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Abstract

Decision diagrams (DDs) for representation of dis-
crete functions permit a direct technology mapping
into multi-level logic networks. In these networks,
the number of logic elements is equal to the number
of non-terminal nodes in DDs. Complexity of inter-
connections is proportional to the number of paths
from the root node to the constant nodes. There-
fore, the complexity of the network can be estimated
through the basic characteristics of DDs. For a given
function f, different DDs may result into networks
of different complexity. Complexity of a network de-
rived from a DD is expressed through the number
of non-terminal nodes, the width, and the number
of paths from the root node to the constant nodes.
When realizations for all functions for a given num-
ber of variables are considered, the problem relates to
the classification of switching functions. In this set-
tings, DDs defined with respect to different spectral
transforms may result in a different number of net-
works required to realize the representative functions
for classes of switching functions.

This paper discusses the number of different multi-
level logic networks of the same complexity derived
from different word-level decision diagrams for func-
tions of three and four variables. These networks
can be used as basic building blocks in realization of

functions of an larger arbitrary number of variables.
For uniform realizations, it might be useful to have a
small number of different basic modules.

1 MULTI-LEVEL
NETWORKS

LOGIC

Multi-level logic networks permit realizations of
switching functions with fewer circuits and reduced
interconnections compared to two-level logic net-
works. However, designs of multi-level logic networks
are far more complex that those of two-level logic net-
works. As is noted in [9], unlike two-level networks,
where there are minimization algorithms, for multi-
level networks there are no established automation
design algorithms and the designs are done by using
combinations of ad hoc methods.

The optimization of multi-level networks may be
directed towards reduction of the number of elements,
the number of levels, i.e., timing optimization, re-
duction of interconnections, and the reduction of the
complexity of the design procedure.

Decision diagrams (DDs) for representation of dis-
crete functions can be directly translated into n-level
networks, n - the number of variables. Therefore,
DDs provide for simple design procedure, at the price
that the number of levels is equal to the number of



Table 1: Expansion rules and their realizations.
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variables, which can be a disadvantage. For that rea-
son, methods for design of small depth networks from
DDs by exploiting associativity of matrix represen-
tations of interconnections have been proposed [4].
These methods are extended to multiple-valued logic
functions and functions in Fibonacci topologies, see
for example, [18].

For simplicity of the design procedures, this ap-
proach is especially efficient for FPGA technology
mapping [3], [10], [13]. Due to that, DD-methods
have been incorporated into commercial FPGA syn-
thesis systems [6].

1.1 Design from DD

The design from DD is quite simple and consists of
traversing of the DD in topological order and replace-
ment of all the non-terminal nodes by the correspond-
ing elements realizing the expansion rules used in def-
inition of the DD. It is assumed that a fixed library
of elements related to the expansion rules in DDs
is provided. In this paper, we consider Binary DDs
(BDDs) [1], Haar spectral transform DDs (HSTDDs)
[17], and Walsh DDs (WDDs) [16].

Example 1 Fig. 1 shows BDD, HSTDT, and WDT
forn = 3. Table 1 shows the expansion rules used in
these DDs and the corresponding elements to realize
these rules.

DDs can be described by their basic characteristics

1. Number of non-terminal nodes (ntn),

Table 2: Characteristics of DDs and logic networks.

DD Logic network
Non-terminal nodes (ntn)  Circuits
Constant nodes (cn) Inputs

Size s = ntn + cn Area

Width (w) Area

Paths ¢ Interconnections

2. Number of constant nodes (cn),
3. Size s = ntn + cn,

4. Width (w) defined as the maximum number of
nodes per a level in DD,

5. Number of paths t.

These characteristics determine the shape of DDs.
Therefore, in what follows, we assume that the shape
of a DD is represented through the number of non-
terminal nodes, the width, and the number of paths.
In circuits synthesis from DDs, each non-terminal
node corresponds to a basic element realizing the
mapping performed at each node to assign a given
f to the DD. In BDDs, the Shannon expansion rule
is used for all the nodes. In WDDs [16], the Walsh
expansion rule is used for all the nodes. In HSTDDs
[17], the Walsh expansion rule is used at the leftmost
nodes in the decision tree (DT), and the Shannon ex-
pansion rule for the other nodes. It is assumed that
these characteristics of DDs correspond to the ba-
sic characteristics of n-level networks, thus, express
their complexity. Table 2 shows the correspondence
between the basic characteristics of DDs and those of
logic networks.

