an (n x m)-matrizx 2 whose columns

coincide with the first m columns of 3n' Let ap» h=1,2,...,n be

the h-th row of the matrix A. Design a test r=T{(m, N} as follows:

k]

t{l}:ﬂ" L{z}=b 1)’ £{23+1)=ls' L{23+2}=£{23+1-}(B=1‘2'___.§—1)'

where N=|T| £ 2n and § denotes all zeros vector.

4. Applications of nniversal tests to sequential circniits,
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Universal testing of terminal faults in sequential circmits
is a natural generalizstion of the npp:nluh applied to the
terminal faults in combinational circoits in [31-34]. TYet it
poses a number of quite non-trivial new problems, since the
temporal behavior of sequential circuits is much more complex.
In particular, the time order of test patern becomes essential in
this case. Ye present bhere results related to single input

stuck-at faults in (m,k,s) — circuits.

Denote by Fl“” the set of all single iaput stuck-at

faunlts.

15




_______ 1. (i). The probability that a2 test T=T(m,N)

defined by (10) detects all the fauvlts from Flf't) in a circuit

chosen by random from C satisfies the inequality:

(54 ~-j N
P(T:Fl_ .C,,q) 2 [1-2-?‘ (2—1+(1_2~:]2-kﬁ§32m (12)
(ii} The tests defined by {IOJ form a universasl sequence
0f tests for detection of all the faults from Fltﬁt) if
1“52m+=(m)
N = 2 S - (13)
k*lnsziz 4{1-2 7 )2 )
(iii),

Stquence of test which detects all the faunlts from Fi(sty in

almost all (m, k,8) - circuits is

H{FI‘-’*""’,m,k..} ~ 2 (14)

Theorem 1 is g generalization of Theorem 1 and Theorem 2 in

[34) for the case when the set of faults isg Flc'fﬂ It can be proved

by 2 similar technique, taking into accoont that for a test

T(m,N) defined by (10) either A TSP LI T &)

or t

"

(3)
(£)£¢ 3
for all ;=1,2,“”£{ (Bere t(f) is the external irnput vector inm

the presence of fauit £f.)

16




In partcular,

logym
2 | ——————— o 1f =
K
k
(st)
N{Fl .mlk'l} ot {15]
log,m |
2 | ———— » Otherwige.
2z

Comparing (13) with the cCorresponding results for

then the size of the test can be rednced by half,
Example 1. Consider detection of stuck~at faults 4in an

adder accumulator with m input lines. 1Iq this case k=5s)>m, and

2
the test T{ A with test patterns ti= 0= (0,...,0), tr= 1=

(1;---11)

detects all the faults, whiech agreos with Theorem 1.

For example, if

(st)
m=2=16, k=1, then P(T.F1

-15

-5
.Claq}ZI-Z for N=10 and P{T.FI(“).C
2 for N=20,

seq

Some rumerical valnes of P{T'Flut)'c:aq} are plotted

in Figure 2, for k=g=1,

17
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2 Detectior of stuck—at
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Universal testing of intermal faults is a complicated
Problem because of its generality and becanse the concepts of
controllability andg observability come into Play in a more
involved manner than for terminal favlts. (Terminal faults can

be considered as a very special case, when we have ¢ither

complete controllability (input fanlts), or complete
oObservability (output faults)).

Fe shall illustrate how thiversal tests can be npplied'tu
detection of internal faults by the example of the fanlts in
memory cells im (m,k,s)-circuits. This class of faults, Fiim)
(£is the lartgest fault multiplicity), deserves special analysis,

since in many Practical sitoations memory cells are less reliable

than gates. Tests defined by (11) appear to be convenjent for

detection of these fanlts., The reszsults cbtained for this class
of faults are sommarized in the following thkeorem.

Theorem 2. (i) The probability that a test defined by (11)

detects all the fanlts from F,{nﬂ iz an (m,k,s)~¢circuit chosen

¢
randomly from C..., is bounded £ by:

é}*(f)

-k i=
() 1+2

19




(ii) The tests defined by (11) form & universal sequence of

{m)
tests for detection of all the faults from F§} - if

.
log,y z;.; 2 (3)+e(s)

L= |
— (17)

1-1052{1+2'k )

{iii) The minimum size nf.tests in a2 universal sequence of

tests for detection of all faults from Fp(m) is

J
log, El 24 ()
NFg™ mk,8) & — —
1-1n32{1+z"‘ ) . (18)

To Pruv;-‘ (16) we note that a fault in memory cells is not
doetected either if the memory ountput is not distorted by the
fanlt, or if the memory output is distorted by the fault, but is
"masked’ by the combinational part of the circuwit, The total

probability of non-detection of & givern fault by N test patterns

does not exceed {1+2-K}'Nr Z‘H. which leads to (16). Then (17) and

-

(18) can be obtained by use of the definition of universality:

(17) is the necessary and sufficient condition for the

convergence of P(T.F‘lcm} :C,,q7 to 1.

