

FAULT TOLERANT UNICAST WORMHOLE ROUTING IN IRREGULAR
COMPUTER NETWORKS

Mark Karpovsky, Mehmet Mustafa, Raman Mathur

Dept. of Computer Engineering, Reliable Computing Laboratory
Boston University, 8 St. Mary's Street, Boston, MA 02215

United States

ABSTRACT

For Networks with t+1 link disjoint spanning trees, we
propose a fault tolerant deterministic and adaptive unicast
wormhole routing technique which can tolerate up to
100% of all faults involving up to t link faults and high
percentage of faults involving more than t links. This
technique provides deadlock prevention with message
delivery times that is almost identical to the case without
fault tolerance. The proposed algorithm consists of two
stages. At the first stage, we minimize the set of turns in
the network graph, which are prohibited for deadlock
prevention and fault tolerance. At the second stage,
routing tables are constructed based on the set of
prohibited turns that minimize average message path
lengths for adaptive routing. Routing tables constructed
this way produce a set of output ports sorted in ascending
order in terms of the distance to the destination. To route
the messages adaptively we select the next available
shortest path to the destination. We also present results of
simulation experiments for average delivery time for
uniform traffic pattern and saturation points.

KEY WORDS
Fault-tolerant, adaptive, wormhole, turn model, deadlock
prevention

1. INTRODUCTION

Because of the proliferation of inexpensive
workstations, ad hoc clustering of workstations, routers or
switches and communication links became very popular.
Such clustering of workstations forms an irregular
topology referred to as Network Of Workstations or
NOWs. In order to achieve high bandwidth
communications, recent experimental and commercial
switches for NOWs implement wormhole routing [1, 2].
Since wormhole routing is susceptible to deadlocks
considerable body of work has been dedicated to
designing routing algorithms that prevent deadlocks from
occurring [3-10].

Existing routing strategies can be classified as

deterministic [6, 9, 11, 12] and adaptive [3, 5, 8, 9, 13]. In

deterministic routing the path between a source and
destination is unique, whereas in adaptive routing network
state is considered during routing of worms. Adaptive
routing algorithms that use all permitted ports in every
router are called maximal [6]. Maximal adaptive routing
is not fully adaptive, since to prevent deadlocks some
ports are not available for routing. In our earlier work we
explored a new deadlock prevention algorithm based on
turn prohibitions and demonstrated its superior
performance for low latency message delivery in irregular
computer networks [14-16]. In this paper, we will
consider application of turn prohibitions to adaptive fault-
tolerant routing.

Main shortcoming of the deterministic routing is its

inability to respond to network conditions, such as
congestion, dynamically [9]. Once the routing tables are
established, they are stationary until network topology
changes take place at which time routing tables are
recomputed. Therefore when an incoming worm is
determined to use a particular output port, worm is
blocked until the output port is freed up. This is the case
whether there are other available output ports to the
destination or not. Our current studies in this paper
explore all possible output ports, even at the expense of
non-minimal distances to the destination. The only
guidepost is prevention of cycle formation and an output
port will not be selected if it could lead to deadlocks by
creating cycles in the channel dependency graph. With
this approach worms would dynamically avoid potential
hotspots in the network.

Adaptive routing has been studied extensively. Use

of virtual channels to provide adaptive routing has been
studied in both regular [5, 17-20] and irregular [21, 22]
network topologies. However virtual channel approaches
involve adding additional buffers and control circuitry. In
[23], author devised an adaptive routing algorithm based
on Odd-Even Turn Model in Meshes without virtual
channels. However this approach is suitable in meshes
only with non uniform traffic model. To guarantee
freedom from deadlock formation, in our approach we use
the TP or Turn Prohibition algorithm [24] to prohibit a
minimal or near minimal number of input/output pairs of
ports at various nodes of the network. Minimizing the

