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ABSTRACT

This paper discusses optimization of decisions diagrams (DDs) by total autocorrelation func-
tions. We present an efficient algorithm for construction of Linearly Transformed Binary Deci-
sion Diagrams (LT-BDDs) and Linearly transformed multi-terminal BDDs (LT-MTBDDs)for
systems of Boolean functions, based on linearization of these functions by the corresponding
autocorrelation functions. Then, we present a method for reduction of sizes of DDs by a level
by level reduction of the width of DDs using the total autocorrelation functions. The approach
provides for a simple procedure for minimization of LT-BDDs and LT-MTBDDs and upper
bounds on their sizes. Experimental results for benchmarks illustrate that the proposed method
on average is very efficient.
key words: Logic synthesis, spectral techniques, decision diagrams, linear transforms, auto-

correlation functions.

I. INTRODUCTION

An n variable k-output discrete function f = (f(@,..., f*~Y) is defined as a mapping
[ x™,C; — P* where x denotes the direct product, C;, i = 1,...n and P are finite sets of
cardinalities ¢; and p, respectively, n, k € N, N is the set of natural numbers.

To get a mathematically tractable model for discrete functions, we assume that C; endorse
the structure of a group, and P is a field [36]. Switching functions are a particular case when
C; = {0,1}, ® for each i, where @ denotes the addition modulo 2 (EXOR), and P = GF(2) is
the Galois field of order 2 [1]. Thus, a multi-output switching function is defined as f : CI —
GF(2)".

Decision diagrams (DDs) are a data structure permitting efficient representation of discrete
functions defined on groups of large orders [27]. DDs are defined for representation of different
classes of discrete functions by using decomposition rules to assign a given f to a DD, [27],
[31], [34]. In this paper, the considerations are restricted to basic DDs for functions on C3.
Binary DDs (BDDs) are the basic concept used to represent single output switching functions
[4]. Multiple-output switching functions are represented by Shared BDDs [21]. Multi-terminal
binary DDs (MTBDDs) [5] are used to represent functions on C§. They can represent sys-

tems of Boolean functions described by the corresponding integer equivalent functions f(x).



Extensions and generalizations of the considerations presented to DDs for functions on arbi?
trary not-necessarily Abelian groups are straightforward [32], [34]. The multiple-valued logic
functions are included as an example of functions on p-adic groups C,, into GF(p), p € N [13].

DDs are derived by the reduction of decision trees (DTs). The reduction is performed by
sharing the isomorphic subtrees and deleting the redundant information from the DT. The
reduction procedure is formalized through the reduction rules [27] adapted to the range of
functions represented and the used decomposition rules.

For many applications, the efficiency of DD representations is determined by the size of the
DD defined as the number of nodes in the DD for a given f. The width of the DD is defined
as the maximal number of nodes at a level, where a level consist of nodes to which the same
variable is assigned. The size and the width determine the area of the DD, which is also an
important parameter in applications and comparisons of different DDs [32].

There are at least two approaches to the reduction of the size of DDs for a given function
or a given class of functions

1. Usage of different DDs defined by using different decomposition rules.

2. Transformations and manipulations with functions represented, such as functional de-

composition, variable ordering, and outputs pairing.

The following example illustrates optimization of DDs by ordering and transformation of
variables.

FEzample 1: Consider the function f(z) = f(x1,z2) given by the vector of function values
F = [f(0), (1), f(2), f(3)]" =[1,2,2,1]". Permutation of variables converts f into a function
fo = f(y1,99), where y; = x3, yo = 1, given by the vector F, = [f(0), f(2), f(1), f(3)]" =

[1,2,2,1]". This vector is generated from F by a permutation o of function values which in
10 00

the matrix notation o = . This permutation of variables does not reduce the

0010
0100
00 01
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size of MTBDD. However, if we select the permutation matrix o; = , which
0 010
01 00

converts f into a function f,, = f(21, 22), where z; = x; @ x5, and 2, :_xg, then the vector of
function values is F,, = [£(0), £(3), £(2), f(1)]T =[1,1,2,2]7. Fig. 1 shows MTBDDs of f, f,,
and f,,. Therefore, by extending the transformations over variables besides the permutation,

we can achieve reduction of DDs.

Fig. 1. MTBDD(f), MTBDD(/,), and MTBDD(f,,).

This example shows that the problem of reduction of sizes of DDs by transformation of
variables can be reduced to determination of an optimal permutation in the vector of function
values which results in a DD of a smaller size.

In spectral interpretation of DDs, the use of different decomposition rules reads as the use of
different spectral transforms to define a DD [35] and various DDs are uniformly considered as
particular examples of Spectral Transform DDs (STDDs) defined as graphic representations
of some Fourier series-like expressions [34].

The main drawback of these approaches is the lack of exact algorithms to determine the
suitable decomposition rules for a given f, which in spectral interpretation of DDs requires
the choice of the most suited spectral transform [35], or to determine the best ordering of
variables or outputs pairing.

The dynamic reordering of variables for optimization of DDs has been introduced for BDDs
in [8] and further improved in [25]. The same problem was considered and elaborated by

many authors in a number of publications, see for example, [6], [19]. The ordering of variables
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is an NP-hard problem [3]. Moreover, it is NP-hard to compute an almost optimal variabld
ordering when a given function is already represented by a BDD [29], [28], [37]. Therefore,
several heuristic algorithms are proposed for reduction of DDs by ordering of variables with
heuristic based on local transformations. For example, this ordering can be implemented as
dynamic sifting [25] and further generalized into group sifting [22], [23].

Linearly transformed BDDs (LT-BDDs) are generalizations of BDDs derived by using the
Shannon expansion with respect to a linear combination of a subset of variables. It is obvious
that the same generalization applies to MTBDDs, since in BDDs and MTBDDs the same
underlying group of binary vectors is assumed as the domain for the functions represented.
Moreover, extensions to STDDs are straightforward.

Construction of LT-BDDs is an interesting and important task, since in many practical
cases LT-BDDs permit exponential reduction of the size compared to the BDDs.

We note that regarding applications in circuit design from DDs, a price for the reduced size
of LT-BDDs is

1. A hardware required to implement a linear transformation of variables.

2. Difficulty to determine an optimal transformation of variables.

A linear transformation over the variables can be represented by an (n X n) matrix over
GF(2), and the required space is small compared to the space required to store a BDD or a
LT-BDD. However, the other requirement can be considered as a bottleneck for applications
of LT-BDDs, although there are heuristic algorithms to determine a suitable linear combi-
nation of variables. The algorithm proposed in [18] splits the set of variables into subsets of
adjacent variables and combines variables within a subset. A similar algorithm implemented
as a windowing procedure is proposed in [10]. The algorithm for construction of LT-BDDs
presented in [12] is an application of evolutionary computation techniques to this problem. In
[19], the algorithm presented in [18] is combined with sifting method used in variable ordering
in DDs [25] with special attention paid to the integration of the method into the existing CAD
systems. Algorithms for efficient manipulations with LT-BDDs, prepared as an extension of
CUDD package [30] further support the applications of LT-BDDs [11].

