Data verification and reconciliation
with generalized error-control codes*

Mark G. Karpovsky Lev B. Levitin Ari Trachtenberg

Reliable Computing Lab
Boston University

Abstract

We consider the problem of data reconciliation, which we model as two separate multi-
sets of data that must be reconciled with minimum communication. Under this model,
we show that the problem of reconciliation is equivalent to a variant of the graph coloring
problem and provide consequent upper and lower bounds on the communication complexity
of reconciliation. More interestingly, we show by means of an explicit construction that the
problem of reconciliation is, under certain general conditions, equivalent to the problem of
finding good error-correcting codes. We show analogous results for the problem of multi-set
verification, in which we wish to determine whether two multi-sets are equal using minimum
communication. As a result, a wide body of literature in coding theory may be applied to
the problems of reconciliation and verification.

Keywords: data reconciliation, verification, general errors, error-correcting codes

*thanksThis work was supported in part by the NSF under grants MIP9630096 and CCR-0133521.

1 Introduction

The problem of reconciling data is inherent to applications that require consistency among
distributed information, including diverse examples such as gossip protocols for distributing
networked data [1], resource discovery [2], mobile data [3, 4], and sequences of symbols from a
given alphabet, such as nucleotide sequences in DNA or amino acids sequences in proteins [5]. In
each of these examples, the system needs to determine and, thereafter, reconcile the differences
between data stored in physically separate locations.

From the perspectives of scalability and performance, it is important that reconciliations occur
with minimum communication, measured both by the number of transmitted bits and by the
number of rounds of communication. When data are represented by sets, as can be reasonable
modeled for the examples cited above, this problem is known as the set reconciliation problem [6,
7). The data reconciliation problem is a natural generalization in which data is represented by
multi-sets rather than sets; the case where only a single message of communication is permitted
is termed one-way reconciliation.

This paper examines the one-way data reconciliation problem within a generalized framework
in which differences between multi-sets correspond to evaluations of arbitrary “error” functions.
We show that this problem of reconciliation is equivalent to a variation of the problem of graph
coloring: second-order coloring or distance-2 coloring. A second-order coloring of a graph assigns
colors to vertices in such a way that any two nodes separated by a path of length at most two
are colored differently. Applying well known results from graph coloring, we then provide lower
and upper bounds on the amount of information that must be sent between two hosts for this
type of general reconciliation.

In many practical cases, it is not necessary to reconcile two multi-sets, but merely to determine
whether they are in fact the same. This may be the case when testing of a remote device is
performed by verification of its signature [8, 9]. Such a determination can often be made with
substantially less communication than a full-scale reconciliation. In this context, we consider
the problem of one-way data verification: verifying that two multi-sets are the same, subject to
a given range of possible differences, by communication a single message. Again we show that
such verification is equivalent to graph coloring and error detection. We also provide both lower
and upper bounds on the amount of information that must be exchanged for data verification.

The main contribution of this work is a constructive connection between generalized error-
correcting codes and one-way data reconciliation on the one hand, and between generalized
error-detecting codes and one-way data verification on the other hand. More precisely, protocols
for reconciling multi-sets that differ by some transformation in a set £ can be converted into
codes capable of correcting errors represented by £. Similarly, under certain general conditions,
error-correcting codes for £ can be converted into a corresponding one-way data reconciliation
protocol. The communication complexity of such a reconciliation protocol is linked to the
size of the corresponding error-correcting code, so that good data reconciliation schemes result
from good codes, and vice versa. In particular, perfect codes result in optimum one-way data
reconciliation protocols. Similar results are provided for verification and error-detection.

1.1 Related work
We can broadly characterize the different techniques based on their model of the differences
between two reconciling hosts.

One model involves synchronizing two discrete random variables with some known joint prob-
ability distribution using a minimum communication complexity. Witsenhausen [10] followed

by Alon and Orlitsky [11] show a connection between such random variable reconciliation and
graph coloring, giving results analogous to those of Section 3.1 and 4.1. In addition, Orlitsky [12]
showed how to use linear error-correcting codes for a specific instance of data reconciliation.

