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Abstra
tThis paper dis
usses optimization of de
isions diagrams (DDs) by total auto
orrelation fun
-tions. We present an eÆ
ient algorithm for 
onstru
tion of Linearly Transformed Binary De
i-sion Diagrams (LT-BDDs) and Linearly transformed multi-terminal BDDs (LT-MTBDDs)forsystems of Boolean fun
tions, based on linearization of these fun
tions by the 
orrespondingauto
orrelation fun
tions. Then, we present a method for redu
tion of sizes of DDs by a levelby level redu
tion of the width of DDs using the total auto
orrelation fun
tions. The approa
hprovides for a simple pro
edure for minimization of LT-BDDs and LT-MTBDDs and upperbounds on their sizes. Experimental results for ben
hmarks illustrate that the proposed methodon average is very eÆ
ient.key words: Logi
 synthesis, spe
tral te
hniques, de
ision diagrams, linear transforms, auto-
orrelation fun
tions. I. Introdu
tionAn n variable k-output dis
rete fun
tion f = (f (0); : : : ; f (k�1)) is de�ned as a mappingf : �ni=1Ci ! P k, where � denotes the dire
t produ
t, Ci, i = 1; : : : n and P are �nite sets of
ardinalities 
i and p, respe
tively, n; k 2 N , N is the set of natural numbers.To get a mathemati
ally tra
table model for dis
rete fun
tions, we assume that Ci endorsethe stru
ture of a group, and P is a �eld [36℄. Swit
hing fun
tions are a parti
ular 
ase whenCi = f0; 1g;� for ea
h i, where � denotes the addition modulo 2 (EXOR), and P = GF (2) isthe Galois �eld of order 2 [1℄. Thus, a multi-output swit
hing fun
tion is de�ned as f : Cn2 !GF (2)k.De
ision diagrams (DDs) are a data stru
ture permitting eÆ
ient representation of dis
retefun
tions de�ned on groups of large orders [27℄. DDs are de�ned for representation of di�erent
lasses of dis
rete fun
tions by using de
omposition rules to assign a given f to a DD, [27℄,[31℄, [34℄. In this paper, the 
onsiderations are restri
ted to basi
 DDs for fun
tions on Cn2 .Binary DDs (BDDs) are the basi
 
on
ept used to represent single output swit
hing fun
tions[4℄. Multiple-output swit
hing fun
tions are represented by Shared BDDs [21℄. Multi-terminalbinary DDs (MTBDDs) [5℄ are used to represent fun
tions on Cn2 . They 
an represent sys-tems of Boolean fun
tions des
ribed by the 
orresponding integer equivalent fun
tions f(x).



