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AbstratThis paper disusses optimization of deisions diagrams (DDs) by total autoorrelation fun-tions. We present an eÆient algorithm for onstrution of Linearly Transformed Binary Dei-sion Diagrams (LT-BDDs) and Linearly transformed multi-terminal BDDs (LT-MTBDDs)forsystems of Boolean funtions, based on linearization of these funtions by the orrespondingautoorrelation funtions. Then, we present a method for redution of sizes of DDs by a levelby level redution of the width of DDs using the total autoorrelation funtions. The approahprovides for a simple proedure for minimization of LT-BDDs and LT-MTBDDs and upperbounds on their sizes. Experimental results for benhmarks illustrate that the proposed methodon average is very eÆient.key words: Logi synthesis, spetral tehniques, deision diagrams, linear transforms, auto-orrelation funtions. I. IntrodutionAn n variable k-output disrete funtion f = (f (0); : : : ; f (k�1)) is de�ned as a mappingf : �ni=1Ci ! P k, where � denotes the diret produt, Ci, i = 1; : : : n and P are �nite sets ofardinalities i and p, respetively, n; k 2 N , N is the set of natural numbers.To get a mathematially tratable model for disrete funtions, we assume that Ci endorsethe struture of a group, and P is a �eld [36℄. Swithing funtions are a partiular ase whenCi = f0; 1g;� for eah i, where � denotes the addition modulo 2 (EXOR), and P = GF (2) isthe Galois �eld of order 2 [1℄. Thus, a multi-output swithing funtion is de�ned as f : Cn2 !GF (2)k.Deision diagrams (DDs) are a data struture permitting eÆient representation of disretefuntions de�ned on groups of large orders [27℄. DDs are de�ned for representation of di�erentlasses of disrete funtions by using deomposition rules to assign a given f to a DD, [27℄,[31℄, [34℄. In this paper, the onsiderations are restrited to basi DDs for funtions on Cn2 .Binary DDs (BDDs) are the basi onept used to represent single output swithing funtions[4℄. Multiple-output swithing funtions are represented by Shared BDDs [21℄. Multi-terminalbinary DDs (MTBDDs) [5℄ are used to represent funtions on Cn2 . They an represent sys-tems of Boolean funtions desribed by the orresponding integer equivalent funtions f(x).



3Extensions and generalizations of the onsiderations presented to DDs for funtions on arbi-trary not-neessarily Abelian groups are straightforward [32℄, [34℄. The multiple-valued logifuntions are inluded as an example of funtions on p-adi groups Cp into GF (p), p 2 N [13℄.DDs are derived by the redution of deision trees (DTs). The redution is performed bysharing the isomorphi subtrees and deleting the redundant information from the DT. Theredution proedure is formalized through the redution rules [27℄ adapted to the range offuntions represented and the used deomposition rules.For many appliations, the eÆieny of DD representations is determined by the size of theDD de�ned as the number of nodes in the DD for a given f . The width of the DD is de�nedas the maximal number of nodes at a level, where a level onsist of nodes to whih the samevariable is assigned. The size and the width determine the area of the DD, whih is also animportant parameter in appliations and omparisons of di�erent DDs [32℄.There are at least two approahes to the redution of the size of DDs for a given funtionor a given lass of funtions1. Usage of di�erent DDs de�ned by using di�erent deomposition rules.2. Transformations and manipulations with funtions represented, suh as funtional de-omposition, variable ordering, and outputs pairing.The following example illustrates optimization of DDs by ordering and transformation ofvariables.Example 1: Consider the funtion f(x) = f(x1; x2) given by the vetor of funtion valuesF = [f(0); f(1); f(2); f(3)℄T = [1; 2; 2; 1℄T . Permutation of variables onverts f into a funtionf� = f(y1; y2), where y1 = x2, y2 = x1, given by the vetor F� = [f(0); f(2); f(1); f(3)℄T =[1; 2; 2; 1℄T . This vetor is generated from F by a permutation � of funtion values whih inthe matrix notation � = 2666666664 1 0 0 00 0 1 00 1 0 00 0 0 1
3777777775. This permutation of variables does not redue the
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4size of MTBDD. However, if we selet the permutation matrix �1 = 2666666664 1 0 0 00 0 0 10 0 1 00 1 0 0
3777777775, whihonverts f into a funtion f�1 = f(z1; z2), where z1 = x1� x2, and z2 = x2, then the vetor offuntion values is F�1 = [f(0); f(3); f(2); f(1)℄T = [1; 1; 2; 2℄T . Fig. 1 shows MTBDDs of f , f�,and f�1 . Therefore, by extending the transformations over variables besides the permutation,we an ahieve redution of DDs.
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1 1 12 2 2Fig. 1. MTBDD(f), MTBDD(f�), and MTBDD(f�1).This example shows that the problem of redution of sizes of DDs by transformation ofvariables an be redued to determination of an optimal permutation in the vetor of funtionvalues whih results in a DD of a smaller size.In spetral interpretation of DDs, the use of di�erent deomposition rules reads as the use ofdi�erent spetral transforms to de�ne a DD [35℄ and various DDs are uniformly onsidered aspartiular examples of Spetral Transform DDs (STDDs) de�ned as graphi representationsof some Fourier series-like expressions [34℄.The main drawbak of these approahes is the lak of exat algorithms to determine thesuitable deomposition rules for a given f , whih in spetral interpretation of DDs requiresthe hoie of the most suited spetral transform [35℄, or to determine the best ordering ofvariables or outputs pairing.The dynami reordering of variables for optimization of DDs has been introdued for BDDsin [8℄ and further improved in [25℄. The same problem was onsidered and elaborated bymany authors in a number of publiations, see for example, [6℄, [19℄. The ordering of variablesDRAFT



5is an NP-hard problem [3℄. Moreover, it is NP-hard to ompute an almost optimal variableordering when a given funtion is already represented by a BDD [29℄, [28℄, [37℄. Therefore,several heuristi algorithms are proposed for redution of DDs by ordering of variables withheuristi based on loal transformations. For example, this ordering an be implemented asdynami sifting [25℄ and further generalized into group sifting [22℄, [23℄.Linearly transformed BDDs (LT-BDDs) are generalizations of BDDs derived by using theShannon expansion with respet to a linear ombination of a subset of variables. It is obviousthat the same generalization applies to MTBDDs, sine in BDDs and MTBDDs the sameunderlying group of binary vetors is assumed as the domain for the funtions represented.Moreover, extensions to STDDs are straightforward.Constrution of LT-BDDs is an interesting and important task, sine in many pratialases LT-BDDs permit exponential redution of the size ompared to the BDDs.We note that regarding appliations in iruit design from DDs, a prie for the redued sizeof LT-BDDs is1. A hardware required to implement a linear transformation of variables.2. DiÆulty to determine an optimal transformation of variables.A linear transformation over the variables an be represented by an (n � n) matrix overGF (2), and the required spae is small ompared to the spae required to store a BDD or aLT-BDD. However, the other requirement an be onsidered as a bottlenek for appliationsof LT-BDDs, although there are heuristi algorithms to determine a suitable linear ombi-nation of variables. The algorithm proposed in [18℄ splits the set of variables into subsets ofadjaent variables and ombines variables within a subset. A similar algorithm implementedas a windowing proedure is proposed in [10℄. The algorithm for onstrution of LT-BDDspresented in [12℄ is an appliation of evolutionary omputation tehniques to this problem. In[19℄, the algorithm presented in [18℄ is ombined with sifting method used in variable orderingin DDs [25℄ with speial attention paid to the integration of the method into the existing CADsystems. Algorithms for eÆient manipulations with LT-BDDs, prepared as an extension ofCUDD pakage [30℄ further support the appliations of LT-BDDs [11℄.In this paper, we disuss appliations of total autoorrelation funtions to redution of sizesof SBDDs. We show that a method for linearization of swithing funtions introdued in [14℄,DRAFT