Another model involves two hosts reconciling files (or strings) that differ by a bounded number
of insertions, deletions, or modifications (collectively: “edits”). The problem of efficient rec-
onciliation under these circumstances, also known as the edit-distance problem [13], has been
extensively studied [14, 15] because of its connections to important fields such as file synchro-
nization and pattern recognition. LevensStein [16] pioneered work in this area by developing
error-correcting codes capable of correcting precisely these types of errors. Recently [17] also
examined the problem of reconstructing a sequence from several copies distorted with these
types of errors.

In our model, data on two reconciling hosts is represented by multi-sets that differ by a very
general class of differences. Being stored as multi-sets, the data on the two hosts is inherently
unindexed, meaning that only the content of the individual data items, and not their relative
position, matters. Unlike other models, we also assume that reconciliation is agnostic to the roles
of participating hosts, as explained in Section 2. Our results extend the bridge between coding
theory and data reconciliation originally started in [12], providing statements of conditioned
equivalence and corresponding bounds.

1.2 Organization

We begin in Section 2 with a brief formal introduction of the three problems connected in this
paper. Section 3 addresses the general problem of data verification, proving connections between
graph coloring, data verification, and error-detection, and describing consequent communication
bounds. Section 4 provides analogous results for data reconciliation and error-correction. Finally,
in Section 5 we describe several applications.

2 Background

2.1 Graph coloring

Definition 1. A proper coloring of a graph G with set of vertices V and edges FE is an assignment
of colors to each vertex in such a way that the vertices of any edge e € F are colored differently.

A proper coloring using at most &k colors will be called a k-coloring of the graph. The chromatic
number of a graph, denoted v(G), is the minimum integer &k for which there exists an k-coloring
of G.

Definition 2. A second-order coloring of a graph is a a proper coloring of a graph with the
extra property that no two neighbors of any vertex have the same color.

A second-order coloring of G is also a proper coloring of the square of the graph, which is the
graph G? obtained from G by additionally connecting with an edge each pair of vertices that
are of distance two apart. The minimum number of colors needed to second-order color a graph
is the second order chromatic number of the graph, denoted Y9 (G).

2.2 Error detection and correction.

Consider the module Z; consisting of all n-dimensional vectors over the ring Z,. A g-ary code
of length n is simply a subset of the elements of this module.

Definition 3. An error set for Zj is a set £ = {eg, €1, e2,... e|5|} whose elements are functions
e; : Ly — Zy, one of which is the identity function eg(z) = z. If the functions e; € E' are all
bijections and their inverses ei_1 are also in £, then we shall call this set bijective. If the functions
commute with each other, so that e;(e;(z)) = ej(ei(r)) Yz €Z7,Ve;, e; €E, we shall call this set

commutative.

We also generalize the concept of an error-ball around a vector with the following definition.

Definition 4. Given an error set £ and a vector z € Zy, the £-image of z is defined to be
E[z] = {e(z)|e€ E}. The E-vicinity of z is a closure of the £-image defined as £(z) = E[z] U
{z€Z|e(z) = x,e € E}. More generally, the E¥-vicinity is defined to be

= U Eew,

y € Ek-1(z)

where £!(z) = E(z). The definition of £¥ — image is defined likewise with brackets replacing
parentheses.

Note that if £is bijective, then £¥[z] = E¥(x) for all integers k > 1.

Definition 5. A code C € Zj detects the error set & if ¢; ¢ E[c;] for all ¢; # ¢; € C and corrects
Eif

EleilN&lcj] =0 for all ¢; # ¢j € C.

2.3 Set and multi-set reconciliation and verification.

The traditional formalization of the set reconciliation problem is as follows [6, 7]: given a pair of
hosts A and B, each with a set (S4 and Sp respectively) of length-b bit-strings and no a priori
knowledge of the other host’s set, how can each host determine the mutual difference of the two
sets with a minimal amount of communication.

In general, we may consider data represented as multi-sets whose elements are chosen from a
finite, universal set U. A multi-set is defined to be a set whose element multiplicities (but
not order) are significant. Thus, every multi-set M whose elements are taken from U may be
associated uniquely with a characteristic vector v(M) of length n = |U| whose i-th component
is 7 if and only if the i-th element of U occurs j times in M, for some canonical ordering of the
elements of U.

We shall generally assume in this paper that the multiplicity of any element is bounded by ¢ —1
so that v(M) EZ'J”. We further limit ourselves to the case where only one of the two hosts
needs to determine the multi-set held by the other host, based on information transmitted in
one message.

From the following definition, we see that one-way data reconciliation functions are precisely
those functions that are injective over any given £-vicinity.