number of prohibited turns has been shown to correlate to
lower average message latency in meshes and tori [8] and
in irregular graphs [10, 15]. After turn prohibition, routing
tables are computed based on the shortest path between
source and destination pairs. All paths computed this way
contain no prohibited turns. Instead of keeping just the
shortest distance to the destinations, we sort distances in
increasing order. During on-line routing of messages, we
pick the unused output port in this sorted list. For very
light traffic conditions always the output port with the
shortest distance to the destination will be selected. Hence
the behavior of the adaptive system under light traffic
conditions is identical to that of the predictive routing. As
the traffic generation rate is increased, routing function
selects the next available output port, which may or may
not be minimum distance to the destination. In network
topologies where there are multiple output ports to the
destination at minimum distance, subsequent selections of
the output ports will result in choosing the ports with
optimal distances to destinations. On the other hand as the
traffic generation rate is increased further where all
optimal distance ports are used, the routing function
begins selecting non-optimal ports. In addition, we
studied adaptivity available in networks that contain
multiple, t edge-disjoint spanning trees. We try to use this
property to our advantage during routing. We apply turn
prohibition rules to break all cycles and therefore prevent
deadlocks as follows. First, at each node all turns from
links of one spanning tree to the other trees are prohibited.
Second, for all cross links that belong to no spanning
trees, all turns at both ends of the cross-links are
prohibited. Third, Turn Prohibition algorithm [24] is
applied to the sub-graph obtained by deleting the edges of
the t+1 link-disjoint spanning trees from the original
graph. In the rest of the paper we discuss the Turn
Prohibition or TP algorithm and TP-based adaptive
routing algorithm and adaptivity in graphs with t+1 link-
disjoint spanning trees in Section 2. In Section 2 we also
discuss the theoretical basis for the existence of edge
disjoint spanning trees in connected graphs. In Section 3
we present our experimental simulation results and finally
we offer our conclusions in Section 4.

2. Turn Prohibition and Theoretical Basis for
Adaptive Routing

In this section we describe briefly the Turn
Prohibition or the TP-algorithm for creating set of
prohibited turns Z(G), for a given network graph G with
N(G) nodes. The TP-algorithm is recursive, in which at
each step one node is selected and all turns at the selected
node are prohibited. After turns are prohibited at the
selected node, the node and all of the incident edges are
deleted. For example, if after deleting a node a with
degree da and all edges incident on it, the remaining
network graph G-a is still connected, then we prohibit all
da(da-1)/2 turns (c, a, b) and permit all turns (a, b, c).
Algorithm is invoked recursively as long as there are

nodes with degree greater than two in the remaining
graph.

Following properties have been shown [14] to hold:

1. Any cycle in G contains at least one turn
included in Z(G) and hence all cycles are
broken.

2. Fraction of prohibited turns is upper-bounded by
1/3.

3. TP-algorithm maintains graph's connectivity.
For any two connected nodes a and b in the
original graph, there exists at least one path
between a and b, without any turns from Z(G).

4. Set Z(G) is irreducible. Deletion of any turn
from Z(G) a new cycle in G containing no turns
from Z(G).

We note that the TP-algorithm has a complexity of
O(N2d), where N is the number of nodes in G, and d is the
maximal degree of the node. After the set Z(G) is
computed a routing matrix Rx(i,k) is computed for each
node x, where i is the input port number for an incoming
message and k is the destination node number. Thus for a
graph with N nodes where each node is of degree d the
routing matrix is of size (d+1)xN. Each matrix element is
a pointer to a list of output ports, where the output ports
are sorted in an ascending order in terms of the distance
of the destination node from the present routing node. At
the head of the list is the output port number with the
shortest distance to the destination. As an example we use
the graph in Fig. 1 in which the turn prohibition has been
applied and prohibited turns are depicted by arcs between
the two edges involved in the turn. For example we see
that there are no prohibited turns at node 1 but all turns at
node 7 are prohibited. At node 11 we also show the port
numbers for the links. For example for all messages
arriving at node 11 from input ports 1, 2 and 3 will be
routed out on port number 4 since all other turns are
prohibited at this node. The list at this node R11(1,10)
contains just one element, namely port number 4.
Similarly the list for R11(4,14) is < 2, 1, 3>. Port
numbers are sorted as shown since the distances from
node 11 to node 14 are 1, 2, 2 hops from output ports 2, 1,
and 3 respectively. No differentiation is made between
output ports that are equidistant to the destination node.
When an output port is in use, it is flagged as such. For
example if both output port 2 is busy when a message
arrives at node 11 from input port 4, then output port 1
will be used for routing the message destined for node 14.
Similarly if port 1 is also in use when message arrives
then output port 3 will be used.