6and further elaborated, and extended to multiple-valued funtions in [13℄ provides for a deter-ministi algorithm to onstrut an optimal linear transformation of variables in LT-BDDs bythe total autoorrelation funtions and the inertia groups of the original systems of Booleanfuntions [13℄. Then, we show that the maximum values of the total autoorrelation funtionan be used as a measure to determine the number of pairs of isomorphi subtrees rooted atthe nodes at the same level in the MTBDD. Using this property, we developed a method forminimization of the width of MTBDDs level by level, providing at eah level the maximumnumber of isomorphi subtrees. Under this assumption, the method presented an be onsid-ered as a deterministi method for redution of sizes of MTBDDs. The di�erenes with theexisting methods, advantages and limitations of the proposed method an be summarized asfollows.1. Instead of using heuristis (like sifting) to minimize the size L of a MTBDD for a givenfuntion f (this problem is NP-hard [3℄) we represent L as L = Ln�1+Ln�2+� � �+L1, whereLi is a number of nodes at the level i and sine in most ases Ln�1 � Ln�2 � � � � � L1, we�rst onstrut a set of linearly transformed MTBDDs (LT-MTBDDs), minimizing Ln�1for the given system of funtions, then within this set we onstrut a subset, minimizingLn�2, et.2. The omplexity of the proposed approah is determined by the omplexity of a proedurefor omputing for a given funtion f it's total autoorrelation funtion Bf . If f is a systemof k Boolean funtions of n variables, then Bf an be omputed by the Fast Walsh Trans-form [13℄ and Wiener-Khinin theorem [13℄ by the proedure whih will require not morethan min(O(n2n+k); O(22n)) steps. In many ases, if f is de�ned by a Boolean expression,then Bf (and the orresponding optimized MTBDD) an be omputed analytially fromf , (see Example 9 below).3. The proposed approah provides for upper bounds on sizes of MTBDDs for a given f .4. Experimental results for benhmarks and randomly generated multiple-output swithingfuntions show that the proposed approah in many ases results in smaller LT-MTBDDsas ompared with the existing approahes suh as sifting. In addition to this, unlike theoptimization by ordering of variables, the proposed approah an be applied to symmetrifuntions. DRAFT



7II. Autoorrelation FuntionsAutoorrelation is very useful in spetral methods for analysis and synthesis of networksrealizing logi funtions.For a given n-variable swithing funtion f , the autoorrelation funtion Bf is de�ned asBf (�) = 2n�1Xx=0 f(x)f(x� �); � 2 f0; : : : ; 2n � 1g;The Winer-Khinhin theorem [13℄ states a relationship between the autoorrelation funtionand Walsh (Fourier) oeÆients Bf = 2nW�1(Wf)2.We note that the autoorrelation funtion is invariant to the shift operator � in terms ofwhih Bf is de�ned. Due to that, it performs some ompression of data in the sense that severalfuntions may have the same autoorrelation funtion Bf . Fig. 2 illustrates this property ofBf . In this �gure, '� (x) = f(x � �) is a shifted funtion for f , WK denotes the Wiener-Khinhin theorem, and CBf denotes the set of funtions having the same autoorrelationfuntion Bf . However, although we are sari�ing a part of data, this ompression makesdesription of problems where the shift is not important very eÆient. For example, theautoorrelation is very useful in the appliations where we are interested in the equality ofsome funtion values, and not in their magnitude.
f

jt

Bf
WK

WK

CB

Å

fFig. 2. Autoorrelation funtions.A. Total autoorrelation funtionFor a system of k swithing funtions f (i)(x1; : : : ; xn), i = 0; : : : ; k � 1, the total autoor-relation funtion is de�ned as the sum of autoorrelation funtions of eah funtion in thesystem. Thus, Bf(�) = Pk�1i=0 Bf(i)(�).Note that for any � 6= 0, Bf(�) � Bf (0). Set GI(f) of all values for � suh that Bf(�) =Bf(0) = Pk�1i=0 P2m�1x=0 f (i)(x) is a group with respet to the EXOR as the group operationDRAFT



8whih is denoted as the inertia group of the system f .We note that the omplexity of omputing the total autoorrelation funtion Bf(�) by theWiener-Khinhin theorem [13℄ and by the fast Walsh transform [1℄, [13℄, expressed in thenumber of arithmeti operations does not exeed O(n2n+k) and this approah is eÆient onlyfor small k. The straightforward appliation of the de�nition of Bf requires at most O(22n)omputations for any k. It should be noted that the Walsh transform, an be performed overBDDs [5℄, [9℄, whih redues the limitations to the number of variables in alulations relatedto the implementation of Wiener-Khinhin theorem.Four approahes for alulation of autoorrelation funtions by DDs are presented in [33℄providing for possibility of ompromising between the spae and time restritions, as well asbetween the requirements to alulate all the autoorrelation oeÆients, subsets of oeÆientsor a single oeÆient. In partiular, for the onsiderations in this paper, the most interestingis the method that for a given funtion f redues the alulation of autoorrelation oeÆientsto the manipulation with labels in LT-BDD(f) derived by exploiting the reursive struture ofthe autoorrelation matrix for f . The spae omplexity of this method is proportional to thesize of the BDD(f). An experimental veri�ation of some of these methods is given in [20℄.For example, for randomly generated Boolean funtions of 10 variables with 5,20,35,50,65,80,and 95 % of elements equal to 1 in the truth-vetor, the autoorrelation funtion is alulatedby the Wiener-Khinhin theorem performed over vetor representations, in 0.22, 0.55, 0.50,0.77, 0.72, 0.50, and 0.27 seonds, respetively. If the alulation is performed over BDDs,then, it is required 1.82, 3.29, 4.45, 4.78, 4.89, 4.17, and 2.42 seonds.A generalization of autoorrelation to systems of p-valued m-variable funtions or funtionsde�ned over �nite Abelian groups is straightforward and an be found e.g. in [13℄.III. Linearization of Boolean FuntionsLinearization of Boolean funtions assumes representing a given system of Boolean funtionsas the superposition of a system of linear Boolean funtions and a residual nonlinear partof minimal omplexity. Fig. 2 shows the realization of a given funtion f based on thelinearization. The network produed onsists of a serial onnetion of a linear and a nonlinearbloks. The linear blok onsists of EXOR iruits only. For an n-variable funtion, omplexityDRAFT
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Linear Non-linearFig. 3. Realization by linearization of f .(number of equivalent two-input gates) of the linear blok inreases asymptotially no fasterthan n2= log2 n as n!1 [13℄, whereas the omplexity of the nonlinear blok is almost alwaysan exponentially inreasing funtion of n. Therefore, the omplexity of the linear blok maybe ignored in linearization problems.The linearization of a system of Boolean funtions is performed to meet a seleted rite-rion for the omplexity of the realization of f(x). In this paper, as in [13℄, we onsider theomplexity of f(x) as the minimum number of two input gates to implement f(x).A. Linearization problemConsider a omplexity riterion as �(�) = jf(x; y)jx; y 2 Cn2 ; d(x; y) = 1; �(x) = �(y)gj,where d(x; y) denotes the Hamming distane of binary vetors x and y, and � is a Booleanfuntion of n variables. Then, the linearization problem may be formulated as follows.For a given f : Cn2 ! C2, �nd a nonsingular (n � n) matrix � over GF (2) suh that f ismapped into another funtion f� de�ned by the requirement f(x) = f�(� � x), and �(f�)takes the maximum value over the set of all nonsingular over GF (2) matries �,where � denotes the multipliation in GF (2) of the matrix � with the vetor x.B. Solution of the linearization problemThe following proedure, whih we denote as the Linearization of Swithing Funtions (LSF)proedure, provides for a solution of the linearization problem.LSF-proedure1. Construt (for example by the Wiener-Khinhin theorem and Fast Walsh HadamardTransform (FWHT)) the autoorrelation funtion Bf (�) = Px f(x)f(x� �),2. Find �0 suh that B(�0) = max� 6=0B(�). DRAFT