In this paper, we discuss applications of total autocorrelation functions to reduction of sizes

of SBDDs. We show that a method for linearization of switching functions introduced in [14],

DRAFT



and further elaborated, and extended to multiple-valued functions in [13] provides for a deter?
ministic algorithm to construct an optimal linear transformation of variables in LT-BDDs by
the total autocorrelation functions and the inertia groups of the original systems of Boolean
functions [13]. Then, we show that the maximum values of the total autocorrelation function
can be used as a measure to determine the number of pairs of isomorphic subtrees rooted at
the nodes at the same level in the MTBDD. Using this property, we developed a method for
minimization of the width of MTBDDs level by level, providing at each level the maximum
number of isomorphic subtrees. Under this assumption, the method presented can be consid-
ered as a deterministic method for reduction of sizes of MTBDDs. The differences with the
existing methods, advantages and limitations of the proposed method can be summarized as
follows.

1. Instead of using heuristics (like sifting) to minimize the size L of a MTBDD for a given
function f (this problem is NP-hard [3]) we represent L as L = L,_1+Ly_o+- - -+Ly, where
L; is a number of nodes at the level ¢ and since in most cases L, 1 > L, o > ---> L, we
first construct a set of linearly transformed MTBDDs (LT-MTBDDs), minimizing L,
for the given system of functions, then within this set we construct a subset, minimizing
L, _», etc.

2. The complexity of the proposed approach is determined by the complexity of a procedure
for computing for a given function f it’s total autocorrelation function By. If f is a system
of k Boolean functions of n variables, then By can be computed by the Fast Walsh Trans-
form [13] and Wiener-Khincin theorem [13] by the procedure which will require not more
than min(O(n2"**), 0(2?")) steps. In many cases, if f is defined by a Boolean expression,
then By (and the corresponding optimized MTBDD) can be computed analytically from
[, (see Example 9 below).

3. The proposed approach provides for upper bounds on sizes of MTBDDs for a given f.

4. Experimental results for benchmarks and randomly generated multiple-output switching
functions show that the proposed approach in many cases results in smaller LT-MTBDDs
as compared with the existing approaches such as sifting. In addition to this, unlike the
optimization by ordering of variables, the proposed approach can be applied to symmetric

functions.
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II. AUTOCORRELATION FUNCTIONS

Autocorrelation is very useful in spectral methods for analysis and synthesis of networks
realizing logic functions.

For a given n-variable switching function f, the autocorrelation function By is defined as

B;(r) = z_% @) fz@r), re{0,...,2"—1},

The Winer-Khinchin theorem [13] states a relationship between the autocorrelation function
and Walsh (Fourier) coefficients By = 2"W =" (W f)%.

We note that the autocorrelation function is invariant to the shift operator @ in terms of
which By is defined. Due to that, it performs some compression of data in the sense that several
functions may have the same autocorrelation function By. Fig. 2 illustrates this property of
By. In this figure, p.(z) = f(z @ 7) is a shifted function for f, WK denotes the Wiener-
Khinchin theorem, and Cp, denotes the set of functions having the same autocorrelation
function By. However, although we are sacrificing a part of data, this compression makes
description of problems where the shift is not important very efficient. For example, the
autocorrelation is very useful in the applications where we are interested in the equality of

some function values, and not in their magnitude.

/Y%~ B

J

/

Fig. 2. Autocorrelation functions.

A. Total autocorrelation function

For a system of k switching functions f@(zy,...,2,), i = 0,...,k — 1, the total autocor-
relation function is defined as the sum of autocorrelation functions of each function in the
system. Thus, By(1) = Y120 By (7).

Note that for any 7 # 0, By(7) < Bf(0). Set G;(f) of all values for 7 such that Bs(r) =
By(0) = Sk 52701 #@O(2) is a group with respect to the EXOR as the group operation

z=0
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which is denoted as the inertia group of the system f. 8

We note that the complexity of computing the total autocorrelation function B;(7) by the
Wiener-Khinchin theorem [13] and by the fast Walsh transform [1], [13], expressed in the
number of arithmetic operations does not exceed O(n2"**) and this approach is efficient only
for small k. The straightforward application of the definition of B; requires at most O(2%")
computations for any k. It should be noted that the Walsh transform, can be performed over
BDDs [5], [9], which reduces the limitations to the number of variables in calculations related
to the implementation of Wiener-Khinchin theorem.

Four approaches for calculation of autocorrelation functions by DDs are presented in [33]
providing for possibility of compromising between the space and time restrictions, as well as
between the requirements to calculate all the autocorrelation coefficients, subsets of coefficients
or a single coefficient. In particular, for the considerations in this paper, the most interesting
is the method that for a given function f reduces the calculation of autocorrelation coefficients
to the manipulation with labels in LT-BDD(f) derived by exploiting the recursive structure of
the autocorrelation matrix for f. The space complexity of this method is proportional to the
size of the BDD(f). An experimental verification of some of these methods is given in [20].
For example, for randomly generated Boolean functions of 10 variables with 5,20,35,50,65,80,
and 95 % of elements equal to 1 in the truth-vector, the autocorrelation function is calculated
by the Wiener-Khinchin theorem performed over vector representations, in 0.22, 0.55, 0.50,
0.77, 0.72, 0.50, and 0.27 seconds, respectively. If the calculation is performed over BDDs,
then, it is required 1.82, 3.29, 4.45, 4.78, 4.89, 4.17, and 2.42 seconds.

A generalization of autocorrelation to systems of p-valued m-variable functions or functions

defined over finite Abelian groups is straightforward and can be found e.g. in [13].

III. LINEARIZATION OF BOOLEAN FUNCTIONS

Linearization of Boolean functions assumes representing a given system of Boolean functions
as the superposition of a system of linear Boolean functions and a residual nonlinear part
of minimal complexity. Fig. 2 shows the realization of a given function f based on the
linearization. The network produced consists of a serial connection of a linear and a nonlinear

blocks. The linear block consists of EXOR circuits only. For an n-variable function, complexity
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Linear Non-linear
Z=0X

Fig. 3. Realization by linearization of f.