For the network topology in Fig. 2 in which multiple

edge-disjoint spanning trees can be constructed, we
explored an alternative adaptive routing. For example in
the network in Fig. 2, we have shown two spanning trees,
one drawn with the edges shown as dotted line segments
and the other with dashed line segments. The third edge

type shown as solid line between nodes 1 and 3 is what is
referred to as crosslinks.

1 2

3

4

5

67

8

9

10

11

12

13

14

4

1
2

3

Fig. 1 A Network Topology With Prohibited Turns
Illustrating The Generation Of The Routing Tables for TP

and Adaptive Routing

In this figure we show the prohibited turns again as
arcs. The figure on the right is by a straightforward
application of the TP-Algorithm as discussed above. The
set of prohibited turns in the graph on the left is derived as
follows:

1) First all turns at every node between edges on

different trees are prohibited.
2) For each crosslink, we prohibit the turns between

the crosslink and all tree edges. We do this on
both ends of the crosslink.

3) We then delete the edges corresponding to the
tree edges and apply the TP-algorithm to the
remaining subgraph.

For the simple graph in Fig. 2, In the first step all

turns except turns (3,1,2) and (3,1,6) at node 1 and turns
except (1,3,2), (1,3,4), and (1,3,6) at node 3 are
prohibited. At the second step turns (3,1,2), (3,1,6),
(1,3,2), (1,3,4), and (1,3,6) are prohibited. Finally, at the
third step no turns are prohibited because the remaining
subgraph is acyclic. After the identification of the set of
prohibited turns, similar to the previous case, routing
matrices are constructed for each node where each matrix
entry is again a pointer to a list of output ports.

1

2

3 4 5

6

1

2

3 4 5

6
Fig. 2 Network Topology With Two Edge-
Disjoint Spanning Trees. Turn prohibitions

shown are based on the spanning trees on the left
and TP on the right.

Spanning tree based adaptive routing relies on the

fault-tolerant properties of the underlying network graph
G. We define S(G) to be a set of turn prohibitions
breaking all cycles in G and call S(G) to be t-fault-
tolerant if there exists t+1 edge-disjoint paths containing
no turns from S(G) between any two nodes of G. If S(G)

is generated by the TP-algorithm, S(G) is 0-fault-tolerant
since TP guarantees only one path between any two nodes
of the graph G. Therefore, if a network topology is such
that multiple edge-disjoint spanning trees can be
constructed, we could choose to use the additional paths
as alternate paths between a source node and a destination
node, if we discover the first path to be in use. We
therefore expect that for high density graphs, where there
are many more crosslinks than tree edges, messages
would be delivered at least as effectively as the TP. We
expect such network topologies to perform better than
deterministic TP approach due to (i) existence of multiple
edge-disjoint paths between any two nodes and (ii) large
number of crosslinks. Property (i) assures multiple paths
for adaptivity and fault tolerance and large number of
crosslinks assures that during step 3) above, fraction of
prohibited turns due to crosslinks will not exceed 1/3 due
to TP property 2. These assumptions are not
unreasonable. Commercial routers with large numbers of
ports easily available for large workgroups and inter-
working workgroups. We can therefore assert that if S(G)
is t-fault-tolerant then it is possible to use adaptive
routing. Routing function Rx(i,k) = <p1, p2,…, pt+1> now
provides a list of t+1 output port numbers p1, p2,…, pt+1,
instead of just one, as the case is for deterministic routing.

Following necessary and sufficient conditions apply

to fault tolerance.
1-(Necessary) If S(G) is t-fault-tolerant the so is G.
2-(Necessary) If S(G) is t-fault-tolerant for t > 0, then

deleting any node a and its incident edges from the graph
G, results in a sub-graph with no more than two
components.