3Extensions and generalizations of the 
onsiderations presented to DDs for fun
tions on arbi-trary not-ne
essarily Abelian groups are straightforward [32℄, [34℄. The multiple-valued logi
fun
tions are in
luded as an example of fun
tions on p-adi
 groups Cp into GF (p), p 2 N [13℄.DDs are derived by the redu
tion of de
ision trees (DTs). The redu
tion is performed bysharing the isomorphi
 subtrees and deleting the redundant information from the DT. Theredu
tion pro
edure is formalized through the redu
tion rules [27℄ adapted to the range offun
tions represented and the used de
omposition rules.For many appli
ations, the eÆ
ien
y of DD representations is determined by the size of theDD de�ned as the number of nodes in the DD for a given f . The width of the DD is de�nedas the maximal number of nodes at a level, where a level 
onsist of nodes to whi
h the samevariable is assigned. The size and the width determine the area of the DD, whi
h is also animportant parameter in appli
ations and 
omparisons of di�erent DDs [32℄.There are at least two approa
hes to the redu
tion of the size of DDs for a given fun
tionor a given 
lass of fun
tions1. Usage of di�erent DDs de�ned by using di�erent de
omposition rules.2. Transformations and manipulations with fun
tions represented, su
h as fun
tional de-
omposition, variable ordering, and outputs pairing.The following example illustrates optimization of DDs by ordering and transformation ofvariables.Example 1: Consider the fun
tion f(x) = f(x1; x2) given by the ve
tor of fun
tion valuesF = [f(0); f(1); f(2); f(3)℄T = [1; 2; 2; 1℄T . Permutation of variables 
onverts f into a fun
tionf� = f(y1; y2), where y1 = x2, y2 = x1, given by the ve
tor F� = [f(0); f(2); f(1); f(3)℄T =[1; 2; 2; 1℄T . This ve
tor is generated from F by a permutation � of fun
tion values whi
h inthe matrix notation � = 2666666664 1 0 0 00 0 1 00 1 0 00 0 0 1
3777777775. This permutation of variables does not redu
e the
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4size of MTBDD. However, if we sele
t the permutation matrix �1 = 2666666664 1 0 0 00 0 0 10 0 1 00 1 0 0
3777777775, whi
h
onverts f into a fun
tion f�1 = f(z1; z2), where z1 = x1� x2, and z2 = x2, then the ve
tor offun
tion values is F�1 = [f(0); f(3); f(2); f(1)℄T = [1; 1; 2; 2℄T . Fig. 1 shows MTBDDs of f , f�,and f�1 . Therefore, by extending the transformations over variables besides the permutation,we 
an a
hieve redu
tion of DDs.
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1 1 12 2 2Fig. 1. MTBDD(f), MTBDD(f�), and MTBDD(f�1).This example shows that the problem of redu
tion of sizes of DDs by transformation ofvariables 
an be redu
ed to determination of an optimal permutation in the ve
tor of fun
tionvalues whi
h results in a DD of a smaller size.In spe
tral interpretation of DDs, the use of di�erent de
omposition rules reads as the use ofdi�erent spe
tral transforms to de�ne a DD [35℄ and various DDs are uniformly 
onsidered asparti
ular examples of Spe
tral Transform DDs (STDDs) de�ned as graphi
 representationsof some Fourier series-like expressions [34℄.The main drawba
k of these approa
hes is the la
k of exa
t algorithms to determine thesuitable de
omposition rules for a given f , whi
h in spe
tral interpretation of DDs requiresthe 
hoi
e of the most suited spe
tral transform [35℄, or to determine the best ordering ofvariables or outputs pairing.The dynami
 reordering of variables for optimization of DDs has been introdu
ed for BDDsin [8℄ and further improved in [25℄. The same problem was 
onsidered and elaborated bymany authors in a number of publi
ations, see for example, [6℄, [19℄. The ordering of variablesDRAFT



5is an NP-hard problem [3℄. Moreover, it is NP-hard to 
ompute an almost optimal variableordering when a given fun
tion is already represented by a BDD [29℄, [28℄, [37℄. Therefore,several heuristi
 algorithms are proposed for redu
tion of DDs by ordering of variables withheuristi
 based on lo
al transformations. For example, this ordering 
an be implemented asdynami
 sifting [25℄ and further generalized into group sifting [22℄, [23℄.Linearly transformed BDDs (LT-BDDs) are generalizations of BDDs derived by using theShannon expansion with respe
t to a linear 
ombination of a subset of variables. It is obviousthat the same generalization applies to MTBDDs, sin
e in BDDs and MTBDDs the sameunderlying group of binary ve
tors is assumed as the domain for the fun
tions represented.Moreover, extensions to STDDs are straightforward.Constru
tion of LT-BDDs is an interesting and important task, sin
e in many pra
ti
al
ases LT-BDDs permit exponential redu
tion of the size 
ompared to the BDDs.We note that regarding appli
ations in 
ir
uit design from DDs, a pri
e for the redu
ed sizeof LT-BDDs is1. A hardware required to implement a linear transformation of variables.2. DiÆ
ulty to determine an optimal transformation of variables.A linear transformation over the variables 
an be represented by an (n � n) matrix overGF (2), and the required spa
e is small 
ompared to the spa
e required to store a BDD or aLT-BDD. However, the other requirement 
an be 
onsidered as a bottlene
k for appli
ationsof LT-BDDs, although there are heuristi
 algorithms to determine a suitable linear 
ombi-nation of variables. The algorithm proposed in [18℄ splits the set of variables into subsets ofadja
ent variables and 
ombines variables within a subset. A similar algorithm implementedas a windowing pro
edure is proposed in [10℄. The algorithm for 
onstru
tion of LT-BDDspresented in [12℄ is an appli
ation of evolutionary 
omputation te
hniques to this problem. In[19℄, the algorithm presented in [18℄ is 
ombined with sifting method used in variable orderingin DDs [25℄ with spe
ial attention paid to the integration of the method into the existing CADsystems. Algorithms for eÆ
ient manipulations with LT-BDDs, prepared as an extension ofCUDD pa
kage [30℄ further support the appli
ations of LT-BDDs [11℄.In this paper, we dis
uss appli
ations of total auto
orrelation fun
tions to redu
tion of sizesof SBDDs. We show that a method for linearization of swit
hing fun
tions introdu
ed in [14℄,DRAFT