20




In particular, for detection of single stuck-at faults in

meEmMory

- -N 28
P[TIF]_CMJ 'Csaq)_ 2 [1-{(1+2 R)IN 2 ] ’ {19)

and for detection of all possible memory stuck—-at faults (L=3)

5
- ~N_ 3 -4
POT,F, ™ . Cpeq) 2 [1-C2427 )% 2707 70 (20)

15

{m} - _
'Cseq) 2 1-2 for N=20, and

For example, if k=s5=16, P(T.F1

~15
Ceoq) 2 1-2  for N=40.

m)

P(T,F, ¢
The nuﬁb&r of test patterns for £=3

{m) o |

H(FI ,m,k,s) £ l(1-1u52{1+2-ﬂ}) "logg3 . (21)

Thus, the number of test patterns grows at most linearly with the
number of memory cells.

It can be shown that identification of input stuck-at faults

and memory faunlts in (m,k,s) - circuits requires unniversal tests

of donble size as compared with universal tests for detection of

those faults (i.e. Njq{(F.m,k,s8) = 2N{(F,m,k,s}).
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As any other method of testing, vaniversal tests have their

" gpecific advantages and limitations, In this section we discuss

briefly some general properties of universal tests, and then we

compare this approach with other known methods.
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1. Simple test generatiom., Since aniversal tests are

developed for a wide class of circuits, it eliminates the

necessity of generating tests individoally for any particular

device — the problem that becomes practically unsolvable for

complex circuits, if we want to test them on the gate level,

2. Guaranteed full coverage for almost all devices, The

estimation of fault coverage poses sometimes a difficalt problenm,

for instance, in functionsl testing. Universal tests are

constrocted in such s wvay as to provide a 100% coverage of faults

for almost all devices from a breoad set. It should be taken into

T — gl e — =3 —I — |

saccount, however, that this coverage is provided for a specific
class of faunlts, for which this particular universal toest was

designed.

3. Applicability to complex circuits. The crucial question

in universal testing is, of course, how large is the fraction of
‘goats’ -~ the circuits which are not completely testable by a
given nniva:sa} test. Perhaps, the most attractive foature of
pniversal tests is that they are asymptotically efficient, i.e.,
they work the better the more complex is the circuit under test
(e.g., the larger is the number of input and/or ocutput faults).
Therefore nniversal testing seems to have a good potential for

YLSI testing.
For example, consider universal testing of input stuck-at

)
(5{)

fauvnlts of multiplicity at most £ (set of faults F£ in

combinational (m,k,0)- circuits. This problem has been solved in
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[33,34). The results show that if the size of the test is chosen

st
jn such a way that N = H(F£{ ),m,k} (1+5) and 1lim ‘E’I"-r- 0, then
_ , , -3

the fraction uf””gontsi'appruaches zero a8 n'fs when m =72 @

Notice also that it works the better the larger 18 the
multiplicity of faunlts f (0f course, the corresponding test

sgize is also larger). For single stuck-at faults (the worst

case) and & = 5, m = 15:20, the fraction of "5nits” does not

axceed 1%,

4, Easy sxtension. Sometimes vé may be interested tO

_-—-—l--—-'—--—l

extend the universal test in order to further diminish the risk

to encountel a "goat'l The universal tests designed above can be

easily extended (up to the 1imit N = 2m) without any change in

constroction. As it was shovwn above, with the increasé of the
aumber of test plftarn:. the probability that the device ander

test is a ""goat' decroases exponentislly.
5. Good ggzg;;;g,jg;,i;ggi;ﬂ, One should not think that

the “goats” are tested poorly bY gniversal tests. The situation

ijs just the opposite: in fact, though the coverage of faults in

rgoats” is not complete, galmost all "goats” are covered almost

completely. For example, if total fraction of "goats' 1s 1%,

then only in 0.5%

w-l
of them (i.e., in a 5.10 fraction of all the circuits) two OF

more faults remain andetected, and only in & 1.7u16q
fraction of all the devices more thkan two faults are undetectable

by the test.