(number of equivalent two-input gates) of the linear block increases asymptotically no faster
than n?/log, n as n — oo [13], whereas the complexity of the nonlinear block is almost always
an exponentially increasing function of n. Therefore, the complexity of the linear block may
be ignored in linearization problems.

The linearization of a system of Boolean functions is performed to meet a selected crite-
rion for the complexity of the realization of f(z). In this paper, as in [13], we consider the

complexity of f(z) as the minimum number of two input gates to implement f(z).

A. Linearization problem

Consider a complexity criterion as u(v) = [{(z,y)|z,y € CF,d(z,y) = 1,v(z) = v(y)}|,
where d(z,y) denotes the Hamming distance of binary vectors x and y, and v is a Boolean
function of n variables. Then, the linearization problem may be formulated as follows.

For a given f : C% — (s, find a nonsingular (n X n) matrix o over GF(2) such that f is
mapped into another function f, defined by the requirement f(z) = f,(c ® z), and pu(f,)
takes the maximum value over the set of all nonsingular over GF'(2) matrices o,

where @ denotes the multiplication in GF(2) of the matrix ¢ with the vector z.

B. Solution of the linearization problem

The following procedure, which we denote as the Linearization of Switching Functions (LSF)
procedure, provides for a solution of the linearization problem.
LSF-procedure
1. Construct (for example by the Wiener-Khinchin theorem and Fast Walsh Hadamard
Transform (FWHT)) the autocorrelation function By (1) =3, f(z)f(z & 1),
2. Find 7 such that B(m) = maz,.oB(T).
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3. Find 7,7 =1,...,n—1, such that B(r;) = maz,¢r, B(7), where T; = {cqro ® c171 @ - &
Ci1Ti—1}, ¢ € {0,1}. .

4. Construct T = | 75,71, -+,7n_1 | » and determine o = T~', where all the calculations

are in GF(2).

Complexity of solving the linearization problem for a given f in terms of a number of the
required arithmetic operations does not exceed O(n2") and may be much smaller than this
if we have a compact description of f [13]. For randomly generated Boolean functions, the
linearization results in about 20% reduction in the gate counts [17], [16]. Generalization to
multi-valued p-ary logic (p-prime) is straightforward.

We note that a set of 7;, such that B(r;) = B(0) form a group (inertia group [13]) and by
selecting vectors which form a basis for this group as columns of T, the above procedure results
in the minimum number of essential variables for the non-linear part. Example 2 illustrates
this feature, which will be used to determine a quasioptimal linear transformation of variables
in LT-BDDs. We note also that the above linearization procedure maximizes the number of
neighboring minterms, as specified by the minimization criterion, u(v). This feature will be
used in reduction of the size of MTBDDs.

Ezample 2: Table 1 shows a system of two four-variable Boolean functions f® and f(),
and the total autocorrelation function B of this system determined as in the Step 1 of the
LSF-procedure. Fig. 4 shows a direct AND-EXOR realization of this system with two-input
circuits. This realization is chosen for a comparison to the realization by linearization of
f, since in the linearization method the linear part is realized by EXOR. circuits, and the
criterion for minimization is expressed in terms of two-input gates. The maximum value
of B(r) = B(0) = 16 for the inputs 5 = (0101), 10 = (1010), and 15 = (1111). This
performs the Step 2 in the LSF-procedure. Thus, the inertia group for this system is G; =
{(0000), (0101), (1010), (1111)}. As a basis for Gy we take (0101) and (1010), and determine

1 001 1010
01 10 0101 )
T = . Then, o =T ! = , which completes the Step 3 and Step
0 001 0 001
0010 0010

4 in the LSF-procedure.
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Fig. 4. Realization of f(® and f(1) in Example 2.

Matrix T determines a reordering of the truth-vector F of a four-variable function f as

F, = [£(0), £(10), f(5), f(15), f(4), F(14), F(1), F(11), f(8), f(2), F(13), (T), F(12), F(6), F(9), F(3)]".

Table 1 shows functions f{*) and f{) produced by this reordering from f® and ). Thus,

these functions satisfy the relation

fr(2) = flc™' O ).

Therefore, we have for zq, 22, 23,24 in Fig. 3 2y = 21 @ 3, 29 = X9 B x4, 23 = T4, 24 = T3.

From there,

f(O) = \V 29 = (1‘1 @ .1,’3) V (-rQ @ :I;4)

f(l) = 2%y = (1‘1 D 1‘3)(1’2 ¥ 1‘4)7

where V denotes logical OR. It should be noted that both f(© and f( do not essentially
depend on 23 and z4. Fig. 5 shows the corresponding AND-EXOR, realization of this system

of Boolean functions by two-input circuits. Thus, for a comparison with the direct realization

in Fig. 4, the logical OR is realized by using AND and EXOR circuits.

IV. LINEARIZATION OF BOOLEAN FUNCTIONS AND LLT-BDDs

The linearization method for Boolean functions presented in Section 3 can be used for
construction of linear transformations for BDDs and Shared BDDs (SBDDs) for systems of

Boolean functions. This statement will be explained and illustrated by the following example.
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TABLE I

System of Boolean functions.

T1T2T3T4 /%0) f(U B fﬁo) fé”

0 0000 0 0116 0 0
1 0001 1 0] 8 0 0
2 0010 1 0] 3 0 0
3 0011 1 11 8 0 0
4 0100 1 0] 8 1 0
5t 0101 0 0116 1 0
6 0110 1 11 8 1 0
7 0111 1 0] 8 1 0
8 1000 1 0] 8 1 0
9 1001 1 11 8 1 0
10 1010 0 0116 1 0
11 1011 1 0] 8 1 0
12 1100 1 11 8 1 1
13 1101 1 0] 8 1 1
14 1110 1 0] 8 1 1
15 1111 0 0116 1 1
Xy

X2L@ &

el o

w0 D —

(¢) A%

Fig. 5. Realization by linearization of f(® and f() in Example 2.

12
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Ezample 3: Fig. 6 shows SBDD for the system of Boolean functions f(©(z) and £ (4f
defined in Table 1. This SBDD represents the given system in the form of expressions

0 — — — — — — — — — — —
f( - T1T2X304 D T1T2x3 D T1T203 D T1T2T3T4 D T1T2T304 D T1T2X3T4 D T1T2T3 D 12273,

1 _ _ _ _ _ _ _ _
f( ) = T1Tpx3T4 D T5XoT3T4 D T1XT2T3%4 D T1T2T374.