6and further elaborated, and extended to multiple-valued fun
tions in [13℄ provides for a deter-ministi
 algorithm to 
onstru
t an optimal linear transformation of variables in LT-BDDs bythe total auto
orrelation fun
tions and the inertia groups of the original systems of Booleanfun
tions [13℄. Then, we show that the maximum values of the total auto
orrelation fun
tion
an be used as a measure to determine the number of pairs of isomorphi
 subtrees rooted atthe nodes at the same level in the MTBDD. Using this property, we developed a method forminimization of the width of MTBDDs level by level, providing at ea
h level the maximumnumber of isomorphi
 subtrees. Under this assumption, the method presented 
an be 
onsid-ered as a deterministi
 method for redu
tion of sizes of MTBDDs. The di�eren
es with theexisting methods, advantages and limitations of the proposed method 
an be summarized asfollows.1. Instead of using heuristi
s (like sifting) to minimize the size L of a MTBDD for a givenfun
tion f (this problem is NP-hard [3℄) we represent L as L = Ln�1+Ln�2+� � �+L1, whereLi is a number of nodes at the level i and sin
e in most 
ases Ln�1 � Ln�2 � � � � � L1, we�rst 
onstru
t a set of linearly transformed MTBDDs (LT-MTBDDs), minimizing Ln�1for the given system of fun
tions, then within this set we 
onstru
t a subset, minimizingLn�2, et
.2. The 
omplexity of the proposed approa
h is determined by the 
omplexity of a pro
edurefor 
omputing for a given fun
tion f it's total auto
orrelation fun
tion Bf . If f is a systemof k Boolean fun
tions of n variables, then Bf 
an be 
omputed by the Fast Walsh Trans-form [13℄ and Wiener-Khin
in theorem [13℄ by the pro
edure whi
h will require not morethan min(O(n2n+k); O(22n)) steps. In many 
ases, if f is de�ned by a Boolean expression,then Bf (and the 
orresponding optimized MTBDD) 
an be 
omputed analyti
ally fromf , (see Example 9 below).3. The proposed approa
h provides for upper bounds on sizes of MTBDDs for a given f .4. Experimental results for ben
hmarks and randomly generated multiple-output swit
hingfun
tions show that the proposed approa
h in many 
ases results in smaller LT-MTBDDsas 
ompared with the existing approa
hes su
h as sifting. In addition to this, unlike theoptimization by ordering of variables, the proposed approa
h 
an be applied to symmetri
fun
tions. DRAFT



7II. Auto
orrelation Fun
tionsAuto
orrelation is very useful in spe
tral methods for analysis and synthesis of networksrealizing logi
 fun
tions.For a given n-variable swit
hing fun
tion f , the auto
orrelation fun
tion Bf is de�ned asBf (�) = 2n�1Xx=0 f(x)f(x� �); � 2 f0; : : : ; 2n � 1g;The Winer-Khin
hin theorem [13℄ states a relationship between the auto
orrelation fun
tionand Walsh (Fourier) 
oeÆ
ients Bf = 2nW�1(Wf)2.We note that the auto
orrelation fun
tion is invariant to the shift operator � in terms ofwhi
h Bf is de�ned. Due to that, it performs some 
ompression of data in the sense that severalfun
tions may have the same auto
orrelation fun
tion Bf . Fig. 2 illustrates this property ofBf . In this �gure, '� (x) = f(x � �) is a shifted fun
tion for f , WK denotes the Wiener-Khin
hin theorem, and CBf denotes the set of fun
tions having the same auto
orrelationfun
tion Bf . However, although we are sa
ri�
ing a part of data, this 
ompression makesdes
ription of problems where the shift is not important very eÆ
ient. For example, theauto
orrelation is very useful in the appli
ations where we are interested in the equality ofsome fun
tion values, and not in their magnitude.
f

jt

Bf
WK

WK

CB

Å

fFig. 2. Auto
orrelation fun
tions.A. Total auto
orrelation fun
tionFor a system of k swit
hing fun
tions f (i)(x1; : : : ; xn), i = 0; : : : ; k � 1, the total auto
or-relation fun
tion is de�ned as the sum of auto
orrelation fun
tions of ea
h fun
tion in thesystem. Thus, Bf(�) = Pk�1i=0 Bf(i)(�).Note that for any � 6= 0, Bf(�) � Bf (0). Set GI(f) of all values for � su
h that Bf(�) =Bf(0) = Pk�1i=0 P2m�1x=0 f (i)(x) is a group with respe
t to the EXOR as the group operationDRAFT