1.2 Complexity of logic networks

Shannon proved in [14] that the least number of con-

tacts L(n) to realize any switching function of n-

variable by an arbitrary contact network is % <

L(n) < 427” as n — oo. Lupanov [8] improved the
o

~ —
n

upper bound to L(n) as n — oo. In [9], it is
shown that when n is sufficiently large, an arbitrary



Figure 1: BDT, HSDT, and WDT for n = 3.

n-variable switching function is realized by at most
2%(2 + ¢€) copies of (1 x 2) multiplexers, where € is an
arbitrary small positive number such that 0 < e < 1.
Since the multiplexers realize the Shannon expansion
rule, the similar complexity applies to BDDs. In this
setting, it is shown in [7] that the average complexity
of BDDs is O(C'Z-). It is believed that these results
extends to arbitrary two input, single output circuits.
Therefore, these results may be applied to other DDs
defined by using different expansion rules related to
basic spectral transform matrices and realized by the
corresponding two input modules.

For a given function f, different DDs produce the
networks of different complexity. Conversely, a num-
ber of different functions can be realized by a given
DD by manipulation with labels at the edges and val-
ues of constant nodes. The probably simplest exam-
ple is realization of a function f and its logic comple-
ment f by BDDs , where it is sufficient to permute the
logic values 0 and 1 of the constant nodes in BDD( f)

to derive BDD(f).

In this paper, we are interested in the number of
different multi-level networks required for realization
of switching functions of n = 3 and n = 4 variables
by BDDs, HSTDDs, and WDDs. These networks
can be used as basic building blocks in realization of
functions of a larger number of variables.

2 CLASSIFICATION OF
SWITCHING FUNCTIONS

Classification of switching functions splits the set of
all switching functions of a given number of variables
into the classes of similar functions, with similarity
expressed through a collection of classification rules.
Chief goal of a classification is to put functions sim-
ilar with respect to the specified rules into the same
class. Functions within the same class may be con-
verted from one to another by using the classification
rules. Each class @ is represented by a representa-
tive function fg. In circuit synthesis, that means
all functions in the class may be realized by the net-
work for the representative function fq after a simple
manipulation corresponding to the application of the
classification rules in the order reverse to that in con-
verting a given f to fg.

The number of different networks to realize all
functions of a given number of variables is equal to
the number of different classes. The LP-classification
is the most compact, and provides the fewer number
of classes.

LP-classification of Switching Func-
tions

LP-classification of switching functions has been
adapted to AND-EXOR representations and pro-
vides fewer number of equivalence classes compared



to NPN classification [12].

Definition 1 LP-classification of switching func-
tions is performed by using the following transforma-
tion rules.

1. LPy(f) =i fo ® i f1, Identity
2. LPI(f) =Zifo®1- fi, r; — 1,
3. LP(f)=1-fo®zifi, T — 1,
4. LPs(f) = zifo &7 f1, T — Ty,
5. LPy(f) = zifo®1- f1, T — 1 =T —
6. LPs(f) =1 fo®Tif1, T —1—x; — 7.

Definition 2 LP-equivalence relation is defined re-
curswely as follows

1L f=f,

2. If f1 = f(x1,22) and fo = f(x1,22), then f1 =
fo.

8. Denote by F an ESOP for a function
flx1,...,x,), and by G an ESOP derived from
F by a LP-transform over F. If g is a function
represented by G, then f = g.

Example 2 Functions f(z,y) =z By and g(x,y) =
1® zy are LP-equivalent functions.

3 NUMBER OF DIFFERENT
NETWORKS

We are interested to determine the number of differ-
ent networks to realize the representative functions
in LP-classification for n = 3 and n = 4 derived
from BDDs, HSTDDs, and WDDs. In the case of
WDDs, the values of switching functions are encoded
as (0,1) — (1,—1) to take advantages of the proper-
ties of Walsh spectrum in this encoding. We deter-
mine the basic characteristics of these DDs, the size,
the width, and the number of paths, and enumerate
the number of different DDs with respect to these
characteristics.

Figure 4: BDD for fg with permuted edges.