Definition 6. The function o : Zy — X is a one-way data reconciliation function for an error
set £ if there exists a recovery function R : (X X Zg) — Zj reconciling multi-sets that differ

by one of the functions in £. More precisely, the recovery function must have the property that

Vva,vp €Zy, €€E, va€&(vg) = R(o(va),vB) =va.

The transmission size of such a reconciliation function is the the number of signals || that need
to be transmitted for reconciliation.

To perform a reconciliation with such a function, host A, which has the multi-set M4 with
characteristic vector v4 = v(My4), would send o(v4) to host B. By computing R(o(va),vB),
host B would then determine the characteristic vector v4 and, consequently, the multi-set M 4.
Host B can then trivially complete the reconciliation by sending o(vp) back to A.

We are also interested in the problem of data verification, due to its connections to set rec-
onciliation and a variety of independent applications such as off-line testing [8] and signature
analysis [9].In these cases, two hosts seek to confirm that they have the same multi-set, subject
to a known list £of possible differences..

Definition 7. A function o : Zj — ¥ is a one-way data verification function for an error set
& if there exists a decision function D: (X x Zf) — {0,1} with the property that

Yva,vp €Zy, €€E, va €E(vp) and D(a(va),vp) =1 <= (va =vB).

The transmission size of such a verification function is the number of signals |X| that need to
be transmitted for verification.

2.4 Differences between reconciliation and error-correction

There is a subtle, but important, difference between the definition of error-correction and that
of data reconciliation, especially in the face of a non-bijective set £. Error-correction presumes
side-information about communicating parties: one host has an uncorrupted codeword of the
code, and the other host has a corrupted transmission; however, both hosts know who has
the uncorrupted codeword and who has the corrupted transmission. In the reconciliation case,
neither host is restricted to having a codeword, and, more importantly, no side-information is
available about the direction of the differences between the hosts.

To highlight this issue, consider the case of disseminating data in a peer-to-peer fashion along a
branch of a multicast tree, where packet losses may occur in any communication. It is clear that
any two hosts along this branch will have a subset relationship, meaning that one host will have
a subset of the data held by the other. However, without global knowledge of the multicast tree,
two arbitrary hosts would not initially know which has a subset of the other. In other words,
reconciliation is assumed to be agnostic to the role (e.g., subset or superset) played by the hosts.
A similar situation occurs when reconciling output from two circuits, where one has incurred
a stuck at-fault causing several 0’s to become 1’s or vice-versa (depending on the location and
nature of the error). One cannot know, a priori, which circuit has failed or the direction of its
errors.

3 Data verification, coloring, and error-detection

The data verification problem can be reformulated formally as follows. Consider two hosts A
and B with multi-sets M4 and M pg respectively. The goal of verification is to determine whether
M, = Mp, subject to the sole a priori assumption that Mp is in the £-vicinity of M 4. The
data verification problem is thus to determine the minimum amount of information A should
send to B so that B can decide whether or not M4 = Mp.

3.1 Graph coloring

Consider a natural graph structure [10] corresponding to a given error set £.

Definition 8. The characteristic graph of an error set £ is the undirected graph G¢ = (V, E)
whose vertices are characteristic vectors of multi-sets M C Zy. Any two vertices v1,v2 €V are
connected by an edge in this graph iff there exists a non-identity error e € £ such that e(v1) = vo
or v1 = e(ve).

Theorem 1. Any proper coloring of Gg generates a one-way data verification function a(-) for
the error set £. Conwversely, any verification function o(-) yields a proper coloring of Gg. The
minimum transmission size required for any such verification is precisely the chromatic number

v(Ge).

Theorem 1 follows from Definitions 1, 5, and 7 and the fact that each monochromatic set in a
proper coloring may be selected as a level set (i.e., a set on which the function takes a constant
value) for a corresponding one-way data verification function.

Corollary 1. The minimum transmission size Ty (E) for a one-way data verification function
over an error set £ satisfies the inequalities

Tv(€) = 7(Ge) < Unéa%;lf(v)l < 2[El. (1)

For bijective errors, Ty (€) < |€|.