As it is shown in Example 2 where we performed first five steps in the procedure for con-
struction of LT-BDDs defined in what follows, after linearization, this system can be converted
into the system f{(z) and f{))(z), in terms of new variables z;, i = 1,2, 3,4 expressed as the
linear combination of original variables x;, © = 1,2,3,4. Then the given system can be repre-
sented by a SBDD derived by decomposition in terms of this linear combination of variables
as is specified in the Step 6 of the for construction of LT-BDDs. Fig. 7 shows SBDD for the
system of Boolean functions from Example 3 derived by the linearization method, where in
the Step 7 of the procedure for determination of LT-BDDs (see below), the labels at the edges

are determined. This SBDD represents the given system in the following form

FO = (21 @23) @ (11 ® 23) (22 ® 72),
f(l) = (71 @ x3) (02 D 24).
Thus, we can formulate the following procedure for determination of a linear transformation
of variables in LT-BDDs.
Procedure 1: Procedure for generation of LT-BDD
1. Given an n-variable k-output switching function f = (f©@, ..., f*=1).
2. Represent f by the integer-valued equivalent function f(z) = S5-) f@(z)2".
3. Construct characteristic functions f,(z) for f(z), where f.(z) = 1 if f(z) = r and
fr(x) =0 for f(z) #r.
4. Construct a total autocorrelation function for system {f,(z)}.
5. Perform the LSF- procedure described in the Section 3, subsection B, and assign to f(x)
a function f,(z), where z = 0 © z.
6. Determine SBDD for f,(z).
7. Relabel edges in SBDD(f,(z)) by replacing each z; with the corresponding linear combi-

nation of initial variables z;.
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Compared to the present methods for linear transformation of DDs, an advantage is that
the linearization method based on total autocorrelation functions provides for a deterministic
algorithm, in the sense that all steps are uniquely determined. At the same time, the method

can be used for systems of Boolean functions.

Fig. 6. SBDD for the system of functions.

Fig. 7. Shared LT-BDD for the system of functions derived by the linearization method.

V. REDUCTION OF SIZES OF DD

In this section, we present a procedure for minimization of MTBDDs for systems of Boolean
functions by their total autocorrelation functions. It is assumed that a given system is repre-
sented by the integer equivalent function f(z). We note that the reduction of size(MTBDD(f,))
is an NP-complete problem [3]. The proposed procedure provides for the nearly minimal solu-
tions in the following way: it performs minimization of the MTBDD for a given f(xy,...x,)

level by level by starting from the bottom level corresponding to z,. It guarantees the maxi-
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mal number of pairs of equal values of f for input vectors which differ in the value of z,,. Thuk’
for each pair of equal values of f we can reduce a node at the lowest level in the MTBDD.
Then, we perform reordering of pairs of equal values of f, and repeat the procedure at the
new MTBDD for n — 1 variables. Under the assumption that we already minimized the width
at the previous level, we get a minimum width at the present level. The width is determined
by the maximum value of the total autocorrelation function for f(x). This maximum value
may be achieved for many different n-tuples of variables x = (x1,...,2,). Therefore, the
procedure depends on the choice of x in the sense that for different choices of x different
reduction possibilities at the upper levels may be achieved. However, this is a usual feature
of nearly optimal solutions of NP-hard problems.

Unlike the method described in [24], the method presented in this paper can be used for both
single output and multiple-output networks, and extends the class of permutation matrices
which are used in optimization of DDs by ordering of variables. Therefore, the proposed
method always produce MTBDDs with smaller or at most equal sizes compared to the methods
using the ordering of variables.

Procedure 2: K-procedure

1. Assign to a given multi-output function f®, ..., f*=U an integer equivalent function

Qu = fl2) = X 210 (a).
2. Denote by R the range of f(z) assigned to f. For every i € R, construct characteristic

‘ 1, if f(z)=h,
functions f;(z) =
0, otherwise,

3. Calculate the autocorrelation functions By, for each f;(z), and the total autocorrelation
function By = 3, By

4. Determine the n-tuple of input variables 7 = (x,...,z,), where By takes the maximum
value, excepting the value B(0). If there are several choices, select anyone of them.

5. Determine a matrix o,, = o from the requirement 0 ®7 = (0,...,0,1)”, where ® denotes
the multiplication over GF'(2).

6. Determine a function f, such that f,(0c ® z) = f(z). That means, reorder values in a
vector F representing values of f by the mapping = = (z1,...,2,) = z,, where z, =
oo

7. In a vector F, representing the values of f,, perform an encoding of pairs of adjacent
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values by assigning the same symbol to the identical pairs. Denote the resulting functiof
of (n — 1) variables by Q,,_;.

8. Replace f = @, = @,_1 and repeat the procedure.

9. Repeat the previous procedure for ¢ = ¢ — 1 to some k until there are identical pairs in
Q-

10. Determine MTBDD for f,, .

Remark 1: The K-procedure produces the maximal number of identical pairs of values
or subtrees in a MTBDD at the positions pointed by the outgoing edges Z; and z; for all
t=n,n—1,...,1.

Remark 2: (Upper bound on a number of deleted nodes in MTBDDs)

The number of nodes in the resulting MTBDD(f,) is upperbounded by L < 2" — 1 —

Lsw B-i-1)9i-7 where B¥) is the maximum value of the total autocorrelation function

8 2vi=1 Prmax , mazx
at the level k.

Remark 3: For each pair of equal values of f at adjacent positions which is produced by the
reordering of function values determined by the K-procedure, a node in the MTBDD( fo_i—l)
may be deleted form the BDD. It follows, that K-procedure produces the minimal number
of different nodes at each level in the MTBDD(fO_i—I). However, since the pairing of nodes at
the i-th level is performed by the total autocorrelation function for @);, this is not necessarily
the exact minimum of nodes in the MTBDD(f), which may be achieved by an ordering of
elements of F optimal in the sense that produces the MTBDD(f) of the minimum size.

Remark 4: A reordering of elements in F can be represented by the corresponding permu-
tation matrix. We denote by Pg4,, Prreenpp, and Pg, the set of permutation matrices used
in optimization of MTBDDs by ordering of variables, in FreeBDDs [6], and in MTBDDs for
fo determined by K-procedure. Then, Py, C Prreenpp C Pk.

We illustrate the K-procedure by the following example.

Ezxample j: Table 2 shows two functions fy, and f; of four variables. These functions are
represented by the integer equivalent function f = 2f;+ f;. The maximum value for the total
autocorrelation function By is 8 which corresponds to the n-tuple 7,4, = (1111).

Fig. 8 shows Multi-terminal Binary Decision Tree (MTBDT(f)) for f and Fig. 9 shows the

corresponding MTBDD(f). We determine the matrix o4 from the requirement o4 ® e =
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— = s
|
— o ) o

Fig. 9. MTBDD for f.