3-(Necessary) If S(G) is t-fault-tolerant then the
number of edges M of the graph with N nodes satisfies
M >(N-1)(t+1) -1.

4-(Necessary) If S(G) is t-fault-tolerant then the cut-
set size for the graph |C| and minimum node degree in the
graph, dmin are both greater than t.

5-(Sufficient) If G is t-fault-tolerant, then graph
obtained by adding one new node and arbitrarily
connecting it to at least t+1 nodes of the original graph,
results in a new t-fault-tolerant graph.

6-(Sufficient) If two t-fault-tolerant graphs G1 and
G2 are interconnected by at least t+1 edges then the new
graph is also t-fault-tolerant.

For example, two-dimensional torus is 1-fault-
tolerant. Similarly a complete graph K4 and any wheel
graph Wn [25] are also 1-fault tolerant.

3. Simulation Experiments

 We first studied the existence of multiple spanning
trees in randomly generated connected d-regular graphs
and in graphs with an average degree d. In d-regular
topologies each node has a fixed degree d router All
topologies are irregular. We generated such topologies
and then attempted to construct as many spanning trees as

possible. After each spanning tree is generated, edges
participating in the tree are deleted and the remaining
graph is analyzed again for more spanning trees. At any
point if the remaining edges in the graph are fewer than
N-1 we terminate the search for more trees. Our results
for randomly generated 16-node graphs are shown in Fig.
3. In ten experiments we found that for degrees greater
than five, we were always able to construct at least two
spanning trees.

Fig. 3 Number of Edge-Disjoint Spanning Trees In

Randomly Generated Connected Graphs

For flit level experiments, an event-driven simulator

was used to evaluate the performance of the TP-algorithm
for adaptive wormhole-routed irregular computer
networks. In all experiments the deterministic TP-
algorithm and the two adaptive routing algorithms are
compared. We first generated connected irregular graphs
ranging in size from 8 to 256 nodes. All network channels
were bi-directional and symmetric. Message queues at
each node are of infinite length. Output channel/buffer
contention is resolved using the FIFO queuing policy,
with each incoming flit being time stamped on its arrival
at the router input buffer. In our simulations, we used
mostly uniform traffic pattern where each node can send a
message to any other node with equal probability.
Communications arising from nodes are independent and
identically distributed by the Poisson process with the
generation rate equal to 1/p (messages/cycle/node, where
p is the probability of message generation for any cycle,
at any node). The message length was constant and equal
to 200 flits and the input/output buffers in the routers
were 1-flit deep. In addition a separate experiment has
been conducted that investigated the impact of different
message lengths on the average latency (delivery time)
and on saturation points. The experiments were also
performed for different node degrees. A typical
simulation would be averaged over a 100 random graphs
in each of which 100,000 messages were exchanged.
Generally performances of routing algorithms are
measured in terms of the average message latencies and
saturation points, which are considered as the highest

sustainable message generation rates. These experimental
assumptions are similar to those reported in [12, 26].

Our first set of experiments involved comparing the
performances of deterministic TP and adaptive TP
approaches as discussed above. We simulated message
delivery using the low level simulator for both the
deterministic and adaptive TP. For network sizes of 8, 16,
32, 64, 128, and 256 nodes we measured the latency and
computed average latency. Our results shown in Fig. 4
and Fig. 5, indicate that in all but the smallest 8-node
graphs both approaches performed similarly with the
deterministic TP approach having a slight edge. In the 8-
node graphs the adaptive approach performed marginally
better. These results are somewhat counter-intuitive until
we recall that in our experiments we selected the next
available shortest distance port to route the otherwise
would be blocked messages. Our experimental results
indicate that on the average the distances traveled by
majority of the messages were not minimal. Even though
we could possibly have acquired the minimal distance
port if we were to wait a few clock cycles, we chose not
to wait and took the next available and possibly longer
distance port. In the figures, ED or Edge Density is the
probability of the presence of an edge between any two
nodes.