Proof. The left inequality follows directly from an application of Brook’s Theorem [18] to The-
orem 1, since the degree of a vertex v in the characteristic graph of £ is upper-bounded by
|€(v)| — 1. The right inequality follows from the definition of £(v). §

Ezample 1: Consider the characteristic graph of an error set consisting of all odd-weight translations
errors in Z5. Clearly this graph can be two-colored, indicating that set verification can be done with
the transmission of one bit. However, if we simply change the error set to consist of all even-weight
translations, then n — 1 bits of transmission are needed.

Though a non-optimal proper coloring satisfying the upper bound in (1) can be generated in
linear time, practical use of such techniques is severely limited by the fact that the size of the
characteristic graph grows exponentially in the size of underlying multi-sets being verified. For
certain classes of errors, a more practical approach is based on error-detecting codes, described
in the next section.

3.2 Error detection

The following theorem shows that monochromatic vertices in a proper coloring of G¢ and level
sets of a verification function each produce error-detecting codes for an error set &£.

Theorem 2. Any one-way data verification function «(-) for an error set £ with transmission
size T generates a code in Ly which detects £ and has at least qT codewords. Moreover, for any
&, the level set of a one-way data verification function for £ is a code C C Zj detecting .

Proof: Let C be the code corresponding to a level set of a given verification function a(-).
Then, from Definition 7, it cannot be that ¢; € £(c;j) for codewords ¢; # ¢j. In other words,
C must detect errors in £. Since, by assumption, there are 7 level sets for a, at least one of

them must correspond to an error-detecting code of size > g. The second claim in the theorem
follows from Definition 5, which implies that coloring codewords monochromatically in G¢ will
not violate a proper coloring of the graph. O

Putting together Theorem 2 and Corollary 1 with Brooks’ theorem gives the following generaliza-
tion of the Gilbert-Varshamov bound to our general class of errors; Corollary 4 in a subsequent
section provides a similar generalization for error correcting codes.

Corollary 2. For any error set £ with characteristic graph Gg there exists an error-detecting
code C with number of codewords

n n n

q q q
Ccl| > > D ——
T2 56 = moen €0 = 26

For bijective errors, |C| > %.
The connection between verification and error detection established by Theorem 2 is unidirec-
tional: given a verification function one immediately obtains at least one error-detecting code.
The proof of this fact, as presented in Theorem 3, relies upon the notion of vector orbits, which
partition the space Zj into equivalence classes.

Definition 9. The o7bit of an element v € Zg under & is the union of all £*-vicinities of v:
o0
o) = | €). (2)
k=1

The following important property of orbits follows straightforwardly.

Lemma 1. If e;(v) = e2(v) for e1,e2 €E, for any bijective, commutative error set £, then the
functions ei(-) and ez(-) are identical on the entire orbit O(v), that is e1(z) = e2(z) Vz € O(v).

We now can state our main theorem for generating a verification function from an error-detecting
code.

Theorem 3. Any non-extendible! code C C Zq that detects a bijective and commutative error
set £ also generates a one-way data verification function a(-) with transmission size at most
max, ¢ ¢ |€]c]| = max, e ¢ [€(c)]-

Proof. Because C is non-extendible and £ is bijective, there exists a partitioning D of Zj into
domains D; such that D; C £(¢;) for ¢; € C. In addition, Lemma 1 implies that any given orbit
O imposes a partitioning of £ into equivalence classes of functions acting on O. As such, we
may designate a complete set of distinct error functions &; around the orbit of a codeword c;
with the defining property that if e;,es € E; then ei(v) # ex(v) Vv € O(c¢;). It is assumed that
both verifying hosts generate the same partitioning D and set of functions &;.

Computing the one-way data verification function a(v) then simply requires finding the domain
D; containing v and the error e € &; that maps the codeword of the domain, ¢; € C, onto v (i.e.,
e(¢;) = v implies a(v) = e). Different vectors in the same domain necessarily have different
values of a(-). On the other hand, vectors in different domains either have different values of
a(-) or else need not be verified, as the following argument shows.

' A code is extendible if codewords can be added to it without affecting its error-detecting/correcting capability.

Suppose a(v;) = a(v;) for vectors v; € D; and v; € D; in different domains (i.e., i # j). Then
the commutativity and bijectivity of £ insures that v; and v; cannot differ by € € £ or else:

with (3) contradicting the error-detecting capability of C. Since v; and v; do not differ by an
function in &, they are beyond the verification requirements of «(-).