3.1 Binary DD

Example 3 Fig. 2, shows BDDs for LP-
representants for n = 3. It follows that BDDs
of six different shapes are required to represent these
functions. Fig. 8 shows that the function f3 may be
represented by a BDD with smaller size by optimiza-
tion based on reordering of variables. Reordering of
variables does mot reduce the size neither change the
shape of any other BDD in this example. However,
Fig. 4 shows that fg can be represented by the BDD
of the same shape as for fi if permuted edges are
allowed. In this figure, the root node and the lefrmost
node at the level corresponding to the variable x4 are
nodes with permuted edges.



Figure 2: BDDs for LP-representants for n = 3.

It should be noted that BDD(f4) and BDD(fs)
have the same number of non-terminal nodes, the
width and the number of paths.

Table 3 shows the number of different BDDs for
LP-representative functions for n = 3 and Table 4
for n = 4. In these tables, and in what follows, when
the width is considered, we show i/j, where 7 is the
number of nodes at the level j in the DD. In Table 4,
for simplicity, we show the BDD classes with few LP-
functions. Ecah of the other LP-representative func-
tions forms a separate singleton BDD class. There-
fore, there is a total of 21 BDD classes, which implies
21 different networks derived from BDDs to realize
all LP-representative functions for n = 4.

Table 3: BDD classes for n = 3.

ntn  w t f
1. 1 /1 1 1
2. 5 2/2 7 2
3. 6 3/3 7 3,4
4. 7 4/3 8 5
5 7 4/3 6 6

3.2 Haar Spectral Transform DD

Haar spectral transform DDs (HSTDDs) represent
functions in terms of the discrete Haar spectra [5].

Table 4: BDD classes for n = 4.

ntn  w t f

1. 5 2/4 6 3,5

2. 8 3/3 11 10, 14, 20, 21, 23
3. 8 3/3 10 13,29

4.7 2/2 12 17,18, 19

5. 8 3/3 13 26,30

The reduction in BDDs is possible due to constant
or equal subvectors in the truth-vector F for a given
function f. Therefore, compact representations are
derived by exploiting properties of the functions rep-
resented. In HSTDDs, the reduction is possible due
to constant and equal subvectors in the Haar spec-
trum for f. Therefore, advantages are taken from
both properties of f and the properties of Haar func-
tions, when their waveforms may relate to the con-
stant or equal subvectors in F', which results in zero or
constant subvectors in the Haar spectrum. For some
functions, HSTDDs may be of smaller size than for
other DDs, since for any class of DDs there are func-
tions for which this particular class provides for the
simplest DDs. This is a justification to consider and
use in practice different DDs.

Table 5 and Table 6 show the number of different
HSTDDs for n = 3 and n = 4. In Table 6, we show
the classes with more that a single element. There



are in total 18 HSTDD classes, which means, 18 dif-
ferent networks derived from HSTDDs are required
to realize all LP-representative functions for n = 4.

Table 5: HSTDD classes for n = 3.

ntn  w t f
1. 1 /1 1 1
2. 5 2/2 7 2
3. 6 3/3 7 3
4. 7 4/3 8 4,5,6

Table 6: HSTDD classes for n = 4.

ntn  w t f

1. 11 4/3 14 7,12, 29

2. 12 5/4 15 8,10, 11,15, 25
3. 12 5/4 14 14,18

4. 12 6/4 13 16,23

5. 13 6/4 15 17,19, 21,27
6. 13 6/4 16 24,26

3.3 Walsh DD

In WDDs, the advantages are taken from proper-
ties of the Walsh spectra of switching functions in
(0,1) — (1, —1] encoding. Due to that, a number of
different functions can be represented by WDDs of
the same shape, similar as a given function f and its
logic complement f can be represented by BDDs that
differ in the order of values of constant nodes. In [15],
it is shown that for n = 3, the total of 63 switching
functions can be represented by WDDs of the same
shape and having three non-terminal nodes.

Table 7 shows the number of different WDDs for
LP-representative functions for n = 3. Table 8 shows
the number of different WDDs for LP-representative
functions for n = 4. In WDs, there are four sin-
gleton WDD classes. Therefore, there are 14 differ-
ent networks derived from WDDs to realize all LP-
representative functions.