8whi
h is denoted as the inertia group of the system f .We note that the 
omplexity of 
omputing the total auto
orrelation fun
tion Bf(�) by theWiener-Khin
hin theorem [13℄ and by the fast Walsh transform [1℄, [13℄, expressed in thenumber of arithmeti
 operations does not ex
eed O(n2n+k) and this approa
h is eÆ
ient onlyfor small k. The straightforward appli
ation of the de�nition of Bf requires at most O(22n)
omputations for any k. It should be noted that the Walsh transform, 
an be performed overBDDs [5℄, [9℄, whi
h redu
es the limitations to the number of variables in 
al
ulations relatedto the implementation of Wiener-Khin
hin theorem.Four approa
hes for 
al
ulation of auto
orrelation fun
tions by DDs are presented in [33℄providing for possibility of 
ompromising between the spa
e and time restri
tions, as well asbetween the requirements to 
al
ulate all the auto
orrelation 
oeÆ
ients, subsets of 
oeÆ
ientsor a single 
oeÆ
ient. In parti
ular, for the 
onsiderations in this paper, the most interestingis the method that for a given fun
tion f redu
es the 
al
ulation of auto
orrelation 
oeÆ
ientsto the manipulation with labels in LT-BDD(f) derived by exploiting the re
ursive stru
ture ofthe auto
orrelation matrix for f . The spa
e 
omplexity of this method is proportional to thesize of the BDD(f). An experimental veri�
ation of some of these methods is given in [20℄.For example, for randomly generated Boolean fun
tions of 10 variables with 5,20,35,50,65,80,and 95 % of elements equal to 1 in the truth-ve
tor, the auto
orrelation fun
tion is 
al
ulatedby the Wiener-Khin
hin theorem performed over ve
tor representations, in 0.22, 0.55, 0.50,0.77, 0.72, 0.50, and 0.27 se
onds, respe
tively. If the 
al
ulation is performed over BDDs,then, it is required 1.82, 3.29, 4.45, 4.78, 4.89, 4.17, and 2.42 se
onds.A generalization of auto
orrelation to systems of p-valued m-variable fun
tions or fun
tionsde�ned over �nite Abelian groups is straightforward and 
an be found e.g. in [13℄.III. Linearization of Boolean Fun
tionsLinearization of Boolean fun
tions assumes representing a given system of Boolean fun
tionsas the superposition of a system of linear Boolean fun
tions and a residual nonlinear partof minimal 
omplexity. Fig. 2 shows the realization of a given fun
tion f based on thelinearization. The network produ
ed 
onsists of a serial 
onne
tion of a linear and a nonlinearblo
ks. The linear blo
k 
onsists of EXOR 
ir
uits only. For an n-variable fun
tion, 
omplexityDRAFT
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Linear Non-linearFig. 3. Realization by linearization of f .(number of equivalent two-input gates) of the linear blo
k in
reases asymptoti
ally no fasterthan n2= log2 n as n!1 [13℄, whereas the 
omplexity of the nonlinear blo
k is almost alwaysan exponentially in
reasing fun
tion of n. Therefore, the 
omplexity of the linear blo
k maybe ignored in linearization problems.The linearization of a system of Boolean fun
tions is performed to meet a sele
ted 
rite-rion for the 
omplexity of the realization of f(x). In this paper, as in [13℄, we 
onsider the
omplexity of f(x) as the minimum number of two input gates to implement f(x).A. Linearization problemConsider a 
omplexity 
riterion as �(�) = jf(x; y)jx; y 2 Cn2 ; d(x; y) = 1; �(x) = �(y)gj,where d(x; y) denotes the Hamming distan
e of binary ve
tors x and y, and � is a Booleanfun
tion of n variables. Then, the linearization problem may be formulated as follows.For a given f : Cn2 ! C2, �nd a nonsingular (n � n) matrix � over GF (2) su
h that f ismapped into another fun
tion f� de�ned by the requirement f(x) = f�(� � x), and �(f�)takes the maximum value over the set of all nonsingular over GF (2) matri
es �,where � denotes the multipli
ation in GF (2) of the matrix � with the ve
tor x.B. Solution of the linearization problemThe following pro
edure, whi
h we denote as the Linearization of Swit
hing Fun
tions (LSF)pro
edure, provides for a solution of the linearization problem.LSF-pro
edure1. Constru
t (for example by the Wiener-Khin
hin theorem and Fast Walsh HadamardTransform (FWHT)) the auto
orrelation fun
tion Bf (�) = Px f(x)f(x� �),2. Find �0 su
h that B(�0) = max� 6=0B(�). DRAFT