11 11
0 011 ) ) )
Therefore, we can choose o4 = . We determine the inverse matrix for o4 over
10 01
1110
1011
. 01 11 ) ' _
GF(2) as 0, = . Table 3 shows the mapping of vectors of variables in f by
1101
10 01
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using o, '. Then, we determine 18

F, = [f(0),f(15), f(12), f(3), F(6), £(9), F(10), £(5), F(11), F(4), £(7), F(8), F(13), F(2), F(1), F(14)]",
= 10,6,0,3,5,1,3,2,2,1,3,3,5,3,2,2]",

for 0 = 04. We perform the encoding F, — Q3 of pairs of function values in F, as follows
Q; = [0,4,1,5,6,3,4,2]7, where (0,0) = 0, (0,3) = 4, (1,1) = 1, (1,2) = 5, (2,1) = 6,
(3,3) = 3, (2,2) = 2. Fig. 10 shows Multi-terminal binary decision tree MTBDT(fO_ZI) and
Fig. 11 shows MTBDT(f%—l) with encoded pairs of equal values for constant nodes. We
denote the characteristic functions for 0,1,2,3,4,5,6 in Q3 as f;. There is a single non-trivial
characteristic function fy. It is given by f; = [0,1,0,0,0,0,1,0]T, and its autocorrelation

function is By, =[2,0,0,0,0,0,0,2]".

Fig. 10. MTBDT for f,-.

1 0
Since maw, 0By, (T) = By, (111) = 2, we have for o3 that 03 @ Tpez =030 | 1 | = | 0
1 1
1 10 1 01
Therefore, 05 = | 1 0 1 |,and o3 =| 0 0 1 |. Table 4 shows the mapping of vectors
010 1 11
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Fig. 11. MTBDT for f04_1 with encoded pair of function values.

of variables in Q3 by using o3 '. For f in Table 2, and o = 03, we have
Q, =1[0,2,4,4,3,1,6,5]7. Fig. 12 shows the corresponding MTBDD(Q,,). Therefore, F, =

[£(0), F(15), F(1), F(14), F(12), f(3), F(13), £(2), F(7), F(8), F(6), £(9), F(11), f(4), F(10), F(B)]" ,
=10,0,2,2,0,3,0,3,3,3,1,1,2, 1,1, 2]T. Fig. 13 shows the corresponding final MTBDD(f,).

Fig. 12. MTBDD(Q,.)

Note that the recursive application of o;' and o3 to f is identical to the application of

-1
o 0
a composite mapping 04’,3{ = o, @crg’j, where 03 = ’ , where 0 is (3 x 1) zero
0 1
1 011 1 010 0101
' oot 0010 1101
matrix. Therefore, 0,3 = ® = . Table 5 shows
1 101 1 110 1 0 01
1001 000 1| 1011

the mapping of vectors of variables in f by ﬁsing 04’,3{. It prod_uces the same permutation of

values in F as a recursive application of o, !, and 03! to f, respectively. In this example, the
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TABLE II

Function f and f,.

Function

Characteristic functions

Autocorrelation functions

fo, f1 f(x)

fo(z) fi(2) fal2)  f3(2)

Bo(z) Bi(z) Ba(z) Bs(z) B(2)

00
10
11
11
01
10
01
11
11
01
01
10
00
00
10
00

© O N O Ol A W NN = o8

e S e O et
[ U I O Sy

0
2
3
3
1
2
1
3
3
1
1
2
0
0
2
0

—_
ot

_ O = = O O O O O O O O o o o =
o o o o o = =B O O = o = O O O O
o = O O = O O O O O = o o o = O

0
0
1
1
0
0
0
1
1
0
0
0
0
0
0
0

16

4
2
2
2
0
0
0
0
0
0
0
0
2
2
0
2

N NN OO OO O O O O O NN O o
[N N S R e L R L R S A e == e
[N N N L e L R S . e = L SRS
O = =R RO O O O = k= s &= B

20

size of the MTBDD(f) was reduced from 13 to 9 non-terminal nodes by using the proposed

method.

A. Advantages and limitations of the proposed method

Remark 5: The K-procedure performs the decomposition of f with respect to the expansion

rule f = (2;®- - Dx,) foD (v; B - Dxy,)f1, where fy and f; are co-factors of f for x; ®---®

xp, = 0, and 1, respectively.

The following example illustrates dependency of the solutions on the choice of permutation

matrices o and vectors 7 where the total autocorrelation functions take the maximum values,
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TABLE III

-1
4 -

Mapping of function values by o

T15

15

14

T14

14

x13

13

Z12

12

11

11

Z10

10

Tg

Tg

11

Xt

Te

10

x5

Xyq

6

T3

3

T2

X

To

01]15] 12

TABLE IV

—1
3 -

Mapping of function values by o

T7

Te

x5

Xyq

T3

T2

X

Zo
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TABLE V

Mapping of function values by 04_1 ® 03_1.

Lo | T1 | T2 | T3 | T4 | Ts | e | L7 | Tg | Lg | T10 | T11 | L12 | L13 | T14 | T15
0 0 0] O O} O} O] O 1] 1 1 1 1 1 1 1
0 0| 0} O 1} 1} 1| 1] 0] O 0 0 1 1 1 1
0 0| 1| 1,0} 0} 1| 1] 0] O 1 1 0 0 1 1
0 1{ 0} 1,0} 1} 0] 1| 0] 1 0 1 0 1 0 1
O 1| 2| 3| 4] 5| 6| 7| 8| 9| 10| 11| 12| 13| 14| 15
O 1} 0} 1} 1} 0] 1} 0| 0} 1 0 1 1 0 1 0
o0 1|0} 1y 1} 0} 1| 0] 1] O 1 0 0 1 0 1
O 1|0} 1,0} 1} 0] 0] 1] O 1 0 1 0 1 0
O 1| 1} 0 0} 1} 1| 0] 1] O 0 1 1 0 0 1
O|15| 1|14 12| 3|13| 2| 7| 8 6 9] 11 41 10 5

Fig. 13. MTBDD(f,).

in the cases when there are several maxima in the total autocorrelation function for a given
function f.

Ezample 5: (Dependency on T)
Consider a Boolean function f given by the truth-vector F = [0,0,1,0,1,0,0,0,1,0,0, 1,0, 1,0, 0]".
For this function size(MTBDD(f)) = 9.

The maximum value of the autocorrelation function By(r) = 14 for the inputs 7 = 6,
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1111
0011 ) L
9, and 15. For 7 = 15 and oy4(7 = 15) = , we determine o, (7 = 15) =
10 01
1110
1011 1
01 11
. The elements of the truth-vector for f are reordered as
1 101
1 001
F, = [0,0,0,0,0,0,0,0,1,1,0,1,1,1,0,0]7. We perform encoding of pairs of adjacent values

as Q, = [0,0,0,0,1,2,1,0]T, where (0,0)=0, (1,1)=1, and (0,1)=2. For this function, the

maximum value of the total autocorrelation function max.Bq(;) = 6 for the input 2 = (010).