In the next set of experiments we studied the impact

of message length on latency. We performed similar
simulation experiments in 256 node irregular graphs for
message latency, with the message length as the
parameter in both the deterministic and adaptive TP
approaches. We definitely see the slight edge (11% better)
of the deterministic TP clearly with the longest, 200-flits
long messages. These results are shown in Fig. 6 and Fig.
7 below. We see that shorter messages have the
tendencies to reach saturation further away than the
longer messages.

Our last set of experiments explored performance in
high-density graphs with multiple edge disjoint spanning
trees. We used 32-node graphs with two edge-disjoint
spanning trees and varied the edge density between 0.50
and 0.95 for all graphs. We than prohibited every turn at
every node between the two spanning trees. Furthermore,
we prohibited the turns on both ends of all crosslinks that
do not belong to any one of the spanning trees. Finally
we deleted the edges corresponding to the spanning trees
and applied the TP-algorithm to the remaining network
graph. After breaking all possible cycles in the graph we
then selected the port with the shortest distance as the
routing port and constructed the deterministic routing
table. We simulated message delivery in such a network
and compared the results with the deterministic TP
approach. Our results are shown in Fig. 8 and Fig. 9. In
Fig. 10 and Fig. 11 we show the results of adaptive
routing using fault tolerant approach closer to origin for
0-fault tolerant adaptive TP and 1-fault tolerant adaptive
TP. The simulated network topology is the 32 node
irregular graph with 0.5 edge density and two edge

disjoint spanning trees. The performance in both cases is
almost identical in terms of message latency with no
perceivable difference between the TP and the fault-
tolerant TP approaches.

Fig. 4 Average Message Latency Using

Deterministic TP

Fig. 5 Average Message Latency Using

Adaptive TP

4. Conclusions

In this paper we studied deterministic TP, adaptive
TP and deterministic and adaptive fault-tolerance based
TP algorithms and compared their performances for
average message latency. All four algorithms have
exhibited about the same performance in terms of
message delivery times. In the fault-tolerance based TP
approach we have increased the fraction of prohibited
turns from either the TP or the adaptive TP approaches
but the performance remained the same with the added
improved reliability and fault tolerance.

Fig. 6 Average Latency With Message Length
As The Parameter Using TP

Fig. 7 Average Latency With Message Length
As The Parameter Using Adaptive TP

Fig. 8 Average Latency With Edge Density As

The Parameter Using Deterministic TP

Fig. 9 Average Latency With Edge Density As The

Parameter Using Deterministic Fault Tolerance Based
Routing

Fig. 10 Average Message Latency inn 32-Node
Irregular Topology With ED = 0.5 And Zero

Fault Tolerance

5. Acknowledgment

The authors would like to thank Professor Lev Levitin for
his insightful discussions and Krishna Gali of Boston
University for helping with the fault tolerance based turn
prohibition experiments. This research was partially
sponsored by NSF grant MIP-96630096.

REFERENCES

[1] N. Boden and e. al., Myrinet: A Gigabit per second
Local Area Network, IEEE Micro pp. 29-35, 1995.
[2] R. Horst, W., ServerNet(TM) Deadlock Avoidance
and Fractahedral Topologies, Proc. of IEEE Int. Parallel
Processing Symp. pp. 274-280, 1996.

Fig. 11 Average Message Latency in 32-Node
Irregular Topology With ED = 0.5 And With