103. Find �i, i = 1; : : : ; n� 1, suh that B(�i) = max� =2TiB(�), where Ti = f0�0� 1�1� � � ��i�1�i�1g, i 2 f0; 1g.4. Construt T = � �0; �1; � � � ; �n�1 �T , and determine � = T�1, where all the alulationsare in GF (2).Complexity of solving the linearization problem for a given f in terms of a number of therequired arithmeti operations does not exeed O(n2n) and may be muh smaller than thisif we have a ompat desription of f [13℄. For randomly generated Boolean funtions, thelinearization results in about 20% redution in the gate ounts [17℄, [16℄. Generalization tomulti-valued p-ary logi (p-prime) is straightforward.We note that a set of �i, suh that B(�i) = B(0) form a group (inertia group [13℄) and byseleting vetors whih form a basis for this group as olumns of T, the above proedure resultsin the minimum number of essential variables for the non-linear part. Example 2 illustratesthis feature, whih will be used to determine a quasioptimal linear transformation of variablesin LT-BDDs. We note also that the above linearization proedure maximizes the number ofneighboring minterms, as spei�ed by the minimization riterion, �(�). This feature will beused in redution of the size of MTBDDs.Example 2: Table 1 shows a system of two four-variable Boolean funtions f (0) and f (1),and the total autoorrelation funtion B of this system determined as in the Step 1 of theLSF-proedure. Fig. 4 shows a diret AND-EXOR realization of this system with two-inputiruits. This realization is hosen for a omparison to the realization by linearization off , sine in the linearization method the linear part is realized by EXOR iruits, and theriterion for minimization is expressed in terms of two-input gates. The maximum valueof B(�) = B(0) = 16 for the inputs 5 = (0101), 10 = (1010), and 15 = (1111). Thisperforms the Step 2 in the LSF-proedure. Thus, the inertia group for this system is GI =f(0000); (0101); (1010); (1111)g. As a basis for GI we take (0101) and (1010), and determineT = 2666666664 1 0 0 10 1 1 00 0 0 10 0 1 0
3777777775. Then, � = T�1 = 2666666664 1 0 1 00 1 0 10 0 0 10 0 1 0

3777777775, whih ompletes the Step 3 and Step4 in the LSF-proedure. DRAFT
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(1  )Fig. 4. Realization of f (0) and f (1) in Example 2.Matrix T determines a reordering of the truth-vetor F of a four-variable funtion f asF� = [f(0); f(10); f(5); f(15); f(4); f(14); f(1); f(11); f(8); f(2); f(13); f(7); f(12); f(6); f(9); f(3)℄T:Table 1 shows funtions f (0)� and f (1)� produed by this reordering from f (0) and f (1). Thus,these funtions satisfy the relationf�(x) = f(��1 � x):Therefore, we have for z1; z2; z3; z4 in Fig. 3 z1 = x1 � x3, z2 = x2 � x4, z3 = x4, z4 = x3.From there, f (0) = z1 _ z2 = (x1 � x3) _ (x2 � x4)f (1) = z1z2 = (x1 � x3)(x2 � x4);where _ denotes logial OR. It should be noted that both f (0) and f (1) do not essentiallydepend on z3 and z4. Fig. 5 shows the orresponding AND-EXOR realization of this systemof Boolean funtions by two-input iruits. Thus, for a omparison with the diret realizationin Fig. 4, the logial OR is realized by using AND and EXOR iruits.IV. Linearization of Boolean funtions and LT-BDDsThe linearization method for Boolean funtions presented in Setion 3 an be used foronstrution of linear transformations for BDDs and Shared BDDs (SBDDs) for systems ofBoolean funtions. This statement will be explained and illustrated by the following example.DRAFT
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s nFig. 5. Realization by linearization of f (0) and f (1) in Example 2. DRAFT



13Example 3: Fig. 6 shows SBDD for the system of Boolean funtions f (0)(x) and f (1)(x)de�ned in Table 1. This SBDD represents the given system in the form of expressionsf (0) = x1x2x3x4 � x1x2x3 � x1x2x3 � x1x2x3x4 � x1x2x3x4 � x1x2x3x4 � x1x2x3 � x1x2x3;f (1) = x1x0x3x4 � x5x2x3x4 � x1x2x3x4 � x1x2x3x4:As it is shown in Example 2 where we performed �rst �ve steps in the proedure for on-strution of LT-BDDs de�ned in what follows, after linearization, this system an be onvertedinto the system f (0)� (z) and f (1)� (z), in terms of new variables zi, i = 1; 2; 3; 4 expressed as thelinear ombination of original variables xi, i = 1; 2; 3; 4. Then the given system an be repre-sented by a SBDD derived by deomposition in terms of this linear ombination of variablesas is spei�ed in the Step 6 of the for onstrution of LT-BDDs. Fig. 7 shows SBDD for thesystem of Boolean funtions from Example 3 derived by the linearization method, where inthe Step 7 of the proedure for determination of LT-BDDs (see below), the labels at the edgesare determined. This SBDD represents the given system in the following formf (0) = (x1 � x3)� (x1 � x3)(x2 � x4);f (1) = (x1 � x3)(x2 � x4):Thus, we an formulate the following proedure for determination of a linear transformationof variables in LT-BDDs.Proedure 1: Proedure for generation of LT-BDD1. Given an n-variable k-output swithing funtion f = (f (0); : : : ; f (k�1)).2. Represent f by the integer-valued equivalent funtion f(x) = Pk�1i=0 f (i)(x)2i.3. Construt harateristi funtions fr(x) for f(x), where fr(x) = 1 if f(x) = r andfr(x) = 0 for f(x) 6= r.4. Construt a total autoorrelation funtion for system ffr(x)g.5. Perform the LSF- proedure desribed in the Setion 3, subsetion B, and assign to f(x)a funtion f�(z), where z = � � x.6. Determine SBDD for f�(z).7. Relabel edges in SBDD(f�(z)) by replaing eah zi with the orresponding linear ombi-nation of initial variables xi. DRAFT