Let us comnsider now the general case when the reguired
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coverage of fanlts is not 1, but 1-8<{1. It has been recently

shown ([34]), Theorem 7) that in order to detect a fraction of {(1-

p)'¥ faults'(out of the total number W) in almost all circuits
the minimom number of test patterns in a universal sequence of

tests obeys inequalities:

' E
(B) g #%)

F, -, m, X iz_(""f:&ﬁ)  (22)

N
for input stuck-at faults of any mnltiplicityuﬂ, when p—p=, snd

(8),_ (st _
N ﬁ-“i' ) m. KD in(m.l_‘i%?_&f_l) (23)

for any input bridgings, m —)--ﬂ. where n{m,d) is the length of a
thortest linear binary code with the distance d and the number of
codewords at lcast m. (lal) means the greatest integer, which is
not greater than :); It is seen that, in contrast with tﬂa
detection of all stuck-at faolts, the detection of gny fraction
1-f of the total number of faults (even if this fraction is
arditrarily close to 1, bot remains constant) requires
tsymptotically a number of test patterms which depends on f§ only,
3§_bnt does not depend on m and ﬂ .

E;ggplg 2: Lot uvs ostimate the minimum number of test
f patterns sufficient for detecting 99% of input stuck-at faunlts

£ in almost all devices. Then B = 0.01 and, for k = 1, (22)

5t)
b yields: H{F,E{ +m, k) (14, (If k 27, then two test patterns are

@?lnffiniant.l
6. Another advantage of the proposed approach — this time,

G-

Einltﬂ'thﬁ methodological nature -~ can be mentioned. Since from
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the viewpoint of universal testing classes of c¢ircuit are

described probabilistically, thkis opens a way for applications of
powerful mathematical techniques based on probability theory and
theory of random processes (for sequential circnits) to testing
problems, In particular, close relation between testing theory
and information theory (including coding) can be already seen.

(For example, universal tests for input bridging faunlts are based

on optimal error — correcting codes - seoe [34]).

5.2, Limitations.
1. The major limitation of universal testing is that it
becomes efficient only in the case when a broad spectrum of

circnits is to be tested. This argument is applicable both for

pancfacturer and user testing. Indeed, if mlnyzcnpiet. of a fevw

types. of devices only are to be tested, there is a reason to .

invest into development of specific tests for each of the types,

since a specific test may be shorter and may provide s sufficient

coverage just for this particular type. Seemingly, the most

justifisble application of nniversal tests is in the case of a

sser who has to test a large viriety of devices which come in

small numbers of copies. Moreover, there is a good reason to use

eniversal tests as a first step in testing procedure, since with

probability close to 1 they will detect fanlty devices, thereby

eliminating the necessity of further testing.

2. Though nniversal tests are good for almost all devices,

there is always a danger that a particular device under test is a

“so0at’, Since universal testing is based on probabilistic

reasoning, it provides good results omnly in statistical sense and
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cannot guarantee against individual failures.

3. The size of universal tests may appear to be

substantially larger than that of specific tests. Naturally,

that is the price for their universality. However, for many

typical circuits (as we have seen it in the example of terminal

faplts in adders, subtractors, multipliers, decoders) the
pniversal tests are not longer than specific nna;.

Universal testing, by its nature, combines some feature of
functional and random testing, filling the gap between them.
Therefore, we shall compare in more details these two approaches
with universal testing.

§.3. Universal vs., fnnctional testing.

[l W— g~ Py S R Y e —— N ssles B B S S e s—" S — T e el S

Functional testing requires complete knowledge of the

functional description of the device under test, while sniversal
testing based omn general information only abomt the class of
devices (such as number of input aznd output variables, some
general features of circuit topology, ete.). Functiopal testing,
being device-oriemted, can provide shorter tests than the
aniversal one, but has grester test ganurntiunjcumplexity. It is
usually very hard to estimete the fault coverage for functional
tests. The fault coverage for nniversal tests is known in terms
of probability that in = device chosen from a given class sll (o=
a2 given fraction) of faults are detectable.