103. Find �i, i = 1; : : : ; n� 1, su
h that B(�i) = max� =2TiB(�), where Ti = f
0�0� 
1�1� � � ��
i�1�i�1g, 
i 2 f0; 1g.4. Constru
t T = � �0; �1; � � � ; �n�1 �T , and determine � = T�1, where all the 
al
ulationsare in GF (2).Complexity of solving the linearization problem for a given f in terms of a number of therequired arithmeti
 operations does not ex
eed O(n2n) and may be mu
h smaller than thisif we have a 
ompa
t des
ription of f [13℄. For randomly generated Boolean fun
tions, thelinearization results in about 20% redu
tion in the gate 
ounts [17℄, [16℄. Generalization tomulti-valued p-ary logi
 (p-prime) is straightforward.We note that a set of �i, su
h that B(�i) = B(0) form a group (inertia group [13℄) and bysele
ting ve
tors whi
h form a basis for this group as 
olumns of T, the above pro
edure resultsin the minimum number of essential variables for the non-linear part. Example 2 illustratesthis feature, whi
h will be used to determine a quasioptimal linear transformation of variablesin LT-BDDs. We note also that the above linearization pro
edure maximizes the number ofneighboring minterms, as spe
i�ed by the minimization 
riterion, �(�). This feature will beused in redu
tion of the size of MTBDDs.Example 2: Table 1 shows a system of two four-variable Boolean fun
tions f (0) and f (1),and the total auto
orrelation fun
tion B of this system determined as in the Step 1 of theLSF-pro
edure. Fig. 4 shows a dire
t AND-EXOR realization of this system with two-input
ir
uits. This realization is 
hosen for a 
omparison to the realization by linearization off , sin
e in the linearization method the linear part is realized by EXOR 
ir
uits, and the
riterion for minimization is expressed in terms of two-input gates. The maximum valueof B(�) = B(0) = 16 for the inputs 5 = (0101), 10 = (1010), and 15 = (1111). Thisperforms the Step 2 in the LSF-pro
edure. Thus, the inertia group for this system is GI =f(0000); (0101); (1010); (1111)g. As a basis for GI we take (0101) and (1010), and determineT = 2666666664 1 0 0 10 1 1 00 0 0 10 0 1 0
3777777775. Then, � = T�1 = 2666666664 1 0 1 00 1 0 10 0 0 10 0 1 0

3777777775, whi
h 
ompletes the Step 3 and Step4 in the LSF-pro
edure. DRAFT
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f
(0  )

f
(1  )Fig. 4. Realization of f (0) and f (1) in Example 2.Matrix T determines a reordering of the truth-ve
tor F of a four-variable fun
tion f asF� = [f(0); f(10); f(5); f(15); f(4); f(14); f(1); f(11); f(8); f(2); f(13); f(7); f(12); f(6); f(9); f(3)℄T:Table 1 shows fun
tions f (0)� and f (1)� produ
ed by this reordering from f (0) and f (1). Thus,these fun
tions satisfy the relationf�(x) = f(��1 � x):Therefore, we have for z1; z2; z3; z4 in Fig. 3 z1 = x1 � x3, z2 = x2 � x4, z3 = x4, z4 = x3.From there, f (0) = z1 _ z2 = (x1 � x3) _ (x2 � x4)f (1) = z1z2 = (x1 � x3)(x2 � x4);where _ denotes logi
al OR. It should be noted that both f (0) and f (1) do not essentiallydepend on z3 and z4. Fig. 5 shows the 
orresponding AND-EXOR realization of this systemof Boolean fun
tions by two-input 
ir
uits. Thus, for a 
omparison with the dire
t realizationin Fig. 4, the logi
al OR is realized by using AND and EXOR 
ir
uits.IV. Linearization of Boolean fun
tions and LT-BDDsThe linearization method for Boolean fun
tions presented in Se
tion 3 
an be used for
onstru
tion of linear transformations for BDDs and Shared BDDs (SBDDs) for systems ofBoolean fun
tions. This statement will be explained and illustrated by the following example.DRAFT



12TABLE ISystem of Boolean fun
tions.x1x2x3x4 f (0) f (1) B f (0)� f (1)�0 0000 0 0 16 0 01 0001 1 0 8 0 02 0010 1 0 3 0 03 0011 1 1 8 0 04 0100 1 0 8 1 05 0101 0 0 16 1 06 0110 1 1 8 1 07 0111 1 0 8 1 08 1000 1 0 8 1 09 1001 1 1 8 1 010 1010 0 0 16 1 011 1011 1 0 8 1 012 1100 1 1 8 1 113 1101 1 0 8 1 114 1110 1 0 8 1 115 1111 0 0 16 1 1
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s nFig. 5. Realization by linearization of f (0) and f (1) in Example 2. DRAFT