In all, a(v) takes on a unique value for each v € ;. However, Lemma 1 insures that |&;| < [E]¢]],
giving a maximum transmission size of max, ¢ ¢ |€[c]|- 1

Theorem 3 shows an equivalence of data verification and error detection for bijective and com-
mutative error sets £; the following simple example shows that the same result does not hold
for non-bijective errors.

Counterezample 1: Consider the space Z3 under two error functions: the identity eg and the incre-
mentor e;(z) = z + 1 (mod 3). The code C = {0} is a non-extendible error-detecting code with
max, ¢ ¢ |€[c]| = 2. However, the characteristic graph of the error set cannot be colored with less
than 3 colors, corresponding to a transmission size of 3 > max,. ¢ ¢ |€[c]| for the best verification
function.

4 Data reconciliation, coloring, and error-correction

The problem of data reconciliation is to determine the minimum amount of information host A
should send to host B so that B can determine the multi-set M 4 held by A. As before, the only
a priori assumption is that the set Mp held by B is a distortion of M4 via some error in e € £.

4.1 Graph coloring

Theorem 4. Any second-order coloring of Ge generates a one-way data reconciliation function
o(-) for the error set £. Conversely, any such reconciliation function o(-) yields a second-
order coloring of Gg. The minimum transmission size required for reconciliation is precisely the
second-order chromatic number v2(Gg).

The theorem follows from Definitions 2 and 6 and by an association of vertex colors to return
values of 0. We may apply Brooks’ theorem to the square of the characteristic graph of £ to
get the following corollary.

Corollary 3. The minimum transmission size Tr(E) for a one-way data reconciliation function
over an error set £ satisfies the inequalities

max [£(v)] < Tr(€) < max [€2(v)] (3)

CASHA v LY

It is interesting to note that for certain error sets, such as those that form a group under compo-
sition, the transmission size for reconciliation and verification meet (i.e., Ty () = max, |E(v)| =

Tr(E)).

4.2 Error correction

The following theorem follows analogously to Theorem 2.

Theorem 5. Any one-way data reconciliation function o(-) for an error set & with transmission
. . . n

size T generates a code in Zy which corrects Eand has at least qT codewords. Moreover, each

monochromatic set of vertices in a second-order coloring of Gg¢ is a code that corrects £.

Applying Theorem 5 and Corollary 3 gives the following result, which reduces to the well-known
Gilbert-Varshamov bound for Hamming errors.

Corollary 4. For any error set £ with characteristic graph Gg there exists an error-correcting
code C with number of codewords

n n n

q q q
< < |C| < .
max, e BP0 < m@e) < 1O S max, ez EW)

By Theorem 2, any code that detects error set £ is a monochromatic set of vertices in a proper
coloring of G¢. In contrast with this, not every code that corrects £ is a monochromatic set in
a second-order coloring of G¢, as demonstrated by the following counterexample.

Counterezample 2: Consider Z3 under the error set £ = {eg, e1, e2}, where eq is the identity function
and ey and es are given by the following table:

| z=]000]001[010]011[100 |101]110 111 |
e1(z) = [000 [010 | 100 | 001 | 000 | 110 [100 | 011
ea(x) = [000 [000 [011 [010 | 101 [001 | 101 | 110

It is easy to see that code C = {000,011,110} corrects the error set £. However, C cannot be a
monochromatic set in any second-order coloring of the characteristic graph G¢ because codewords
000 and 011 are of distance 2 from each other.

As with verification, an error-correcting code for a bijective, commutative error set generates a
reconciliation function. In this case, the connection is to a covering code for £, defined to be a
code C C Zj such that (J. ¢ ¢ €(c) = Zy.

Theorem 6. Any covering code C C Zy that corrects a bijective and commutative error set &
generates a one-way data reconciliation function o(-) with transmission size at most max, ¢ ¢ |€(c)|.

The proof follows similarly to that for Theorem 3. Note that any non-extendible code correcting
£ is necessarily a covering code for £2. We may thus formulate the following protocol for
reconciliation using any code C correcting £.

Protocol 1. (Data reconciliation using a code) All hosts interested in reconciling must
agree upon fixed methods for generating:

e a code C correcting &,
e a partitioning D of Z into domains D; C £*(c;), and

e a complete and distinct set of errors & C & acting upon each orbit O(c;).
Host B with characteristic vector vg can then reconcile with host A with vector va as follows:

1. A sends to B the unique value o(va) = e such that ea(ca) = va for ca €C and ex 6531

2. B finds the unique e € Ep with the property that e (vp) = e(c) for c€C. If such an e
does not exist, then v4 and vg are irreconcilable.