Let ns illustrate the situation for the case of multiple
input stuck-at faults. The problem of fonctional testing for

this class of fsults has been considered in [46,47]. It has been

shown in [46] that, if the nomber of inputs =35, a specific test
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can be constructed for any such ¢ircuit which detects all input

stuck-at faults and consist of not more than 2Zm-4 test patterns,

There exists an example of a function which reguires at least

2(er—-r) tests patterns, where fllﬂszﬁm'f)- It follows from the
results described in [33,34) that a universal test which consists
of N = 2m(logy3 + 6) test patterns will detect nil the input
stuck-at faults in all possible devices, except for a
fraction of -2:16 . On the other hand, even for this simple cl_lls
:*'uffnults functional test ganerntinn.is much more complex than

that for universal tests.

5.4, Universal vs. random testing,

At the first pglance universsl testing looks very similar to
?irnndum testing. .Indead. both of them ignore specific foatures of
;:tha device under test and the performance of both types of tests
.;wun be characterized in terms of probability. However, this
similarity is misleading, since there are essential differences
Z%fdeaen these two approaches which lead to different results as
-;f1grrms to the size of tests and their fauplt—detecting
capability,

3 1. Universal tests are usually designed in a2 determimnistie
fillnnur: where not only the test patterns, but also their order
i%{in case of sequential circuits) may be essential. On the other
5;]umd. for random testing test patterns and their order are chosen
rendomly [5,17,18,19,20,21,22,23,24,25,48].

2, In contrast with random testing, universal tests ace

';daiignad on the base of information abount =& class of circuits.
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The c¢class can be characterized by the numbers of input and outpuot

lines, faudbick lines, memory cells, by the number of gates
and/oxr internal lines, by characterization of the class
inplemented functions, e.g., self-dual or symmetric functions, by
features of circuit topology, such as path complexity, number of
gate levels (e.g., PLA's), etc. |

3. Universal test:.nra fanlt-oriented: they are designed
for a specific class of faunlts and depend on this class, as we
have seen in it on the example of single and multiple input
stuck—-at fanlts and input bridging faults at input linus.. It wss
shown, for instamce in [34], that one needs a universal test with
two patterns only to detect all single input stuck—-at faults in

tach devices as pdders, subtractors, decoders, counters with

parzllel load while 2 random test would require more tham log,m

test patterns. For the class of all input multiple bridging

faults we need [34] N ~ log,m for universal tests (based on

error-correcting codes with the distance depending on the

nultiplicity of faults), while a random test would require N
‘tig.’1°ﬂz‘ to detect all single inpot bridging faults. Thus, as 2
 %E_rn1¢. universal falts are substantailly shorter than random ones.
l However, in case of output fauvlts oniversal test degenerste to
*i*:undnn tests. As a matter of fact, the extent of universality 'is
| sather flexible and depends on the width of the class of circuits
f and the c¢class of fanlts involved. If the classes are not
specified, we come back to random testing, while & complete
description of a device on functional or on gate level will lead

b to functional or gate—level testing, respectively. Thus, both
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device-specific and random testing may be

l1imit cases of uvniversal testing.

considered as special

The comparison of variouns

types of testing is summarized in Table 2.

Comparative

Table 2.

characterization of various approaches to testing.

— — — — — —— . — T ——

e — S -E—

Type of | Input data 1Test TTest size | Fault
testing | for test | generation |necessary | coverage

I generation Icumplu:ity lfor a given | for

| ! {fault | a given

I I =¢nvarngu ! test size
___________ \ - _
1. Gate- | Gate-1level |Maximal | |

level I description I{Optimnl | |

! of the ltest IMinimal | Mazimal

! device {generation | |

| under test: |is NP-hard) | |

| class of | ! |

| fault | | |
___________ I S T
2. | Functional | ILarger | Lower than
Functional | description ! lthan for = | for a gate-
| | of the I |gate~1evel | level

| device |ILazge ltest | (often,

| under test: | | | difficult

| class of I | | to

} faunlts | : = estimate)
3. | Description |Small (the |Larger than | High for
Universsal | of a class |same test |for the | aimost

| of devices: |for the lfirst two | all devices

| class of I'hnla class |types. | from a

| faunlts of devices, |(Depends on [ given

| }for a given |[the class of| class

I lset of ldevices and |

} |faults) |the set of |

| | [faults) |
___________ I N N D
4, | Set of | } |
Random | possible | ; |

| test IMinimal IMaximal | Minimal

| patterns | | |

| only | I |

I | I ;

| I I

ekl e e W T N S R

- S s - e ey sy e ki e S e B S i B S - ek e b ey e gl
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Finally, we may conclude that universal testing suggests a viable

alternative to other types of testing and expands the arsenal of

" tools for a testing engineer.
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