13Example 3: Fig. 6 shows SBDD for the system of Boolean fun
tions f (0)(x) and f (1)(x)de�ned in Table 1. This SBDD represents the given system in the form of expressionsf (0) = x1x2x3x4 � x1x2x3 � x1x2x3 � x1x2x3x4 � x1x2x3x4 � x1x2x3x4 � x1x2x3 � x1x2x3;f (1) = x1x0x3x4 � x5x2x3x4 � x1x2x3x4 � x1x2x3x4:As it is shown in Example 2 where we performed �rst �ve steps in the pro
edure for 
on-stru
tion of LT-BDDs de�ned in what follows, after linearization, this system 
an be 
onvertedinto the system f (0)� (z) and f (1)� (z), in terms of new variables zi, i = 1; 2; 3; 4 expressed as thelinear 
ombination of original variables xi, i = 1; 2; 3; 4. Then the given system 
an be repre-sented by a SBDD derived by de
omposition in terms of this linear 
ombination of variablesas is spe
i�ed in the Step 6 of the for 
onstru
tion of LT-BDDs. Fig. 7 shows SBDD for thesystem of Boolean fun
tions from Example 3 derived by the linearization method, where inthe Step 7 of the pro
edure for determination of LT-BDDs (see below), the labels at the edgesare determined. This SBDD represents the given system in the following formf (0) = (x1 � x3)� (x1 � x3)(x2 � x4);f (1) = (x1 � x3)(x2 � x4):Thus, we 
an formulate the following pro
edure for determination of a linear transformationof variables in LT-BDDs.Pro
edure 1: Pro
edure for generation of LT-BDD1. Given an n-variable k-output swit
hing fun
tion f = (f (0); : : : ; f (k�1)).2. Represent f by the integer-valued equivalent fun
tion f(x) = Pk�1i=0 f (i)(x)2i.3. Constru
t 
hara
teristi
 fun
tions fr(x) for f(x), where fr(x) = 1 if f(x) = r andfr(x) = 0 for f(x) 6= r.4. Constru
t a total auto
orrelation fun
tion for system ffr(x)g.5. Perform the LSF- pro
edure des
ribed in the Se
tion 3, subse
tion B, and assign to f(x)a fun
tion f�(z), where z = � � x.6. Determine SBDD for f�(z).7. Relabel edges in SBDD(f�(z)) by repla
ing ea
h zi with the 
orresponding linear 
ombi-nation of initial variables xi. DRAFT



14Compared to the present methods for linear transformation of DDs, an advantage is thatthe linearization method based on total auto
orrelation fun
tions provides for a deterministi
algorithm, in the sense that all steps are uniquely determined. At the same time, the method
an be used for systems of Boolean fun
tions.
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01Fig. 6. SBDD for the system of fun
tions.
S2 S2

S2

x1Åx3

x1Åx3

x1Åx3

x1Åx3

x2Åx4 x2Åx4

f
(0  )

f
(1  )

01Fig. 7. Shared LT-BDD for the system of fun
tions derived by the linearization method.V. Redu
tion of Sizes of DDIn this se
tion, we present a pro
edure for minimization of MTBDDs for systems of Booleanfun
tions by their total auto
orrelation fun
tions. It is assumed that a given system is repre-sented by the integer equivalent fun
tion f(x). We note that the redu
tion of size(MTBDD(fx))is an NP-
omplete problem [3℄. The proposed pro
edure provides for the nearly minimal solu-tions in the following way: it performs minimization of the MTBDD for a given f(x1; : : : xn)level by level by starting from the bottom level 
orresponding to xn. It guarantees the maxi-DRAFT



