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ABSTRACT 
 
For Networks with t+1 link disjoint spanning trees, we 
propose a fault tolerant deterministic and adaptive unicast 
wormhole routing technique which can tolerate up to 
100% of all faults involving up to t link faults and high 
percentage of faults involving more than t links. This 
technique provides deadlock prevention with message 
delivery times that is almost identical to the case without 
fault tolerance. The proposed algorithm consists of two 
stages. At the first stage, we minimize the set of turns in 
the network graph, which are prohibited for deadlock 
prevention and fault tolerance. At the second stage, 
routing tables are constructed based on the set of 
prohibited turns that minimize average message path 
lengths for adaptive routing. Routing tables constructed 
this way produce a set of output ports sorted in ascending 
order in terms of the distance to the destination. To route 
the messages adaptively we select the next available 
shortest path to the destination. We also present results of 
simulation experiments for average delivery time for 
uniform traffic pattern and saturation points.  
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1. INTRODUCTION 
 

Because of the proliferation of inexpensive 
workstations, ad hoc clustering of workstations, routers or 
switches and communication links became very popular. 
Such clustering of workstations forms an irregular 
topology referred to as Network Of Workstations or 
NOWs. In order to achieve high bandwidth 
communications, recent experimental and commercial 
switches for NOWs implement wormhole routing [1, 2]. 
Since wormhole routing is susceptible to deadlocks 
considerable body of work has been dedicated to 
designing routing algorithms that prevent deadlocks from 
occurring [3-10]. 

 
Existing routing strategies can be classified as 

deterministic [6, 9, 11, 12] and adaptive [3, 5, 8, 9, 13]. In 

deterministic routing the path between a source and 
destination is unique, whereas in adaptive routing network 
state is considered during routing of worms. Adaptive 
routing algorithms that use all permitted ports in every 
router are called maximal [6]. Maximal adaptive routing 
is not fully adaptive, since to prevent deadlocks some 
ports are not available for routing. In our earlier work we 
explored a new deadlock prevention algorithm based on 
turn prohibitions and demonstrated its superior 
performance for low latency message delivery in irregular 
computer networks [14-16].  In this paper, we will 
consider application of turn prohibitions to adaptive fault-
tolerant routing. 

 
Main shortcoming of the deterministic routing is its 

inability to respond to network conditions, such as 
congestion, dynamically [9]. Once the routing tables are 
established, they are stationary until network topology 
changes take place at which time routing tables are 
recomputed. Therefore when an incoming worm is 
determined to use a particular output port, worm is 
blocked until the output port is freed up. This is the case 
whether there are other available output ports to the 
destination or not. Our current studies in this paper 
explore all possible output ports, even at the expense of 
non-minimal distances to the destination. The only 
guidepost is prevention of cycle formation and an output 
port will not be selected if it could lead to deadlocks by 
creating cycles in the channel dependency graph. With 
this approach worms would dynamically avoid potential 
hotspots in the network.  

 
Adaptive routing has been studied extensively. Use 

of virtual channels to provide adaptive routing has been 
studied in both regular [5, 17-20] and irregular [21, 22] 
network topologies. However virtual channel approaches 
involve adding additional buffers and control circuitry. In 
[23], author devised an adaptive routing algorithm based 
on Odd-Even Turn Model in Meshes without virtual 
channels. However this approach is suitable in meshes 
only with non uniform traffic model. To guarantee 
freedom from deadlock formation, in our approach we use 
the TP or Turn Prohibition algorithm [24] to prohibit a 
minimal or near minimal number of input/output pairs of 
ports at various nodes of the network. Minimizing the 



 