3. B determines A’s characteristic vector as vy = e~ (vp).

In the case of Hamming errors (i.e., £ consists of e;(z) = = + v for v of Hamming weight at
most some fixed t), one can understand Theorem 6 in terms of the covering radius of a code [19],
defined to be the minimum value p for which balls of radius p will completely cover Zj.

Corollary 5. For every non-extendible code C of length n, covering radius p, and minimum
distance 2t + 1, there corresponds a one-way data reconciliation and verification function for
Hamming errors with transmission size

zp: (?) (g—1)"

=0

A consequence of Corollary 5 is that perfect codes produce optimal one-way data reconciliation
schemes. For example, the length 23 binary Golay code [20] can be used to produce an optimal
scheme for reconciling subsets of 7Z23.

5 Examples and Applications

5.1 Groups under composition

Our first examples are of error sets that form a group under composition, in which case several
of the bounds in the paper meet.

Ezample 2: (Cyclic shift) Consider the set of errors corresponding to left or right cyclic shifts of up
to ¢ < n positions of a vector,

Eeal = {ei(< Tox2x3. .. Tno1 >) =< TiT14iT34i - - - Tp145 > | —t < i <t}

where indices of x are taken mod n. For the case where ¢t > [%J the set of shifts of a given vector
forms a clique in the characteristic graph Gg_, so that the minimum transmission size is

TV(gcal) = 'Y(Gé'ca.) =n= TR(Ecal)a

meaning that the upper bound of Corollary 1 and the lower bound of Corollary 3 is attained. In the
alternate case where ¢ < [%J the transmission size is

Ty () =7(Ge,,) =t+1< max |Ecal(2)]) =2t + 1 = Tr(Ecal)-

Ezample 3: (Permutations) Consider the error set of permutation errors, in which vectors may be
perturbed according to any permutation of their bits. This error set, though non-commutative,
affords a simple reconciliation scheme derived from a corresponding error-correcting code Cp;. The
codewords of Cyy are vectors whose rightmost bits are 1 and remaining bits 0. Reconciling two vectors
v4 and vp merely involves transmitting the permutations w4 and wp that transform these vectors
to respective codewords c4,cp € Cy;. Having received, 7, host A can simply compute wgl(cA) to
determine vp if the two vectors differ by a permutation error.

Since the characteristic graph for permutation errors consists of disjoint cliques (one for each code-
word ¢;), the amount of communication required for both verification and reconciliation of permu-
tations of length n vectors is equal to the size of the largest clique:

Ty €)= Tomm) = (3]

5.2 Classical reconciliation

Consider the traditional formulation of the set reconciliation problem, as stated in Section 2.3.
This form of set reconciliation has many applications in networking, including gossip protocols [1,
21, 22], resource discovery [2, 6] and synchronization [3, 4].

In the context of this work, we may view classical set reconciliation as a one-way data reconcili-
ation problem under Hamming errors of weight at most ¢. Corollary 3 shows that the minimum
number of bits needed for such reconciliation when ¢t = n is log,(max, |€(z)|) = 2°. In other
words, the optimal way to surely reconcile two sets in the face of arbitrary additive errors is
to transmit the entire set. On the other hand, if a ¢ is known a priori then the size of the

corresponding error-set is
¢
2b bt
Z(J — gy & 2% (4)

i=0
The upper bound transmission size of bt bits is essentially achieved in [7] using polynomial

interpolation, and can be alternatively achieved by using reconciliation schemes based on BCH
codes.

5.3 Page errors

The model of page errors assumes that errors occur only in the same region. Consider, for sake of
example, that two hosts each have subsets of Z 4, with page regions defined every four elements;
thus the first page contains elements {1,2,3,4}, the next page contains {5,6,7,8}, etc. The
error set Epage for this model contains all functions that corrupt a single page. For example, a
corruption of the first page by a toggling the existence of set elements 1 and 3 is given by

es(z) = z @ 0000 0000 0000 0101

where z is the characteristic vector of the corrupted set. Since |E(z)| = 61 for any z, Corollary 1
implies that one-way set verification requires at most 6 bits of communication. One-way set
reconciliation, on the other hand, requires 6 < Tg(Epage) < log(|E2(X)|) = log(1411) < 11 bits
of communication. Using extended Reed-Solomon codes of length 4, we can attain Ty (Epage) < 4
bits and Tr(Epage) < 8 bits of communication.