15mal number of pairs of equal values of f for input ve
tors whi
h di�er in the value of xn. Thus,for ea
h pair of equal values of f we 
an redu
e a node at the lowest level in the MTBDD.Then, we perform reordering of pairs of equal values of f , and repeat the pro
edure at thenew MTBDD for n�1 variables. Under the assumption that we already minimized the widthat the previous level, we get a minimum width at the present level. The width is determinedby the maximum value of the total auto
orrelation fun
tion for f(x). This maximum valuemay be a
hieved for many di�erent n-tuples of variables x = (x1; : : : ; xn). Therefore, thepro
edure depends on the 
hoi
e of x in the sense that for di�erent 
hoi
es of x di�erentredu
tion possibilities at the upper levels may be a
hieved. However, this is a usual featureof nearly optimal solutions of NP-hard problems.Unlike the method des
ribed in [24℄, the method presented in this paper 
an be used for bothsingle output and multiple-output networks, and extends the 
lass of permutation matri
eswhi
h are used in optimization of DDs by ordering of variables. Therefore, the proposedmethod always produ
e MTBDDs with smaller or at most equal sizes 
ompared to the methodsusing the ordering of variables.Pro
edure 2: K-pro
edure1. Assign to a given multi-output fun
tion f (0); : : : ; f (k�1), an integer equivalent fun
tionQn = f(x) = Pk�1�ii=0 2if (i)(x).2. Denote by R the range of f(z) assigned to f . For every i 2 R, 
onstru
t 
hara
teristi
fun
tions fi(x) = 8><>: 1; if f(x) = h;0; otherwise; .3. Cal
ulate the auto
orrelation fun
tions Bfi for ea
h fi(x), and the total auto
orrelationfun
tion Bf = PiBf(i) .4. Determine the n-tuple of input variables � = (x1; : : : ; xn), where Bf takes the maximumvalue, ex
epting the value Bf (0). If there are several 
hoi
es, sele
t anyone of them.5. Determine a matrix �n = � from the requirement �� � = (0; : : : ; 0; 1)T , where � denotesthe multipli
ation over GF (2).6. Determine a fun
tion f� su
h that f�(� � x) = f(x). That means, reorder values in ave
tor F representing values of f by the mapping x = (x1; : : : ; xn) ! x�, where x� =��1 � x.7. In a ve
tor F� representing the values of f�, perform an en
oding of pairs of adja
entDRAFT



16values by assigning the same symbol to the identi
al pairs. Denote the resulting fun
tionof (n� 1) variables by Qn�1.8. Repla
e f = Qn = Qn�1 and repeat the pro
edure.9. Repeat the previous pro
edure for i = i � 1 to some k until there are identi
al pairs inQk.10. Determine MTBDD for f�k .Remark 1: The K-pro
edure produ
es the maximal number of identi
al pairs of valuesor subtrees in a MTBDD at the positions pointed by the outgoing edges xi and xi for alli = n; n� 1; : : : ; 1.Remark 2: (Upper bound on a number of deleted nodes in MTBDDs)The number of nodes in the resulting MTBDD(f�) is upperbounded by L � 2n � 1 �18 Pni=1B(n�i�1)max 2i�7, where B(k)max is the maximum value of the total auto
orrelation fun
tionat the level k.Remark 3: For ea
h pair of equal values of f at adja
ent positions whi
h is produ
ed by thereordering of fun
tion values determined by the K-pro
edure, a node in the MTBDD(f��1i )may be deleted form the BDD. It follows, that K-pro
edure produ
es the minimal numberof di�erent nodes at ea
h level in the MTBDD(f��1i ). However, sin
e the pairing of nodes atthe i-th level is performed by the total auto
orrelation fun
tion for Qi, this is not ne
essarilythe exa
t minimum of nodes in the MTBDD(f), whi
h may be a
hieved by an ordering ofelements of F optimal in the sense that produ
es the MTBDD(f) of the minimum size.Remark 4: A reordering of elements in F 
an be represented by the 
orresponding permu-tation matrix. We denote by Pdv, PFreeBDD, and PK, the set of permutation matri
es usedin optimization of MTBDDs by ordering of variables, in FreeBDDs [6℄, and in MTBDDs forf� determined by K-pro
edure. Then, Pdv � PFreeBDD � PK.We illustrate the K-pro
edure by the following example.Example 4: Table 2 shows two fun
tions f0, and f1 of four variables. These fun
tions arerepresented by the integer equivalent fun
tion f = 2f0+f1. The maximum value for the totalauto
orrelation fun
tion Bf is 8 whi
h 
orresponds to the n-tuple �max = (1111).Fig. 8 shows Multi-terminal Binary De
ision Tree (MTBDT(f)) for f and Fig. 9 shows the
orresponding MTBDD(f). We determine the matrix �4 from the requirement �4 � �max =DRAFT



17�4 � 2666666664 1111
3777777775 =

2666666664 0001
3777777775.
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0 32 2 03 21Fig. 9. MTBDD for f .Therefore, we 
an 
hoose �4 = 2666666664 1 1 1 10 0 1 11 0 0 11 1 1 0
3777777775. We determine the inverse matrix for �4 over