14Compared to the present methods for linear transformation of DDs, an advantage is thatthe linearization method based on total autoorrelation funtions provides for a deterministialgorithm, in the sense that all steps are uniquely determined. At the same time, the methodan be used for systems of Boolean funtions.
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15mal number of pairs of equal values of f for input vetors whih di�er in the value of xn. Thus,for eah pair of equal values of f we an redue a node at the lowest level in the MTBDD.Then, we perform reordering of pairs of equal values of f , and repeat the proedure at thenew MTBDD for n�1 variables. Under the assumption that we already minimized the widthat the previous level, we get a minimum width at the present level. The width is determinedby the maximum value of the total autoorrelation funtion for f(x). This maximum valuemay be ahieved for many di�erent n-tuples of variables x = (x1; : : : ; xn). Therefore, theproedure depends on the hoie of x in the sense that for di�erent hoies of x di�erentredution possibilities at the upper levels may be ahieved. However, this is a usual featureof nearly optimal solutions of NP-hard problems.Unlike the method desribed in [24℄, the method presented in this paper an be used for bothsingle output and multiple-output networks, and extends the lass of permutation matrieswhih are used in optimization of DDs by ordering of variables. Therefore, the proposedmethod always produe MTBDDs with smaller or at most equal sizes ompared to the methodsusing the ordering of variables.Proedure 2: K-proedure1. Assign to a given multi-output funtion f (0); : : : ; f (k�1), an integer equivalent funtionQn = f(x) = Pk�1�ii=0 2if (i)(x).2. Denote by R the range of f(z) assigned to f . For every i 2 R, onstrut harateristifuntions fi(x) = 8><>: 1; if f(x) = h;0; otherwise; .3. Calulate the autoorrelation funtions Bfi for eah fi(x), and the total autoorrelationfuntion Bf = PiBf(i) .4. Determine the n-tuple of input variables � = (x1; : : : ; xn), where Bf takes the maximumvalue, exepting the value Bf (0). If there are several hoies, selet anyone of them.5. Determine a matrix �n = � from the requirement �� � = (0; : : : ; 0; 1)T , where � denotesthe multipliation over GF (2).6. Determine a funtion f� suh that f�(� � x) = f(x). That means, reorder values in avetor F representing values of f by the mapping x = (x1; : : : ; xn) ! x�, where x� =��1 � x.7. In a vetor F� representing the values of f�, perform an enoding of pairs of adjaentDRAFT



16values by assigning the same symbol to the idential pairs. Denote the resulting funtionof (n� 1) variables by Qn�1.8. Replae f = Qn = Qn�1 and repeat the proedure.9. Repeat the previous proedure for i = i � 1 to some k until there are idential pairs inQk.10. Determine MTBDD for f�k .Remark 1: The K-proedure produes the maximal number of idential pairs of valuesor subtrees in a MTBDD at the positions pointed by the outgoing edges xi and xi for alli = n; n� 1; : : : ; 1.Remark 2: (Upper bound on a number of deleted nodes in MTBDDs)The number of nodes in the resulting MTBDD(f�) is upperbounded by L � 2n � 1 �18 Pni=1B(n�i�1)max 2i�7, where B(k)max is the maximum value of the total autoorrelation funtionat the level k.Remark 3: For eah pair of equal values of f at adjaent positions whih is produed by thereordering of funtion values determined by the K-proedure, a node in the MTBDD(f��1i )may be deleted form the BDD. It follows, that K-proedure produes the minimal numberof di�erent nodes at eah level in the MTBDD(f��1i ). However, sine the pairing of nodes atthe i-th level is performed by the total autoorrelation funtion for Qi, this is not neessarilythe exat minimum of nodes in the MTBDD(f), whih may be ahieved by an ordering ofelements of F optimal in the sense that produes the MTBDD(f) of the minimum size.Remark 4: A reordering of elements in F an be represented by the orresponding permu-tation matrix. We denote by Pdv, PFreeBDD, and PK, the set of permutation matries usedin optimization of MTBDDs by ordering of variables, in FreeBDDs [6℄, and in MTBDDs forf� determined by K-proedure. Then, Pdv � PFreeBDD � PK.We illustrate the K-proedure by the following example.Example 4: Table 2 shows two funtions f0, and f1 of four variables. These funtions arerepresented by the integer equivalent funtion f = 2f0+f1. The maximum value for the totalautoorrelation funtion Bf is 8 whih orresponds to the n-tuple �max = (1111).Fig. 8 shows Multi-terminal Binary Deision Tree (MTBDT(f)) for f and Fig. 9 shows theorresponding MTBDD(f). We determine the matrix �4 from the requirement �4 � �max =DRAFT



17�4 � 2666666664 1111
3777777775 =

2666666664 0001
3777777775.
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0 32 2 03 21Fig. 9. MTBDD for f .Therefore, we an hoose �4 = 2666666664 1 1 1 10 0 1 11 0 0 11 1 1 0
3777777775. We determine the inverse matrix for �4 over

GF (2) as ��14 = 2666666664 1 0 1 10 1 1 11 1 0 11 0 0 1
3777777775. Table 3 shows the mapping of vetors of variables in f by
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18using ��14 . Then, we determineF� = [f(0); f(15); f(12); f(3); f(6); f(9); f(10); f(5); f(11); f(4); f(7); f(8); f(13); f(2); f(1); f(14)℄T ;= [0; 6; 0; 3; 5; 1; 3; 2; 2; 1; 3; 3; 5; 3; 2; 2℄T ;for � = �4. We perform the enoding F� ! Q3 of pairs of funtion values in F� as followsQ3 = [0; 4; 1; 5; 6; 3; 4; 2℄T , where (0; 0) = 0, (0; 3) = 4, (1; 1) = 1, (1; 2) = 5, (2; 1) = 6,(3; 3) = 3, (2; 2) = 2. Fig. 10 shows Multi-terminal binary deision tree MTBDT(f��14 ) andFig. 11 shows MTBDT(f��14 ) with enoded pairs of equal values for onstant nodes. Wedenote the harateristi funtions for 0,1,2,3,4,5,6 in Q3 as fi. There is a single non-trivialharateristi funtion f4. It is given by f4 = [0; 1; 0; 0; 0; 0; 1; 0℄T , and its autoorrelationfuntion is Bf4 = [2; 0; 0; 0; 0; 0; 0; 2℄T .
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Fig. 10. MTBDT for f��14 .Sine max� 6=0Bf4(�) = Bf4(111) = 2, we have for �3 that �3 � �max = �3 � 266664 111 377775 = 266664 001 377775.Therefore, �3 = 266664 1 1 01 0 10 1 0 377775, and ��13 = 266664 1 0 10 0 11 1 1 377775. Table 4 shows the mapping of vetorsDRAFT