0 01 010
Foro3(tr=2)=|1 0 0 |,itfollowso;'(r=2)= 1|0 0 1 |, and the corresponding re-
010 100

ordering is Q, = [0,0,0,0,1,1,2,0]7, from where F, = [0,0,0,0,0,0,0,0,1,1,1,1,0,1,0,0]%.
For the resulting f,, size(MTBDD(f,)) = 4.

If for the maximum value of the autocorrelation function By(7), we choose the input 7 = 6,

1000 1000
0110 L 1111
then for o4(7 = 6) = , we determine oy (7 = 6) = . Thus, we
1001 1 011
0 011 1 010

reorder the elements of F for the gi;/en fasF,=1[0,0,0,0,1,1,0, 0,_0, 0,1,0,1, 1;0, 0]%.
For encoding Q, = [0,0,1,0,0,2,1,0]%, where (0,0)) = 0, (1,1) = 1, and (1,0) = 2, the
maximum values of the total autocorrelation function of Q, is 6 for the input 4 = (100).
0 01

For o3(tr =4)= |0 1 0 |, we determine o3 "' (7 = 4) = 03(7 = 4). Therefore, the corre-

1 00
sponding reordering is Q, = [0,0,1,1,0,2,0,0]”, which produces

F, =[0,0,0,0,1,1,1,1,0,0,1,0,0,0,0,0]”. For the resulting f,, we determine size(MTBDD(f,))

D.
Ezample 6: (Dependency on o)
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For f in the previous example, if we chose for the maximum value of B;(r) the input 7 = £3

1100 1 001
_ 0011 _ , 1 0001
and the matrix oy, (7 = 15) = , which requires oy, (7 = 15) = :
1010 1011
0100 11 11

0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0]”. For the en-

—

then we determine the reordering F, =

coding o(Q) = [0,0,0,1,1,2,0,0]7, the maximum value of the total autocorrelation function

110
is max,Bq,(T) = 6 for the input 7 = 7 = (111). For o3(r =7) = | 1 0 1 |, we get
010

1 01
o3'(r=7)=1{0 0 1 |, which induces a reordering Q, = [0,0,0,0,2,0,1,1]”. From there,

111
F, =[0,0,0,0,0,0,0,0,1,0,1,1]". For the resulting f,, size(MTBDD(f,)) = 5.

011

However, if we chose o3,(7 = 7) = | 1 1 0 |, and the corresponding o3, (7 = 7) =
010

0 11

0 0 1|, we get the reordering Q, = [0,0,1,1,0,0,2,0]", which produces the vector

1 01

F, =1[0,0,0,0,1,1,1,1,0,0,0,0,1,0,0,0]%. For the resulting f,, size(MTBDD(f,)) = 5.

The reason for the increased size is that o3,.(7 = 7), unlike o3(7 = 7), did not paired
together sequences of four 0. This pairing in MTBDD(f,) means assignment of identical
subvectors of length four to the same logic value for x;. In this case that is the negative literal
T;. Thanks to that, the subtree rooted in the node pointed by Z;in the MTBDD is reduced
to a single constant node.

The proposed method provides for reduction of a number of subtrees consisting of a non-
terminal node and two constant nodes, since it produces pairs of equal function values. The
larger subtrees, which correspond to the equal subvectors of orders 2%, k > 1 are not taken into
account at this step. The method fails in the case when we chose a permutation matrix which

does not provide a grouping of isomorphic smallest subtrees into a larger subtree. Example 7
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illustrates that feature of the method. %

Example 7: Consider a function f = ToT4 + x9T324 + 12904 + T123T4. The truth-vector for
this function is given by F = [1,0,1,0,0,1,1,0,1,0,1,0,0,1,0,1]". size(MTBDD(f)) = 6
for this truth vector.

The maximum value of By(7) is equal to 12, which means that we may generate six pairs
of equal values for f at the level for x,. Then, the method proposed in this paper produces
MTBDDs with the size equal to 7. However, the ordering of variables approach results in the
MTBDDs of sizes 5, 6, and 7 [24].

However, if we first perform encoding Q = [2,2,3,2,2,2,3,3]", where (1,0) = 2, and
(0,1) = 3, and then apply the proposed method, we get a MTBDD of size 5, by always
taking the smallest value for 7. This follows from the property that in Q, we have five pairs
denoted by 2 and three pairs denoted by 3, which permits an immediate reduction of subtrees
consisting of three non-terminal nodes.

We note that the method proposed in the paper is based on an extended set of allowed
permutation matrices for the inputs, compared to the one used in DD optimization by ordering
of variables. The price for such extension is minor, since the values for f can be easily
determined from f, assigned to f. Therefore, the proposed method permits to derive efficient
solutions which can not be achieved by the ordering of variables. In this respect, the proposed
method relates to the considerations in [2] and [7]. In [2] , the same approach to BDDs
minimization by using an extended set of permutation matrices was proposed starting from
cube representations of functions and performing transformations of cubes. However, no
algorithm or heuristic for determination of a transformation for cubes has been proposed.
Instead, for each given function f, a particular transformation is determined by the inspection
of the characteristics of f. In [7], the method in [2] was extended into the method of truth table
permutation, and further elaborated by proposing two heuristic algorithms for determination
of a suitable permutation of the function values for f permitting reduction of the size of the
BDD for f.

To conclude this section we note that the method proposed in this paper results in BDDs
which are not larger and in most cases smaller than BDDs produced by methods based on

ordering of variables.
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Example 8: Consider a function f = z129x3 + x9x324. The truth-vector for this function 1§
F =10,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1]7. The optimization by ordering of variables produces
a MTBDD of size 5. However, the method proposed in this paper, produces a MTBDD of size
4 in the following way. The maximum value for B(7) = 14 for the inputs 7 =1, 8,9. For sim-
plicity, we choose 7 = 1, which implies o4(7 = 1) is the identity matrix of order 4, and perform

the encoding as Q = [0,0,0,2,0,0,0,1]7. The maximum of the total autocorrelation function
0 01
for Q is 6 and it is achieved for 7 = 4 = (100). For a matrix o3(r =4)= |0 1 0 |, which

1 00
is self-inverse over GF(2), we get the reordering Q, = [0,0,0,0,0,0,2,1]7, which produces

F, =[0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1]%. For thus determined f,, size(MTBDD(f,)) = 4.