In general, if sets are chosen as subsets of Z%b and each page contains p elements any ¢ of which
might be corrupted, then the amount of communication needed for reconciliation when 2% — 0
and 2 — 0 is given by

2t 26

108 Tr(Epage) < log, [Z@P —1) (P)] ~ 2bt (5)
i=0 ¢

bits, whereas a classical function correcting any pt errors would require roughly ptb bits of

communication. The bound in 5 corresponds to the bound in [23] based on using Reed-Solomon

codes for reconciliation of these types of errors.

5.4 Client-server reconciliation

Consider the case of a client host maintaining a subset of data on a serving host. The error set
for verification and reconciliation is the set of unidirectional errors &y, that is e(z) = y,e €&y
if and only if the set v~!(z) C v~!(y), where v~! is the mapping transforming characteristic
vectors to sets. This error set is a commutative, but not bijective.

Consider the characteristic graph of this error set over binary vectors of length n and for up to ¢
unidirectional errors. The vector of all zeroes is clearly contained in a clique of size ¢ consisting
of vectors starting with up to ¢ ones. Applying Corollary 1 we see that verification requires a
transmission size of at least Ty () > ¢+ 1 signals. In fact, this lower bound is easily achievable
since the server can send to the client the number of entries it has, mod ¢, from which the client
can verify equality.

For reconciliation, we note that the vectors in the ball of errors around the all zero vector
must each be colored differently, giving Tr(Ey) > Zfzo (7). Note that this is identical to the
lower bound (4) for reconciling under classical errors. Thus, though it is much easier to verify
unidirectional errors than classical errors, it is just as hard to reconcile under either error set.

6 Conclusions

In this work we have studied the problems of verification and reconciliation of remote data with
a minimum amount of communication. We have demonstrated connections between one-way
data reconciliation/verification, error-control codes, and graph coloring over a general error set.
In particular, we have described in Section 4 how to transform an arbitrary code that corrects
a general class of commutative and bijective errors into an algorithm for data reconciliation,
and wice versa; similarly in Section 3 we have shown how such an error-detecting code can be
used to perform data verification. The quality of the derived error correcting/detecting codes is
dependent on the quality of the chosen data reconciliation/verification schemes, and vice versa,
with the particular example that perfect codes generate optimal schemes. Thus, we have the
following constructive relations over Zg:

length n, size % code detecting &£ — length n, transmission size > 7 verification for &;
length n, size > - code detecting & +— length n, transmission size 7 verification for .

n
length n, size L~ covering code for & — length n, transmission size > 7 reconciliation for &;

length n, size > % code correcting &€ <+— length n, transmission size 7 reconciliation for £.
Nevertheless, there is also a fundamental difference between data communication schemes and
error-control for non-bijective or non-commutative errors, in that the former needs to be agnostic
to the role of communicating parties whereas the latter cannot be.

Using the connections discovered in this paper, we have also presented the following bounds
on the number of signals that need to be transmitted for data verification (T (£)) and data
reconciliation (Tk(€)) for an arbitrary set of corruptions £ that form a characteristic graph Gg:

1(Ge) < Ty (£) < max|E(z)] (6)
max € (z)| <V2(Ge) = Tr(€) <max |£%(z)|. (7)
Both upper bounds (6) and (7) are constructive in that we have described an explicit means of

attaining them for a given error set. As mentioned in Section 1.1, the lower bounds have already
appeared in various forms in the literature.

Finally, we have presented a number of examples throughout the work and in Section 5, thereby
demonstrating the applicability of this work to such diverse areas as testing, file synchronization,
and client-server network updates.

Acknowledgments

The authors wish to thank Alon Orlitsky, Krishnamurthy Viswanathan, and Junan Zhang for
their interest and thoughtful discussions. One of the authors would also like to thank Yaron
Minsky for stimulating discussions and Alexander Vardy for encouragement.