19
S2

S2
S2

S2 S2
S2 S2

x1

x2 x2
x2x2

x3 x3 x3 x3 x3
x3 x3 x3

x1

_

_ _

_ _ _ _

q

0 4 1 5 6 3 4 2Fig. 11. MTBDT for f��14 with enoded pair of funtion values.of variables in Q3 by using ��13 . For f in Table 2, and � = �3, we haveQ� = [0; 2; 4; 4; 3; 1; 6; 5℄T . Fig. 12 shows the orresponding MTBDD(Q�). Therefore, F� =[f(0); f(15); f(1); f(14); f(12); f(3); f(13); f(2); f(7); f(8); f(6); f(9); f(11); f(4); f(10); f(5)℄T ;= [0; 0; 2; 2; 0; 3; 0; 3; 3; 3; 1; 1; 2; 1; 1; 2℄T . Fig. 13 shows the orresponding �nal MTBDD(f�).
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0 4 1 5632Fig. 12. MTBDD(Q�.)Note that the reursive appliation of ��14 and ��13 to f is idential to the appliation ofa omposite mapping ��14;3 = ��14 � ��13;1, where �3;1 = 264 ��13 00 1 375, where 0 is (3 � 1) zero
matrix. Therefore, ��14;3 = 2666666664 1 0 1 10 1 1 11 1 0 11 0 0 1

3777777775 �
2666666664 1 0 1 00 0 1 01 1 1 00 0 0 1

3777777775 =
2666666664 0 1 0 11 1 0 11 0 0 11 0 1 1

3777777775. Table 5 showsthe mapping of vetors of variables in f by using ��14;3. It produes the same permutation ofvalues in F as a reursive appliation of ��14 , and ��13 to f , respetively. In this example, theDRAFT



20TABLE IIFuntion f and f�.Funtion Charateristi funtions Autoorrelation funtionsx; w f0; f1 f(x) f0(z) f1(z) f2(z) f3(z) B0(z) B1(z) B2(z) B3(z) B(z)0 00 0 1 0 0 0 4 4 4 4 161 10 2 0 0 1 0 2 0 0 2 42 11 3 0 0 0 1 2 2 0 0 43 11 3 0 0 0 1 2 2 0 0 44 01 1 0 1 0 0 0 0 2 2 45 10 2 0 0 1 0 0 0 2 2 46 01 1 0 1 0 0 0 0 0 0 07 11 3 0 0 0 1 0 0 0 0 08 11 3 0 0 0 1 0 0 0 0 09 01 1 0 1 0 0 0 0 0 0 010 01 1 0 1 0 0 0 0 2 2 411 10 2 0 0 1 0 0 0 2 2 412 00 0 1 0 0 0 2 2 0 0 413 00 0 1 0 0 0 2 2 0 0 414 10 2 0 0 1 0 0 2 2 2 415 00 0 1 0 0 0 2 2 2 2 8size of the MTBDD(f) was redued from 13 to 9 non-terminal nodes by using the proposedmethod.A. Advantages and limitations of the proposed methodRemark 5: The K-proedure performs the deomposition of f with respet to the expansionrule f = (xi�� � ��xn)f0� (xi � � � � � xn)f1, where f0 and f1 are o-fators of f for xi�� � ��xn = 0, and 1, respetively.The following example illustrates dependeny of the solutions on the hoie of permutationmatries � and vetors � where the total autoorrelation funtions take the maximum values,DRAFT



21TABLE IIIMapping of funtion values by ��14 .x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x150 0 0 0 0 0 0 0 1 1 1 1 1 1 1 10 0 0 0 1 1 1 1 0 0 0 0 1 1 1 10 0 1 1 0 0 1 1 0 0 1 1 0 0 1 10 1 0 1 0 1 0 1 0 1 0 1 0 1 0 10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150 1 1 0 0 1 1 0 1 0 0 1 1 0 0 10 1 1 0 1 0 0 1 0 1 1 0 1 0 0 10 1 0 1 1 0 1 0 1 0 1 0 0 1 0 10 1 0 1 0 1 0 1 1 0 1 0 1 0 1 00 15 12 3 6 9 10 5 11 4 7 8 13 2 1 14
TABLE IVMapping of funtion values by ��13 .x0 x1 x2 x3 x4 x5 x6 x70 0 0 0 1 1 1 10 0 1 1 0 0 1 10 1 0 1 0 1 0 10 1 2 3 4 5 6 70 1 0 1 1 0 1 00 1 0 1 0 1 0 10 1 1 0 1 0 0 10 7 1 6 5 2 4 3

DRAFT



22TABLE VMapping of funtion values by ��14 � ��13 .x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x150 0 0 0 0 0 0 0 1 1 1 1 1 1 1 10 0 0 0 1 1 1 1 0 0 0 0 1 1 1 10 0 1 1 0 0 1 1 0 0 1 1 0 0 1 10 1 0 1 0 1 0 1 0 1 0 1 0 1 0 10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150 1 0 1 1 0 1 0 0 1 0 1 1 0 1 00 1 0 1 1 0 1 0 1 0 1 0 0 1 0 10 1 0 1 0 1 0 0 1 0 1 0 1 0 1 00 1 1 0 0 1 1 0 1 0 0 1 1 0 0 10 15 1 14 12 3 13 2 7 8 6 9 11 4 10 5
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0 32 1Fig. 13. MTBDD(f�).in the ases when there are several maxima in the total autoorrelation funtion for a givenfuntion f .Example 5: (Dependeny on �)Consider a Boolean funtion f given by the truth-vetor F = [0; 0; 1; 0; 1; 0; 0; 0; 1; 0; 0; 1; 0; 1; 0; 0℄T.For this funtion size(MTBDD(f)) = 9.The maximum value of the autoorrelation funtion Bf(�) = 14 for the inputs � = 6,DRAFT



239, and 15. For � = 15 and �4(� = 15) = 2666666664 1 1 1 10 0 1 11 0 0 11 1 1 0
3777777775, we determine ��14 (� = 15) =2666666664 1 0 1 10 1 1 11 1 0 11 0 0 1

3777777775. The elements of the truth-vetor for f are reordered asF� = [0; 0; 0; 0; 0; 0; 0; 0; 1; 1; 0; 1; 1; 1; 0; 0℄T. We perform enoding of pairs of adjaent valuesas Q� = [0; 0; 0; 0; 1; 2; 1; 0℄T , where (0,0)=0, (1,1)=1, and (0,1)=2. For this funtion, themaximum value of the total autoorrelation funtion max�BQ(�) = 6 for the input 2 = (010).For �3(� = 2) = 266664 0 0 11 0 00 1 0 377775, it follows ��13 (� = 2) = 266664 0 1 00 0 11 0 0 377775, and the orresponding re-ordering is Q� = [0; 0; 0; 0; 1; 1; 2; 0℄T , from where F� = [0; 0; 0; 0; 0; 0; 0; 0; 1; 1; 1; 1; 0; 1; 0; 0℄T.For the resulting f�, size(MTBDD(f�)) = 4.If for the maximum value of the autoorrelation funtion Bf (�), we hoose the input � = 6,then for �4(� = 6) = 2666666664 1 0 0 00 1 1 01 0 0 10 0 1 1
3777777775, we determine ��14 (� = 6) = 2666666664 1 0 0 01 1 1 11 0 1 11 0 1 0