One Fault Tolerance

[3] W. Dally and H. Aoki, Deadlock-Free Adaptive
Routing in Multiprocessor Networks Using Virtual
Channels, IEEE Trans. on Parallel and Distributed
Systems vol. 8, pp. 466-475, 1997.
[4] W. Dally and C. Seitz, L., Deadlock-Free Message
Routing in Multiprocessor Interconnection Networks,
IEEE Trans. on Comput. vol. 36, pp. 547-553, 1987.
[5] J. Duato, A New Theory of Deadlock-Free Adaptive
Routing in Wormhole Networks, IEEE Trans. on Parallel
and Distributed Systems vol. 4, pp. 1320-1331, 1993.
[6] J. Duato, S. Yalamanchili and L. Ni, Interconnection
Networks An Engineering Approach, 1997.
[7] E. Fleury and P. Fraigniaud, A General Theory for
Deadlock Avoidance in Wormhole-Routed Networks,
IEEE Trans. on Parallel and Distributed Systems vol. 9,
pp. 626-638, 1998.
[8] C. Glass and L. Ni, The Turn Model for Adaptive
Routing, Journal of ACM vol. 5, pp. 874-902, 1994.
[9] L. Ni, M. and P. McKinley, K., A Survey of
Wormhole Routing Techniques in Directed Networks,
Computer vol. 26, pp. 62-76, 1993.
[10] L. Zakrevski and M. Karpovsky, G., Fault-Tolerant
Message Routing in Computer Networks, Proc. of Int.
Conf. on PDPA-99 pp. 2279-2287, 1999.
[11] R. Boppana, V. and S. Chalasani, Fault-Tolerant
Wormhole Routing Algorithms in Mesh Networks, IEEE
Trans. on Comput. vol. 44, pp. 848-864, 1995.
[12] B. Ciciani and M. Colajani, Paolucci, C.,
Performance Evaluation of Deterministic Routing in k-ary
n-cubes, Parallel Computing no. 24, pp. 2053-2075,
1998.
[13] R. Boppana and S. Chalasani, A Comparison of
Adaptive Wormhole routing Algorithms, Computer
Architecture News vol. 21, no. 2, pp. 351-360, 1993.
[14] L. Zakrevski, S. Jaiswal, L. Levitin and M.
Karpovsky, A New Method for Deadlock Elimination in

Computer Networks With Irregular Topologies, Proc. of
the IASTED Conf. PDCS-99 vol. 1, pp. 396-402, 1999.
[15] L. Zakrevski, S. Jaiswal and M. Karpovsky, Unicast
Message Routing in Communication Networks With
Irregular Topologies, Proc. of CAD-99 1999.
[16] L. Zakrevski, M. Mustafa and M. Karpovsky, Turn
Prohibition Based Routing in Irregular Computer
Networks, Proc. of the IASTED International Conference
on Parallel and Distributed Computing and Systems pp.
175-179, 2000.
[17] Y. Boura, M. and C. Das, R., Efficient Fully
Adaptive Routing in n-Dimensional Meshes, Proc.
International Conf. Distributed Computing Systems pp.
589-596, 1994.
[18] A. A. Chien and J. Kim, Planar Adaptive Routing:
Low-Cost Adaptive Networks for Multiprocessors,
Journal of ACM vol. 42, no. 1, pp. 91-123, 1995.
[19] Glass, J. C and Ni, M. L., Maximally Fully Adaptive
Routing in 2D Meshes, Proc. 1992 International Conf.
Parallel Processing, pp. 101-104, 1992.
[20] H. Linder and C. Harden, An Adaptive and Fault-
Tolerant Wormhole Routing Strategy for k-Ary n-Cubes,
IEEE Trans. Computers vol. 40, no. 1, pp. 2-12, 1991.
[21] F. Silla and J. Duato, On the Use of Virtual
Channels in Networks of Workstations with Irregular
Topology, Proc. of the 1997 Parallel Computing,
Routing, and Communication Workshop, June, 1997.
[22] L. Zakrevski, M. Mustafa and M. Karpovsky, Turn
Prohibition Based Routing in Irregular Computer
Networks, Proc. of PDCS-2000 pp. 174-179, 2000.
[23] G.-M. Chiu, The Odd-Even Turn Model for
Adaptive Routing, IEEE Transactions on Parallel and
Distributed Systems vol. 11, no. 7, pp. 729-737, 2000.
[24] L. Zakrevski, PhD Thesis: Fault-Tolerant Wormhole
Message Routing in Computer Communication Networks,
College of Engineering pp. 21-27, 2000.
[25] F. Harary, Graph Theory, Addison-Wesley Series in
Mathematics, 1998, 43-56.
[26] C. Glass and Ni,L., Fault-Tolerant Wormhole
Routing in Meshes, Proc. of Int. Symp. on Fault-Tolerant
Computing 1993.

	Boston University, 8 St. Mary's Street, Boston, MA 02215
	
	4. Conclusions
	5. Acknowledgment