B. Modified K-procedure

The approach for design of optimized LT-BDDs described in the previous section was devel-
oped for the case when L,_y > L,_o > ... > Ly, where L; is the number of nodes at the level
corresponding to ;11 in the BDD corresponding to the original ordering of variables. Since
these inequalities are not always satisfied the following simple modification of the proposed
procedure may be very efficient.

Procedure 3: (Modified K-procedure)

1. Compute maz,4By, (T) = By, where f, = f, and n is the number of variables in f,,.

2. Compress f, into f,—, by encoding g-tuples of successive function values for f,, for

g=1,...,n—1.

3. Compute maz; By, = By,. 4. Apply K-procedure to f;.

This modification of the original procedure may increase the amount of computation by the

factor of 2 at most.

C. Analytical computation of autocorrelation functions

We note that total autocorrelation functions and optimal LT-BDDs in many cases may be
computed analytically. To illustrate this point we consider a device implementing an error-
correcting procedure based on a linear code V' of length n with k-information bits [13].

A code V correct errors from set £ C Z7 iff vy @ e # va @ ey for any vy, ve € V and
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n
e1,ea € E. If V correct [ errors, then E contains all 3!_, vectors e with ||e|| # [ and
i

some errors e with ||e|| > [ + 1, where ||e|| is the Hamming weight of e.

A code V is not extendable for a given E iff for any x € ZI' there exists a unique v € V
and a unique e € E such that x = v e, |E| = 2"7*.

A device implementing an error-correcting procedure based on a given V' has n inputs, n
outputs, and for input x produces output e = f(x) such that there exist v € V and x = v @ e.

(Since V' corrects set of errors E, this e is unique.) For this device, we have for the total

‘ . 2", T eV,
aucorrelation function [13] By(r) =
0, 7¢V.
If Vis an (n,k) code, the K-procedure will require k steps. For the resulting optimal
linear transform o, the rows of (hi,..., hy_y) of o form a basis in the null-space for V. Thus,
h 1
o= | , where I is the (k x k) identity matrix, and the corresponding LT-BDD
hn—k
0] I
will have 2("~%) — 1 nodes.
101 10
Ezample 9: Consider a (5,2) code with the generating matrix [13] G =
01 101
It is easy to check that this code can correct all single errors and two double errors 00011,
32, if 7 =00000,10110,01101, 11011
and 10001. In this case, By(r) = , and
0, otherwise,
(1110 0]
10010
oc'=10 1 0 0 1|. Therefore, 2y = 21 ® 23 D T3, 25 = 11 D 74, 23 = To D 5. Fig. 14
00010
00 0O01

shows the resulting opti_mal BDD.

VI. EXPERIMENTAL RESULTS

We performed experiments comparing BDDs and LT-BDDs for benchmark functions used

in logic design and for randomly generated multiple-output switching functions.
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Fig. 14. LT-BDD for the decoder for the (5,2) shortened Hamming code.

We used a program for calculation of autocorrelation functions and performing the Pro-
cedure for linearization of Boolean functions working with vector representations of Boolean
functions. For this reason, the experiments are restricted to functions of a small number of
variables. However, if the calculation are performed over BDDs by using the DD-methods
for computation of Walsh transform, and the Wiener-Khinchin theorem, then the proposed
approach can be applied for functions which can be processed by other DD-methods, since the
main complexity of the proposed method relates to the calculation of the total autocorrelation
functions.

In Table VI, we present numbers of inputs (In), outputs (Out), constant nodes (cn), and
in columns denoted by MTBDD( f) and MTBDD( f,,), we compared numbers of non-terminal
nodes (ntn), whose sum with the numbers of constant nodes produces the size (s), and the
width (w) of the MTBDDs for the initial ordering of variables and LT-MTBDDs derived by the
autocorrelation functions. The column MTBDD(f,) shows the number of non-terminal nodes
and widths of MTBDDs for the optimal orderings of variables determined by the brute force
method based on comparing all possible orderings. The existing methods for optimization
of DDs by variables ordering are heuristics and mostly produce the nearly optimal solutions.
Therefore, the provided comparison is the strongest challenge for the proposed method. This
table presents the results for the method based on autocorrelation functions for the smallest
values for 7 where the autoorrelation functions take the maximum values. The other choices
for 7 and o, may produce smaller LT-MTBDDs.

In Table VII we compare the number of non-terminal nodes of MTBDDs for the initial
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ordering of variables (MTBDD(f)), the optimal ordering (MTBDD(f,)), the initial orderirf8
with negated edges (MTBDD(f,)), the ordering determined by lover-bound sifting method
with negated edges (MTBDD(f,), and by the autocorrelation functions (MTBDD(f,)) for
binary-valued single output randomly generated functions. It should be noted that in the
used package for sifting, the nodes with negated edges are used, while for other methods this
optimization is not performed. This is the reason that for some functions, the numbers of
nodes and the width for DDs produced by lower-bound sifting are smaller than the number
of nodes for optimal ordering of variables without using the negated edges. It is interesting to
note that in some cases, as for example fi, f7, ng, n7, the method based on autocorrelation
functions although without negated edges produces the results close to the sifting with negated
edges.

From these experiments, the following conclusions can be made.

1. The proposed method is very effective when the integer equivalent function f(x) defined
by a given multiple-output function (see [13]) takes a large number of different values,
which however, do not repeat periodically as sequences of order 2%, k = 1,...,n — 1. This
is the case, for example, of n-bit adders. It follows from Table VI that for adders transition
from BDDs to LT-BDDs results in almost 50% reduction of the sizes of the corresponding
decision diagrams.

For adders, the method produces the LT-MTBDDs with minimal width, however, but the
sizes of LT-MTBDDs are larger than in the case of optimal ordering of variables. It should
be noted that reordering of variables does not reduce the widths of MTBDDs for adders.
The self-inverse matrix ¢ describing the optimal ordering of variables for adders can be
derived from the values 7; corresponding to the maximum values of total autocorrelation
functions by writing each 1-bit of 7; in the separate row of o starting from the largest 7;.

For example, for the 2-bit adder, the total autocorrelation function By takes the maximum
10 00

0010
0100
0001
2. The method is less efficient when the equal values of the original function f repeat

value for 7 =5 = (0101) and 7 = 10 = (1010). Therefore, o =

themselves as sequences of order 2*. In the corresponding MTBDDs, these sequences
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result in isomorphic subtrees, which permits reduction of numbers of nodes at the uppéf
levels in the MTBDDs. In these cases, pairing function values at the Hamming distance 1
by the total autocorrelation function may destroy the equal sequences of order 2*, where
k > 1, which results in larger MTBDDs.