3777777775. Thus, wereorder the elements of F for the given f as F� = [0; 0; 0; 0; 1; 1; 0; 0; 0; 0; 1; 0; 1; 1; 0; 0℄T.For enoding Q� = [0; 0; 1; 0; 0; 2; 1; 0℄T , where (0; 0)) = 0, (1; 1) = 1, and (1; 0) = 2, themaximum values of the total autoorrelation funtion of Q� is 6 for the input 4 = (100).For �3(� = 4) = 266664 0 0 10 1 01 0 0 377775, we determine ��13 (� = 4) = �3(� = 4). Therefore, the orre-sponding reordering is Q� = [0; 0; 1; 1; 0; 2; 0; 0℄T , whih produesF� = [0; 0; 0; 0; 1; 1; 1; 1; 0; 0; 1; 0; 0; 0; 0; 0℄T. For the resulting f�, we determine size(MTBDD(f�)) =5. Example 6: (Dependeny on �) DRAFT



24For f in the previous example, if we hose for the maximum value of Bf(�) the input � = 15and the matrix �4;� (� = 15) = 2666666664 1 1 0 00 0 1 11 0 1 00 1 0 0
3777777775, whih requires ��14;� (� = 15) = 2666666664 1 0 0 10 0 0 11 0 1 11 1 1 1

3777777775,then we determine the reordering F� = [0; 0; 0; 0; 0; 0; 1; 1; 1; 1; 1; 0; 0; 0; 0; 0℄T. For the en-oding �(Q) = [0; 0; 0; 1; 1; 2; 0; 0℄T , the maximum value of the total autoorrelation funtionis max�BQ�(�) = 6 for the input � = 7 = (111). For �3(� = 7) = 266664 1 1 01 0 10 1 0 377775, we get
��13 (� = 7) = 266664 1 0 10 0 11 1 1 377775, whih indues a reordering Q� = [0; 0; 0; 0; 2; 0; 1; 1℄T . From there,F� = [0; 0; 0; 0; 0; 0; 0; 0; 1; 0; 1; 1℄T. For the resulting f�, size(MTBDD(f�)) = 5.However, if we hose �3;� (� = 7) = 266664 0 1 11 1 00 1 0 377775, and the orresponding ��13;� (� = 7) =266664 0 1 10 0 11 0 1 377775, we get the reordering Q� = [0; 0; 1; 1; 0; 0; 2; 0℄T , whih produes the vetorF� = [0; 0; 0; 0; 1; 1; 1; 1; 0; 0; 0; 0; 1; 0; 0; 0℄T. For the resulting f�, size(MTBDD(f�)) = 5.The reason for the inreased size is that �3;� (� = 7), unlike �3(� = 7), did not pairedtogether sequenes of four 0. This pairing in MTBDD(f�) means assignment of identialsubvetors of length four to the same logi value for x1. In this ase that is the negative literalxi. Thanks to that, the subtree rooted in the node pointed by x1in the MTBDD is reduedto a single onstant node.The proposed method provides for redution of a number of subtrees onsisting of a non-terminal node and two onstant nodes, sine it produes pairs of equal funtion values. Thelarger subtrees, whih orrespond to the equal subvetors of orders 2k, k > 1 are not taken intoaount at this step. The method fails in the ase when we hose a permutation matrix whihdoes not provide a grouping of isomorphi smallest subtrees into a larger subtree. Example 7DRAFT



25illustrates that feature of the method.Example 7: Consider a funtion f = x2x4+x2x3x4+x1x2x4+x1x3x4. The truth-vetor forthis funtion is given by F = [1; 0; 1; 0; 0; 1; 1; 0; 1; 0; 1; 0; 0; 1; 0; 1℄T . size(MTBDD(f)) = 6for this truth vetor.The maximum value of Bf (�) is equal to 12, whih means that we may generate six pairsof equal values for f at the level for x4. Then, the method proposed in this paper produesMTBDDs with the size equal to 7. However, the ordering of variables approah results in theMTBDDs of sizes 5, 6, and 7 [24℄.However, if we �rst perform enoding Q = [2; 2; 3; 2; 2; 2; 3; 3℄T , where (1; 0) = 2, and(0; 1) = 3, and then apply the proposed method, we get a MTBDD of size 5, by alwaystaking the smallest value for � . This follows from the property that in Q, we have �ve pairsdenoted by 2 and three pairs denoted by 3, whih permits an immediate redution of subtreesonsisting of three non-terminal nodes.We note that the method proposed in the paper is based on an extended set of allowedpermutation matries for the inputs, ompared to the one used in DD optimization by orderingof variables. The prie for suh extension is minor, sine the values for f an be easilydetermined from f� assigned to f . Therefore, the proposed method permits to derive eÆientsolutions whih an not be ahieved by the ordering of variables. In this respet, the proposedmethod relates to the onsiderations in [2℄ and [7℄. In [2℄ , the same approah to BDDsminimization by using an extended set of permutation matries was proposed starting fromube representations of funtions and performing transformations of ubes. However, noalgorithm or heuristi for determination of a transformation for ubes has been proposed.Instead, for eah given funtion f , a partiular transformation is determined by the inspetionof the harateristis of f . In [7℄, the method in [2℄ was extended into the method of truth tablepermutation, and further elaborated by proposing two heuristi algorithms for determinationof a suitable permutation of the funtion values for f permitting redution of the size of theBDD for f .To onlude this setion we note that the method proposed in this paper results in BDDswhih are not larger and in most ases smaller than BDDs produed by methods based onordering of variables. DRAFT



26Example 8: Consider a funtion f = x1x2x3 + x2x3x4. The truth-vetor for this funtion isF = [0; 0; 0; 0; 0; 0; 0; 1; 0; 0; 0; 0; 0; 0; 1; 1℄T. The optimization by ordering of variables produesa MTBDD of size 5. However, the method proposed in this paper, produes a MTBDD of size4 in the following way. The maximum value for Bf(�) = 14 for the inputs � = 1; 8; 9. For sim-pliity, we hoose � = 1, whih implies �4(� = 1) is the identity matrix of order 4, and performthe enoding as Q = [0; 0; 0; 2; 0; 0; 0; 1℄T . The maximum of the total autoorrelation funtionfor Q is 6 and it is ahieved for � = 4 = (100). For a matrix �3(� = 4) = 266664 0 0 10 1 01 0 0 377775, whihis self-inverse over GF (2), we get the reordering Q� = [0; 0; 0; 0; 0; 0; 2; 1℄T , whih produesF� = [0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; 1; 1℄T. For thus determined f�, size(MTBDD(f�)) = 4.B. Modi�ed K-proedureThe approah for design of optimized LT-BDDs desribed in the previous setion was devel-oped for the ase when Ln�1 � Ln�2 � : : : � L1, where Li is the number of nodes at the levelorresponding to xi+1 in the BDD orresponding to the original ordering of variables. Sinethese inequalities are not always satis�ed the following simple modi�ation of the proposedproedure may be very eÆient.Proedure 3: (Modi�ed K-proedure)1. Compute max� 6=0Bfn(�) = Bn, where fn = f , and n is the number of variables in fn.2. Compress fn into fn�q by enoding q-tuples of suessive funtion values for fn, forq = 1; : : : ; n� 1.3. Compute maxiBfi = Bft. 4. Apply K-proedure to ft.This modi�ation of the original proedure may inrease the amount of omputation by thefator of 2 at most.C. Analytial omputation of autoorrelation funtionsWe note that total autoorrelation funtions and optimal LT-BDDs in many ases may beomputed analytially. To illustrate this point we onsider a devie implementing an error-orreting proedure based on a linear ode V of length n with k-information bits [13℄.A ode V orret errors from set E � Zn2 i� v1 � e1 6= v2 � e2 for any v1; v2 2 V andDRAFT