 

number of prohibited turns has been shown to correlate to 
lower average message latency in meshes and tori [8] and 
in irregular graphs [10, 15]. After turn prohibition, routing 
tables are computed based on the shortest path between 
source and destination pairs. All paths computed this way 
contain no prohibited turns. Instead of keeping just the 
shortest distance to the destinations, we sort distances in 
increasing order. During on-line routing of messages, we 
pick the unused output port in this sorted list. For very 
light traffic conditions always the output port with the 
shortest distance to the destination will be selected. Hence 
the behavior of the adaptive system under light traffic 
conditions is identical to that of the predictive routing. As 
the traffic generation rate is increased, routing function 
selects the next available output port, which may or may 
not be minimum distance to the destination. In network 
topologies where there are multiple output ports to the 
destination at minimum distance, subsequent selections of 
the output ports will result in choosing the ports with 
optimal distances to destinations. On the other hand as the 
traffic generation rate is increased further where all 
optimal distance ports are used, the routing function 
begins selecting non-optimal ports. In addition, we 
studied adaptivity available in networks that contain 
multiple, t edge-disjoint spanning trees. We try to use this 
property to our advantage during routing. We apply turn 
prohibition rules to break all cycles and therefore prevent 
deadlocks as follows. First, at each node all turns from 
links of one spanning tree to the other trees are prohibited. 
Second, for all cross links that belong to no spanning 
trees, all turns at both ends of the cross-links are 
prohibited. Third, Turn Prohibition algorithm [24] is 
applied to the sub-graph obtained by deleting the edges of 
the t+1 link-disjoint spanning trees from the original 
graph. In the rest of the paper we discuss the Turn 
Prohibition or TP algorithm and TP-based adaptive 
routing algorithm and adaptivity in graphs with t+1 link-
disjoint spanning trees in Section 2. In Section 2 we also 
discuss the theoretical basis for the existence of edge 
disjoint spanning trees in connected graphs. In Section 3 
we present our experimental simulation results and finally 
we offer our conclusions in Section 4. 
 
2. Turn Prohibition and Theoretical Basis for 
Adaptive Routing 
  

In this section we describe briefly the Turn 
Prohibition or the TP-algorithm for creating set of 
prohibited turns Z(G), for a given network graph G with 
N(G) nodes. The TP-algorithm is recursive, in which at 
each step one node is selected and all turns at the selected 
node are prohibited. After turns are prohibited at the 
selected node, the node and all of the incident edges are 
deleted. For example, if after deleting a node a with 
degree da and all edges incident on it, the remaining 
network graph G-a is still connected, then we prohibit all 
da(da-1)/2 turns (c, a, b) and permit all turns (a, b, c). 
Algorithm is invoked recursively as long as there are 

nodes with degree greater than two in the remaining 
graph. 

 
Following properties have been shown [14] to hold: 
 

1. Any cycle in G contains at least one turn 
included in Z(G) and hence all cycles are 
broken. 

2. Fraction of prohibited turns is upper-bounded by 
1/3. 

3. TP-algorithm maintains graph's connectivity. 
For any two connected nodes a and b in the 
original graph, there exists at least one path 
between a and b, without any turns from Z(G). 

4. Set Z(G) is irreducible. Deletion of any turn 
from Z(G) a new cycle in G containing no turns 
from Z(G).  

We note that the TP-algorithm has a complexity of 
O(N2d), where N is the number of nodes in G, and d is the 
maximal degree of the node. After the set Z(G) is 
computed a routing matrix Rx(i,k) is computed for each 
node x, where i is the input port number for an incoming 
message and k is the destination node number. Thus for a 
graph with N nodes where each node is of degree d the 
routing matrix is of size (d+1)xN. Each matrix element is 
a pointer to a list of output ports, where the output ports 
are sorted in an ascending order in terms of the distance 
of the destination node from the present routing node. At 
the head of the list is the output port number with the 
shortest distance to the destination. As an example we use 
the graph in Fig. 1 in which the turn prohibition has been 
applied and prohibited turns are depicted by arcs between 
the two edges involved in the turn. For example we see 
that there are no prohibited turns at node 1 but all turns at 
node 7 are prohibited. At node 11 we also show the port 
numbers for the links. For example for all messages 
arriving at node 11 from input ports 1, 2 and 3 will be 
routed out on port number 4 since all other turns are 
prohibited at this node. The list at this node R11(1,10) 
contains just one element, namely port number 4. 
Similarly the list for R11(4,14)  is  < 2, 1, 3>. Port 
numbers are sorted as shown since the distances from 
node 11 to node 14 are 1, 2, 2 hops from output ports 2, 1, 
and 3 respectively. No differentiation is made between 
output ports that are equidistant to the destination node.  
When an output port is in use, it is flagged as such. For 
example if both output port 2 is busy when a message 
arrives at node 11 from input port 4, then output port 1 
will be used for routing the message destined for node 14. 
Similarly if port 1 is also in use when message arrives 
then output port 3 will be used. 