References

[1]

[10]

[11]

[12]

[13]

[14]

R. van Renesse, Y. Minsky, and M. Hayden, “A gossip-style failure detection service,”
in Middleware ’98: IFIP International Conference on Distributed Systems Platforms and
Open Distributed Processing, Nigel Davies, Kerry Raymond, and Jochen Seitz, Eds. 1998,
pp- 55-70, Springer Verlag.

M. Harchol-Balter, T. Leighton, and D. Lewin, “Resource discovery in distributed net-
works,” in 18th Annual ACM-SIGACT/SIGOPS Symposium on Principles of Distributed
Computing, Atlanta, GA, May 1999.

A. Trachtenberg and D. Starobinski, “Towards global synchronization,” Large Scale Net-
works workshop, March 2001, http://ana.lcs.mit.edu/ sollins/LSN-Workshop/papers/.

A. Trachtenberg, D. Starobinski, and S. Agarwal, “Fast PDA synchronization using char-
acteristic polynomial interpolation,” Proc. INFOCOM, June 2002.

R. Durbin, S. Eddy, A. Krogh, and G. Mitchéson, Biological sequence analysis, Cambridge
university press, 1998.

Y. Minsky, A. Trachtenberg, and R. Zippel, “Set reconciliation with nearly optimal com-
munication complexity,” Tech. Rep. TR1999-1778, TR2000-1796,TR2000-1813, Cornell
University, 2000.

Y. Minsky, A. Trachtenberg, and R. Zippel, “Set reconciliation with nearly optimal com-
munication complexity,” in International Symposium on Information Theory, June 2001,
p- 232.

D.P. Siewiorek and R.S. Swarz, Reliable Computer Systems: Design and Evaluation, Digital
Press, 1992.

M. G. Karpovsky and P. Nagvajara, “Design of self-diagnostic boards by signature analysis,”
IEEE Trans. on Industrial Electronics, pp. 241-246, May 1989.

H.S. Witsenhausen, “The zero-error side information problem and chromatic numbers,”
IEEE Trans. on Info. Theory, vol. 22, no. 5, September 1976.

N. Alon and A. Orlitsky, “Source coding and graphs entropies,” IEFEE Transactions on
Information Theory, vol. 42, no. 5, pp. 1329-1339, September 1996.

Alon Orlitsky, “Interactive communication of balanced distributions and correlated files,”
SIAM Journal on Discrete Mathematics, vol. 6, no. 4, pp. 548-564, November 1993.

Alon Orlitsky, “Interactive communication: Balanced distributions, correlated files, and
average-case complexity.,” in Proceedings of the 32nd Annual Symposium on Foundations
of Computer Science, 1991, pp. 228-238.

G. Cormode, M. Paterson, S.C. Sahinhalp, and U. Vishkin, “Communication complexity
of document exchange,” ACM-SIAM Symposium on Discrete Algorithms, January 2000.

[15]

[16]

[17]

[18]

[19]
[20]

[21]

[22]
[23]

T. Schwarz, R.W. Bowdidge, and W.A. Burkhard, “Low cost comparisons of file copies,”
Proceedings of the International Conference on Distributed Computing Systems, pp. 196—
202, 1990.

V.I. Levenstein, “Binary codes capable of correcting spurious insertions and deletions of
ones,” Problems of Information Transmission, vol. 1, no. 1, pp. 8-17, 1965.

V.I. Levenstein, “Efficient reconstruction of sequences,” IEEE Trans. on Info. Theory, vol.
47, pp- 2-22, January 2001.

R.L. Brooks, “On colouring the nodes of a network,” Proc. Cambridge Phil. Soc., vol. 37,
pp- 194-197, 1941.

G.Cohen, I.Honkala, S.Litsyn, and A.Lobstein, Covering Codes, Elsevier, 1997.

F.J. MacWilliams and N.J.A. Sloane, The Theory of Error-Correcting Codes, North-
Holland Publishing Company, New York, 1977.

K. Guo, M. Hayden, R. van Renesse, W. Vogels, and K. P. Birman, “GSGC: An efficient
gossip-style garbage collection scheme for scalable reliable multicast,” Tech. Rep., Cornell
University, December 1997.

M. Hayden and K. Birman, “Probabilistic broadcast,” Tech. Rep., Cornell University, 1996.

K.A.S. Abdel-Ghaffar and A.E. Abbadi, “An optimal strategy for comparing file copies,”
IEEE Transactions on Parallel and Distributed Systems, vol. 5, no. 1, pp. 87-93, January
1994.