27e1; e2 2 E. If V orret l errors, then E ontains all Pli=00B� ni 1CA vetors e with jjejj 6= l andsome errors e with jjejj � l + 1, where jjejj is the Hamming weight of e.A ode V is not extendable for a given E i� for any x 2 Zn2 there exists a unique v 2 Vand a unique e 2 E suh that x = v � e, jEj = 2n�k.A devie implementing an error-orreting proedure based on a given V has n inputs, noutputs, and for input x produes output e = f(x) suh that there exist v 2 V and x = v� e.(Sine V orrets set of errors E, this e is unique.) For this devie, we have for the totalauorrelation funtion [13℄ Bf (�) = 8><>: 2n; � 2 V ;0; � =2 V :If V is an (n; k) ode, the K-proedure will require k steps. For the resulting optimallinear transform �, the rows of (h1; : : : ; hn�k) of � form a basis in the null-spae for V . Thus,� = 2666666664 h1...hn�kO Ik
3777777775, where Ik is the (k � k) identity matrix, and the orresponding LT-BDDwill have 2(n�k) � 1 nodes.Example 9: Consider a (5; 2) ode with the generating matrix [13℄ G = 264 1 0 1 1 00 1 1 0 1 375.It is easy to hek that this ode an orret all single errors and two double errors 00011,and 10001. In this ase, Bf (�) = 8><>: 32; if � = 00000; 10110; 01101; 110110; otherwise; , and

��1 = 2666666666664
1 1 1 0 01 0 0 1 00 1 0 0 10 0 0 1 00 0 0 0 1

3777777777775. Therefore, z1 = x1 � x2 � x3, z2 = x1 � x4, z3 = x2 � x5. Fig. 14shows the resulting optimal BDD.VI. Experimental ResultsWe performed experiments omparing BDDs and LT-BDDs for benhmark funtions usedin logi design and for randomly generated multiple-output swithing funtions. DRAFT
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1 2 3 4 8 16 170Fig. 14. LT-BDD for the deoder for the (5; 2) shortened Hamming ode.We used a program for alulation of autoorrelation funtions and performing the Pro-edure for linearization of Boolean funtions working with vetor representations of Booleanfuntions. For this reason, the experiments are restrited to funtions of a small number ofvariables. However, if the alulation are performed over BDDs by using the DD-methodsfor omputation of Walsh transform, and the Wiener-Khinhin theorem, then the proposedapproah an be applied for funtions whih an be proessed by other DD-methods, sine themain omplexity of the proposed method relates to the alulation of the total autoorrelationfuntions.In Table VI, we present numbers of inputs (In), outputs (Out), onstant nodes (n), andin olumns denoted by MTBDD(f) and MTBDD(f�), we ompared numbers of non-terminalnodes (ntn), whose sum with the numbers of onstant nodes produes the size (s), and thewidth (w) of the MTBDDs for the initial ordering of variables and LT-MTBDDs derived by theautoorrelation funtions. The olumn MTBDD(fv) shows the number of non-terminal nodesand widths of MTBDDs for the optimal orderings of variables determined by the brute foremethod based on omparing all possible orderings. The existing methods for optimizationof DDs by variables ordering are heuristis and mostly produe the nearly optimal solutions.Therefore, the provided omparison is the strongest hallenge for the proposed method. Thistable presents the results for the method based on autoorrelation funtions for the smallestvalues for � where the autoorrelation funtions take the maximum values. The other hoiesfor � and �, may produe smaller LT-MTBDDs.In Table VII we ompare the number of non-terminal nodes of MTBDDs for the initialDRAFT



29ordering of variables (MTBDD(f)), the optimal ordering (MTBDD(fv)), the initial orderingwith negated edges (MTBDD(fw)), the ordering determined by lover-bound sifting methodwith negated edges (MTBDD(fr), and by the autoorrelation funtions (MTBDD(f�)) forbinary-valued single output randomly generated funtions. It should be noted that in theused pakage for sifting, the nodes with negated edges are used, while for other methods thisoptimization is not performed. This is the reason that for some funtions, the numbers ofnodes and the width for DDs produed by lower-bound sifting are smaller than the numberof nodes for optimal ordering of variables without using the negated edges. It is interesting tonote that in some ases, as for example f1, f7, n6, n7, the method based on autoorrelationfuntions although without negated edges produes the results lose to the sifting with negatededges.From these experiments, the following onlusions an be made.1. The proposed method is very e�etive when the integer equivalent funtion f(x) de�nedby a given multiple-output funtion (see [13℄) takes a large number of di�erent values,whih however, do not repeat periodially as sequenes of order 2k, k = 1; : : : ; n� 1. Thisis the ase, for example, of n-bit adders. It follows from Table VI that for adders transitionfrom BDDs to LT-BDDs results in almost 50% redution of the sizes of the orrespondingdeision diagrams.For adders, the method produes the LT-MTBDDs with minimal width, however, but thesizes of LT-MTBDDs are larger than in the ase of optimal ordering of variables. It shouldbe noted that reordering of variables does not redue the widths of MTBDDs for adders.The self-inverse matrix � desribing the optimal ordering of variables for adders an bederived from the values �i orresponding to the maximum values of total autoorrelationfuntions by writing eah 1-bit of �i in the separate row of � starting from the largest �i.For example, for the 2-bit adder, the total autoorrelation funtion Bf takes the maximumvalue for �1 = 5 = (0101) and �2 = 10 = (1010). Therefore, � = 2666666664 1 0 0 00 0 1 00 1 0 00 0 0 1
3777777775.2. The method is less eÆient when the equal values of the original funtion f repeatthemselves as sequenes of order 2k. In the orresponding MTBDDs, these sequenesDRAFT