 
For the network topology in Fig. 2 in which multiple 

edge-disjoint spanning trees can be constructed, we 
explored an alternative adaptive routing. For example in 
the network in Fig. 2, we have shown two spanning trees, 
one drawn with the edges shown as dotted line segments 
and the other with dashed line segments. The third edge 



 

 

type shown as solid line between nodes 1 and 3 is what is 
referred to as crosslinks.  
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Fig.  1 A Network Topology With Prohibited Turns 
Illustrating The Generation Of The Routing Tables for TP 

and Adaptive Routing 
 

In this figure we show the prohibited turns again as 
arcs.  The figure on the right is by a straightforward 
application of the TP-Algorithm as discussed above. The 
set of prohibited turns in the graph on the left is derived as 
follows: 

 
1) First all turns at every node between edges on 

different trees are prohibited. 
2) For each crosslink, we prohibit the turns between 

the crosslink and all tree edges. We do this on 
both ends of the crosslink. 

3) We then delete the edges corresponding to the 
tree edges and apply the TP-algorithm to the 
remaining subgraph. 

 
For the simple graph in Fig. 2, In the first step all 

turns except turns (3,1,2) and (3,1,6) at node 1 and turns 
except (1,3,2), (1,3,4), and (1,3,6) at node 3 are 
prohibited. At the second step turns (3,1,2), (3,1,6), 
(1,3,2), (1,3,4), and (1,3,6) are prohibited. Finally, at the 
third step no turns are prohibited because the remaining 
subgraph is acyclic. After the identification of the set of 
prohibited turns, similar to the previous case, routing 
matrices are constructed for each node where each matrix 
entry is again a pointer to a list of output ports. 
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Fig.  2 Network Topology With Two Edge-
Disjoint Spanning Trees. Turn prohibitions 

shown are based on the spanning trees on the left 
and TP on the right. 

 
Spanning tree based adaptive routing relies on the 

fault-tolerant properties of the underlying network graph 
G. We define S(G) to be a set of turn prohibitions 
breaking all cycles in G and call S(G) to be t-fault-
tolerant if there exists t+1 edge-disjoint paths containing 
no turns from S(G) between any two nodes of G. If S(G) 

is generated by the TP-algorithm, S(G) is 0-fault-tolerant 
since TP guarantees only one path between any two nodes 
of the graph G. Therefore, if a network topology is such 
that multiple edge-disjoint spanning trees can be 
constructed, we could choose to use the additional paths 
as alternate paths between a source node and a destination 
node, if we discover the first path to be in use. We 
therefore expect that for high density graphs, where there 
are many more crosslinks than tree edges, messages 
would be delivered at least as effectively as the TP. We 
expect such network topologies to perform better than 
deterministic TP approach due to (i) existence of multiple 
edge-disjoint paths between any two nodes and (ii) large 
number of crosslinks.  Property (i) assures multiple paths 
for adaptivity and fault tolerance and large number of 
crosslinks assures that during step 3) above, fraction of 
prohibited turns due to crosslinks will not exceed 1/3 due 
to TP property 2. These assumptions are not 
unreasonable. Commercial routers with large numbers of 
ports  easily available for large workgroups and inter-
working workgroups.  We can therefore assert that if S(G) 
is t-fault-tolerant then it is possible to use adaptive 
routing. Routing function Rx(i,k)  =  <p1, p2,…, pt+1>  now  
provides a list of  t+1 output port numbers p1, p2,…, pt+1, 
instead of just one, as the case is for deterministic routing. 