As it is discussed in [7], that feature is characteristic for methods using permutations of
function values for multiple-output functions [2], [7]. Since any reordering of variables
is a permutation of function values, the same remark applies to optimization of DDs by
reordering of variables.

The functions conl and ex1010 in Table 6, are examples where the proposed method
reduces both the sizes and the widths of the MTBDD. For the function misex1 the method
provides reduced width and the same size. The function clip is an example where the
proposed method increased the width but not the size. For the function t481, the method
cannot reduce neither the size and the width of the MTBDD. The explanation is that in
the function t481 sequence 1101 repeats itself many times, which permits reduction of a
number of nodes at upper levels resulting in a MTBDD of a smaller size.

The method is inefficient for multiple-output functions whose integer valued equivalent
functions contain few equal values. In these cases, we can not produce large numbers of
pairs of equal values resulting in a reduction of the number of nodes in MTBDDs. The
examples are multipliers and the benchmark function bw.

3. The method is efficient for randomly generated multiple-output functions. It should be
noted that in this case the initial MTBDDs are usually large and the ordering of variables
does not provide for reduction of their sizes. Savings in the number of non-terminal nodes
of MTBDDs for randomly generated functions (see Table 7) range from 1.4% for f3 to
45.06% for ns. Savings in the width of MTBDDs range from 1.06% for fy to 17.86% for
f7 and 20% for fo, and 51.62% for n3. For fg, the method produced the larger MTBDD,
since in this case the random numbers generator produced equal sequences. In some cases,
as for example for ng, the method produced the smaller LT-MTBDsD than for the original
ordering, however, larger than MTBDDs for the optimal orderings.

4. An important feature of the proposed method is that, unlike sifting, it can be applied

to the reduction of MTBDDs of symmetric functions, where the permutation of variables
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does not permit reduction of nodes. Symmetry implies equal sequences of order 2% f&t
some large k in the function values.

First, we perform encoding of such sequences, and after this we apply the method to the
function ¢ of 2% variables derived in this way. Then we determine g, for this function,
and after the decoding we get f, for the initial function f. Table VI in rows 20 to 24
illustrates the method and compares MTBDD(f) and MTBDD(f,) for some symmetric
benchmark functions. For these benchmarks, we first perform encoding of sequences of
four successive input vectors, and then use the proposed method, and perform re-coding
before we determine the size of the MTBDD. For rd84/8, and 9sym/16, we performed

encoding of the sequences of 8 and 16 successive input vectors, respectively.

VII. CLoSING REMARKS

Two important problems in optimization of DD representations, ordering of variables, and
determination of an optimal linear transformation of variables, can be related, expressed, and
solved using total autocorrelation functions. The computational complexity of this approach
does not exceed min(O(n2"** O(2")), where n is the number of variables and k is the num-
ber of functions. The approach permits uniform consideration of single and multiple-output
functions.

We show that the method for linearization of Boolean functions provides for a simple and
efficient algorithm for determination of a nearly optimal linear transformation of variables.
Then, we show that the total autocorrelation function may be used to determine the order
of function values, which recursively determine and minimize the width of each level in the
related MTBDDs. Since the proposed algorithm minimizes a number of nodes at each level,
it results in a reduction of the complexity of MTBDDs. The proposed algorithms for both
ordering of variables and constructing quasioptimal linear transform of variables have simple
software implementations. The algorithms are deterministic in the sense that there are no
heuristic involved at any step of the algorithms. Experiments with benchmarks and with
randomly generated functions illustrate that the proposed method is on average very efficient.

The proposed method performs a larger class of transformations over variables compared to

dynamic reordering and related methods where just the reordering of variables is used. The
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MTBDD(f), MTBDD(f,), and MBTDD(f,) for benchmark and randomly generated functions.

TABLE VI

MTBDD(f) | MTBDD(f,) | MTBDD(f,)
f In | Out | cn | ntn w | ntn w | ntn w
add2 4 3 7 13 6 12 6 8 3
add3 6 4| 15 51 20 | 33 14 | 24 7
add4 8 5 31| 113 30| 78 30 | 64 15
adds 10 6| 63| 289 62 | 171 62 | 160 31
add6 12 71127 | 705 | 126 | 360 126 | 384 63
add7 14 8 | 255 | 1665 | 254 | 741 254 | 896 127
ex1010 10 10 | 177 | 894 | 383 - - | 871 367
misex1 8 11 17 6 17 6 17 5
clip 9 51 33| 339 | 120 | 141 35 | 159 32
t481 16 1 2 32 4 - - | 103 46
rd53 5 3 6 15 51 15 5| 14 5
rd73 7 3 8 28 7| 28 7T\ 17 6
rd84 8 4 9 36 8| 36 8| 23 7
rd84/8 8 4 9 36 8| 36 8| 18 6
9sym 9 1 2 33 6 33 6| 24 5
9sym/16 | 9 1 2 33 6| 33 6 9 3

Randomly generated functions

fa 8 1 2 75 30 | 68 25| 66 24
VE 8 1 2 73 28 | 67 23| 72 27
fs 8 1 2 58 18 | 58 18 | 69 25
f7 8 1 2 72 28 | 70 26 | 67 23
fs 8 3 8| 174 64 | 167 60 | 168 59
fo 8 4| 16 | 222 95 | 216 90 | 219 94
fio 8 3 5| 139 56 | 135 54 | 136 54
nq 8 2 3 84 30| 77 25| 80 26
N 8 2 3 89 29 | 80 26 | 87 27
ns 8 2 3 91 31| 85 27 | 50 15
N4 8 2 3 90 31| 83 24 | 89 28
ns 8 2 3 82 27 | 76 22 | 77 24
ng 8 2 2 68 25| 59 18 | 62 19
ny 8 2 2 72 28 | 64 21| 63 20
ng 8 2 2 72 29| 64 22 | T2 28
ng 8 2 2 73 28 | 69 25| 68 25
n1o 8 2 2| 118 41 | 111 36 | 115 42

32
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TABLE VII

Non-terminal nodes in MTBDDs for initial ordering of variables, optimal ordering, initial ordering with negated

edges, lower-bound sifting with negated edges, and autocorrelation functions.

f | MTBDD(f) | MTBDD(f,) | MTBDD(f,,) | MTBDD(,) | MTBDD(/,)
h 75 68 64 62 66
o 73 67 67 60 72
fo 58 58 52 51 69
fr 72 70 64 62 67
n 84 77 64 62 80
ng 68 59 63 55 62
n; 72 64 65 60 63
ng 72 64 65 58 72
ng 73 69 64 62 68

method can be used to improve the results derived as the output of the dynamic reordering.
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