30result in isomorphi subtrees, whih permits redution of numbers of nodes at the upperlevels in the MTBDDs. In these ases, pairing funtion values at the Hamming distane 1by the total autoorrelation funtion may destroy the equal sequenes of order 2k, wherek > 1, whih results in larger MTBDDs.As it is disussed in [7℄, that feature is harateristi for methods using permutations offuntion values for multiple-output funtions [2℄, [7℄. Sine any reordering of variablesis a permutation of funtion values, the same remark applies to optimization of DDs byreordering of variables.The funtions on1 and ex1010 in Table 6, are examples where the proposed methodredues both the sizes and the widths of the MTBDD. For the funtion misex1 the methodprovides redued width and the same size. The funtion lip is an example where theproposed method inreased the width but not the size. For the funtion t481, the methodannot redue neither the size and the width of the MTBDD. The explanation is that inthe funtion t481 sequene 1101 repeats itself many times, whih permits redution of anumber of nodes at upper levels resulting in a MTBDD of a smaller size.The method is ineÆient for multiple-output funtions whose integer valued equivalentfuntions ontain few equal values. In these ases, we an not produe large numbers ofpairs of equal values resulting in a redution of the number of nodes in MTBDDs. Theexamples are multipliers and the benhmark funtion bw.3. The method is eÆient for randomly generated multiple-output funtions. It should benoted that in this ase the initial MTBDDs are usually large and the ordering of variablesdoes not provide for redution of their sizes. Savings in the number of non-terminal nodesof MTBDDs for randomly generated funtions (see Table 7) range from 1.4% for f3 to45.06% for n3. Savings in the width of MTBDDs range from 1.06% for f9 to 17.86% forf7 and 20% for f2, and 51.62% for n3. For f6, the method produed the larger MTBDD,sine in this ase the random numbers generator produed equal sequenes. In some ases,as for example for n6, the method produed the smaller LT-MTBDsD than for the originalordering, however, larger than MTBDDs for the optimal orderings.4. An important feature of the proposed method is that, unlike sifting, it an be appliedto the redution of MTBDDs of symmetri funtions, where the permutation of variablesDRAFT



31does not permit redution of nodes. Symmetry implies equal sequenes of order 2k forsome large k in the funtion values.First, we perform enoding of suh sequenes, and after this we apply the method to thefuntion g of 2n�k variables derived in this way. Then we determine g� for this funtion,and after the deoding we get f� for the initial funtion f . Table VI in rows 20 to 24illustrates the method and ompares MTBDD(f) and MTBDD(f�) for some symmetribenhmark funtions. For these benhmarks, we �rst perform enoding of sequenes offour suessive input vetors, and then use the proposed method, and perform re-odingbefore we determine the size of the MTBDD. For rd84/8, and 9sym/16, we performedenoding of the sequenes of 8 and 16 suessive input vetors, respetively.VII. Closing RemarksTwo important problems in optimization of DD representations, ordering of variables, anddetermination of an optimal linear transformation of variables, an be related, expressed, andsolved using total autoorrelation funtions. The omputational omplexity of this approahdoes not exeed min(O(n2n+k; O(2n)), where n is the number of variables and k is the num-ber of funtions. The approah permits uniform onsideration of single and multiple-outputfuntions.We show that the method for linearization of Boolean funtions provides for a simple andeÆient algorithm for determination of a nearly optimal linear transformation of variables.Then, we show that the total autoorrelation funtion may be used to determine the orderof funtion values, whih reursively determine and minimize the width of eah level in therelated MTBDDs. Sine the proposed algorithm minimizes a number of nodes at eah level,it results in a redution of the omplexity of MTBDDs. The proposed algorithms for bothordering of variables and onstruting quasioptimal linear transform of variables have simplesoftware implementations. The algorithms are deterministi in the sense that there are noheuristi involved at any step of the algorithms. Experiments with benhmarks and withrandomly generated funtions illustrate that the proposed method is on average very eÆient.The proposed method performs a larger lass of transformations over variables ompared todynami reordering and related methods where just the reordering of variables is used. TheDRAFT



32TABLE VIMTBDD(f), MTBDD(fv), and MBTDD(f�) for benhmark and randomly generated funtions.MTBDD(f) MTBDD(fv) MTBDD(f�)f In Out n ntn w ntn w ntn wadd2 4 3 7 13 6 12 6 8 3add3 6 4 15 51 20 33 14 24 7add4 8 5 31 113 30 78 30 64 15add5 10 6 63 289 62 171 62 160 31add6 12 7 127 705 126 360 126 384 63add7 14 8 255 1665 254 741 254 896 127ex1010 10 10 177 894 383 - - 871 367misex1 8 11 17 6 17 6 17 5lip 9 5 33 339 120 141 35 159 32t481 16 1 2 32 4 - - 103 46rd53 5 3 6 15 5 15 5 14 5rd73 7 3 8 28 7 28 7 17 6rd84 8 4 9 36 8 36 8 23 7rd84/8 8 4 9 36 8 36 8 18 69sym 9 1 2 33 6 33 6 24 59sym/16 9 1 2 33 6 33 6 9 3Randomly generated funtionsf2 8 1 2 75 30 68 25 66 24f3 8 1 2 73 28 67 23 72 27f6 8 1 2 58 18 58 18 69 25f7 8 1 2 72 28 70 26 67 23f8 8 3 8 174 64 167 60 168 59f9 8 4 16 222 95 216 90 219 94f10 8 3 5 139 56 135 54 136 54n1 8 2 3 84 30 77 25 80 26n2 8 2 3 89 29 80 26 87 27n3 8 2 3 91 31 85 27 50 15n4 8 2 3 90 31 83 24 89 28n5 8 2 3 82 27 76 22 77 24n6 8 2 2 68 25 59 18 62 19n7 8 2 2 72 28 64 21 63 20n8 8 2 2 72 29 64 22 72 28n9 8 2 2 73 28 69 25 68 25n10 8 2 2 118 41 111 36 115 42 DRAFT



33TABLE VIINon-terminal nodes in MTBDDs for initial ordering of variables, optimal ordering, initial ordering with negatededges, lower-bound sifting with negated edges, and autoorrelation funtions.f MTBDD(f) MTBDD(fv) MTBDD(fw) MTBDD(fr) MTBDD(f�)f1 75 68 64 62 66f2 73 67 67 60 72f6 58 58 52 51 69f7 72 70 64 62 67n1 84 77 64 62 80n6 68 59 63 55 62n7 72 64 65 60 63n8 72 64 65 58 72n9 73 69 64 62 68method an be used to improve the results derived as the output of the dynami reordering.AknowledgmentThe authors are grateful to Dr. Dragan Jankovi� from Faulty of Eletronis, Ni�s, Yu-goslavia, and Dr. Ari Trahtenberg from Boston University, Boston, USA, for the help withprogramming and performing experiments reported in this paper.The authors thank the Referees whose valuable omments improved the presentation in thispaper. Referenes[1℄ S. Agaian, J. Astola, K. Egiazarian, Binary Polynomial Transforms and Nonlinear Digital Filters, MarelDekker, 1995.[2℄ J. Bern, C. Meinel, A. Slobodova, \EÆient OBDD-based manipulation in CAD beyond urrent limits",32nd Design Automation Conferene, 1995, 408-413.[3℄ B. Bollig, I. Wegener, "Improving the variable ordering of OBDDs is NP-omplete", IEEE Trans. Comput.,Vol. C-45, No. 9, 1996, 993-1002.[4℄ R.E. Bryant, "Graph-based algorithms for Boolean funtions manipulation", IEEE Trans. Comput.,Vol.C-35, No.8, 1986, 667-691. DRAFT
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