 
Following necessary and sufficient conditions apply 

to fault tolerance. 
1-(Necessary) If S(G) is t-fault-tolerant the so is G. 
2-(Necessary) If S(G) is t-fault-tolerant for t > 0, then 

deleting any node a and its incident edges from the graph 
G, results in a sub-graph with no more than two 
components. 

3-(Necessary) If S(G) is t-fault-tolerant then the 
number of edges M of the graph with N nodes satisfies    
M >(N-1)(t+1) -1. 

4-(Necessary) If S(G) is t-fault-tolerant then the cut-
set size for the graph |C| and minimum node degree in the 
graph, dmin are both greater than t. 

5-(Sufficient) If G is t-fault-tolerant, then graph 
obtained by adding one new node and arbitrarily 
connecting it to at least t+1 nodes of the original graph, 
results in a new t-fault-tolerant graph. 

6-(Sufficient) If two t-fault-tolerant graphs G1 and 
G2 are interconnected by at least t+1 edges then the new 
graph is also t-fault-tolerant. 

For example, two-dimensional torus is 1-fault-
tolerant. Similarly a complete graph K4 and any wheel 
graph Wn [25] are also 1-fault tolerant. 

 
3. Simulation Experiments 
 
 We first studied the existence of multiple spanning 
trees in randomly generated connected d-regular graphs 
and in graphs with an average degree d. In d-regular 
topologies each node has a fixed degree d router All 
topologies are irregular. We generated such topologies 
and then attempted to construct as many spanning trees as 



 

 

possible. After each spanning tree is generated, edges 
participating in the tree are deleted and the remaining 
graph is analyzed again for more spanning trees. At any 
point if the remaining edges in the graph are fewer than 
N-1 we terminate the search for more trees. Our results 
for randomly generated 16-node graphs are shown in Fig. 
3. In ten experiments we found that for degrees greater 
than five, we were always able to construct at least two 
spanning trees. 

 
Fig.  3 Number of Edge-Disjoint Spanning Trees In 

Randomly Generated Connected Graphs 

 
For flit level experiments, an event-driven simulator 

was used to evaluate the performance of the TP-algorithm 
for adaptive wormhole-routed irregular computer 
networks. In all experiments the deterministic TP-
algorithm and the two adaptive routing algorithms are 
compared. We first generated connected irregular graphs 
ranging in size from 8 to 256 nodes. All network channels 
were bi-directional and symmetric. Message queues at 
each node are of infinite length. Output channel/buffer 
contention is resolved using the FIFO queuing policy, 
with each incoming flit being time stamped on its arrival 
at the router input buffer. In our simulations, we used 
mostly uniform traffic pattern where each node can send a 
message to any other node with equal probability. 
Communications arising from nodes are independent and 
identically distributed by the Poisson process with the 
generation rate equal to 1/p (messages/cycle/node, where 
p is the probability of message generation for any cycle, 
at any node). The message length was constant and equal 
to 200 flits and the input/output buffers in the routers 
were 1-flit deep. In addition a separate experiment has 
been conducted that investigated the impact of different 
message lengths on the average latency (delivery time) 
and on saturation points. The experiments were also 
performed for different node degrees. A typical 
simulation would be averaged over a 100 random graphs 
in each of which 100,000 messages were exchanged. 
Generally performances of routing algorithms are 
measured in terms of the average message latencies and 
saturation points, which are considered as the highest 

sustainable message generation rates. These experimental 
assumptions are similar to those reported in [12, 26]. 
 