Table 7: WDD classes for n = 3.

ntn  w t f
1. 3 1/1 4 1,4
2. 6 3/3 8 2,3,5
3. 4 2/2 5 6

Remark 1 It is shown in [12] that, for a sufficiently
large n, the number of LP-classes for functions of
n variables is nl6™. We denote by K(n) the num-
ber of WDDs for LP-representative functions that are
different in the number of non-terminal nodes, the
width, and the number of paths. If the networks are
derived from WDDs, then K(n) is the number of dif-
ferent networks to realize all LP-representative func-
tions of a given number of variables. From consid-
erations of functions for n = 3 and n = 4, and a
discussion of properties of Walsh spectra of switch-
ing functions, it is believed that K(n) is not larger
than %n!G”, When a LP-representative function is
realized, the same network can be used to realize
other function in the same LP-class through the LP-
classification rules.

Table 8: WDD classes for n = 4.

ntn  w paths f

1. 4 1/1 5 1, 25

2. 8 3/4 10 6, 8, 16

3. 9 4/4 10 29

4. 9 3/3 16 2,24

5.9 3/3 12 18

6. 9 4/4 12 23, 27

7. 10 4/3 12 9, 10, 11, 14
8 10 4/4 16 7, 15, 21, 30
9. 11 5/4 16 3,17, 19
10. 11 4/3 16 13
11. 11 4/3 12 4, 22
12. 11 6/4 12 28
13. 12 5/4 16 5, 12
14. 13  6/4 16 20, 26
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Figure 5: Design method.

4 DESIGN
CLASSES

FROM DD

We assume that for some reasons, as for example,
testing and verification, the uniformity of modules is
an important issue in a particular design.

Consider a function f of n variables that can be
represented as a function ¢ in terms of a subset of
variables in f and subfunctions r; of three or four
variables of f. Therefore, f can be represented as
f=glxy,...xn_g,r1,...,7;), where k = 2,3. For
each r;, we determine the LP-class to which r; be-
longs and select the corresponding DD-module. If
possible, we search over different DDs for that where
the majority of subfunctions rx, belong to the same
DD-class. We realize f by a network consisting of the
subnetwork for g and a subnetwork of possibly iden-
tical DD-modules. Fig. 5 shows the proposed design
method. The method can be generalized recursively
by allowing that each subfunction r; may be repre-
sented in the same way as a function of subfunctions
of three or four variables, etc.

Example 4 Fig. 6 shows the realization of a func-
tion f = T1Xars @T 122710 DT1T2711 DT 122715, where
T8, T10, 11, and r15, may be arbitrary functions that
can be reduced to the LP-representative functions fg,
fi0, fi1, and fi5. Since, all these functions belong
to the same HSTDD-class, it follows that the cor-
responding network has the identical HSDT-modules
HSDT(fs) for these subfunctions.

0 1
\ | | \
0 1 0 1

T fe hT
X X, X; X
%27 HSTDD|™* 1 HSTDD | *> | HSTDD| *2"| HSTDD
iR ves DA L I A bs
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Figure 6: Realization of f in Example 4.

5 CLOSING REMARKS

Technology mapping from decision diagrams results
in n-level networks, n - number of variables, with
average number of elements approximating O(2"/n).
The design procedure is quite simpler and reduced to
the replacement of non-terminal nodes by basic ele-
ments from a fixed circuit library, where each circuit
corresponds to an expansion rule used in DDs.

When there is interest in synthesis using uniform
modules, the realizations uses classification of switch-
ing functions and networks are derived by manipula-
tion with networks realizing the representative func-
tions for the classification classes. In this respect,
the LP-classification is the strongest, since provides
for the fewer number of different classes of switching
functions. The design from DDs can further reduce
the number of different modules, since some represen-
tative functions can be realized by DDs of the same
shape.

We consider the number of BDDs, HSTDDs, and
WDDs of different shape to represent the representa-
tive functions in LP-classification of switching func-
tions for n = 3 and n = 4. Table 9 shows the num-
ber of DD classes for switching functions of n = 3
and n = 4 variables with respect to BDDs, HSTDDs,
and WDDs. There are five, four, and three BDD,



HSTDD, and WDD classes for n = 3, respectively.
For n = 4, there are 21, 18, and 14, BDD, HSTDD,
and WDD classes. Compared to BDDs and HST-
DDs, WDDs provide the fewer number of different
networks to realize all LP-representative functions
due to the properties of Walsh spectra of switching
functions in (1,—1) encoding. It follows that net-
works derived from WDDs have the fewer number of
different basic WDD modules for n = 3 and n = 4
variables.

Table 9: DD classes.

DD n
3] 4
BDD |5 | 21
HSTDD | 4 | 18
WDD | 3|14
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