Our first set of experiments involved comparing the 
performances of deterministic TP and adaptive TP 
approaches as discussed above. We simulated message 
delivery using the low level simulator for both the  
deterministic and adaptive TP. For network sizes of 8, 16, 
32, 64, 128, and 256 nodes we measured the latency and 
computed average latency.  Our results shown in Fig. 4 
and Fig. 5, indicate that in all but the smallest 8-node 
graphs both approaches performed similarly with the 
deterministic TP approach having a slight edge. In the 8-
node graphs the adaptive approach performed marginally 
better. These results are somewhat counter-intuitive until 
we recall that in our experiments we selected the next 
available shortest distance port to route the otherwise 
would be blocked messages. Our experimental results 
indicate that on the average the distances traveled by 
majority of the messages were not minimal. Even though 
we could possibly have acquired the minimal distance 
port if we were to wait a few clock cycles, we chose not 
to wait and took the next available and possibly longer 
distance port. In the figures, ED or Edge Density is the 
probability of the presence of an edge between any two 
nodes.  

 
In the next set of experiments we studied the impact 

of message length on latency. We performed similar 
simulation experiments in 256 node irregular graphs for 
message latency, with the message length as the 
parameter in both the deterministic and adaptive TP 
approaches. We definitely see the slight edge (11% better) 
of the deterministic TP clearly with the longest, 200-flits 
long messages. These results are shown in Fig. 6 and Fig. 
7 below. We see that shorter messages have the 
tendencies to reach saturation further away than the 
longer messages.  

Our last set of experiments explored performance in 
high-density graphs with multiple edge disjoint spanning 
trees.  We used 32-node graphs with two edge-disjoint 
spanning trees and varied the edge density between 0.50 
and 0.95 for all graphs. We than prohibited every turn at 
every node between the two spanning trees. Furthermore, 
we prohibited the turns on both ends of all crosslinks that 
do not belong to any one of the  spanning trees. Finally 
we deleted the edges corresponding to the spanning trees 
and applied the TP-algorithm to the remaining network 
graph. After breaking all possible cycles in the graph we 
then selected the port with the shortest distance as the 
routing port and constructed the deterministic routing 
table. We simulated message delivery in such a network 
and compared the results with the deterministic TP 
approach. Our results are shown in Fig. 8 and Fig. 9.  In 
Fig. 10 and Fig. 11 we show the results of adaptive 
routing using fault tolerant approach closer to origin for 
0-fault tolerant adaptive TP and 1-fault tolerant adaptive 
TP. The simulated network topology is the 32 node 
irregular graph with 0.5 edge density and two edge 



 

 

disjoint spanning trees. The performance in both cases  is 
almost identical in terms of message latency with no 
perceivable difference between the TP and the fault-
tolerant TP approaches. 

 

 
Fig.  4 Average Message Latency Using 

Deterministic TP 

 
Fig.  5 Average Message Latency Using 

Adaptive TP 

 

4. Conclusions 

In this paper we studied deterministic TP, adaptive 
TP and deterministic and adaptive fault-tolerance based 
TP algorithms and compared their performances for 
average message latency. All four algorithms have 
exhibited about the same performance in terms of 
message delivery times. In the fault-tolerance based TP 
approach we have increased the fraction of prohibited 
turns from either the TP or the adaptive TP approaches 
but the performance remained the same with the added 
improved reliability and fault tolerance.  

 

 

Fig.  6 Average Latency With Message Length 
As The Parameter Using TP 

 

 

Fig.  7 Average Latency With Message Length 
As The Parameter Using Adaptive TP 

 
Fig.  8  Average Latency With Edge Density As 

The Parameter Using Deterministic TP 

 



 

 

 
Fig.  9 Average Latency With Edge Density As The 

Parameter Using Deterministic Fault Tolerance Based 
Routing 

 

Fig.  10 Average Message Latency inn 32-Node 
Irregular Topology With ED = 0.5 And Zero 

Fault Tolerance 
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