GF (2) as ��14 = 2666666664 1 0 1 10 1 1 11 1 0 11 0 0 1
3777777775. Table 3 shows the mapping of ve
tors of variables in f by

DRAFT



18using ��14 . Then, we determineF� = [f(0); f(15); f(12); f(3); f(6); f(9); f(10); f(5); f(11); f(4); f(7); f(8); f(13); f(2); f(1); f(14)℄T ;= [0; 6; 0; 3; 5; 1; 3; 2; 2; 1; 3; 3; 5; 3; 2; 2℄T ;for � = �4. We perform the en
oding F� ! Q3 of pairs of fun
tion values in F� as followsQ3 = [0; 4; 1; 5; 6; 3; 4; 2℄T , where (0; 0) = 0, (0; 3) = 4, (1; 1) = 1, (1; 2) = 5, (2; 1) = 6,(3; 3) = 3, (2; 2) = 2. Fig. 10 shows Multi-terminal binary de
ision tree MTBDT(f��14 ) andFig. 11 shows MTBDT(f��14 ) with en
oded pairs of equal values for 
onstant nodes. Wedenote the 
hara
teristi
 fun
tions for 0,1,2,3,4,5,6 in Q3 as fi. There is a single non-trivial
hara
teristi
 fun
tion f4. It is given by f4 = [0; 1; 0; 0; 0; 0; 1; 0℄T , and its auto
orrelationfun
tion is Bf4 = [2; 0; 0; 0; 0; 0; 0; 2℄T .
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Fig. 10. MTBDT for f��14 .Sin
e max� 6=0Bf4(�) = Bf4(111) = 2, we have for �3 that �3 � �max = �3 � 266664 111 377775 = 266664 001 377775.Therefore, �3 = 266664 1 1 01 0 10 1 0 377775, and ��13 = 266664 1 0 10 0 11 1 1 377775. Table 4 shows the mapping of ve
torsDRAFT
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0 4 1 5 6 3 4 2Fig. 11. MTBDT for f��14 with en
oded pair of fun
tion values.of variables in Q3 by using ��13 . For f in Table 2, and � = �3, we haveQ� = [0; 2; 4; 4; 3; 1; 6; 5℄T . Fig. 12 shows the 
orresponding MTBDD(Q�). Therefore, F� =[f(0); f(15); f(1); f(14); f(12); f(3); f(13); f(2); f(7); f(8); f(6); f(9); f(11); f(4); f(10); f(5)℄T ;= [0; 0; 2; 2; 0; 3; 0; 3; 3; 3; 1; 1; 2; 1; 1; 2℄T . Fig. 13 shows the 
orresponding �nal MTBDD(f�).
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0 4 1 5632Fig. 12. MTBDD(Q�.)Note that the re
ursive appli
ation of ��14 and ��13 to f is identi
al to the appli
ation ofa 
omposite mapping ��14;3 = ��14 � ��13;1, where �3;1 = 264 ��13 00 1 375, where 0 is (3 � 1) zero
matrix. Therefore, ��14;3 = 2666666664 1 0 1 10 1 1 11 1 0 11 0 0 1

3777777775 �
2666666664 1 0 1 00 0 1 01 1 1 00 0 0 1

3777777775 =
2666666664 0 1 0 11 1 0 11 0 0 11 0 1 1

3777777775. Table 5 showsthe mapping of ve
tors of variables in f by using ��14;3. It produ
es the same permutation ofvalues in F as a re
ursive appli
ation of ��14 , and ��13 to f , respe
tively. In this example, theDRAFT



20TABLE IIFun
tion f and f�.Fun
tion Chara
teristi
 fun
tions Auto
orrelation fun
tionsx; w f0; f1 f(x) f0(z) f1(z) f2(z) f3(z) B0(z) B1(z) B2(z) B3(z) B(z)0 00 0 1 0 0 0 4 4 4 4 161 10 2 0 0 1 0 2 0 0 2 42 11 3 0 0 0 1 2 2 0 0 43 11 3 0 0 0 1 2 2 0 0 44 01 1 0 1 0 0 0 0 2 2 45 10 2 0 0 1 0 0 0 2 2 46 01 1 0 1 0 0 0 0 0 0 07 11 3 0 0 0 1 0 0 0 0 08 11 3 0 0 0 1 0 0 0 0 09 01 1 0 1 0 0 0 0 0 0 010 01 1 0 1 0 0 0 0 2 2 411 10 2 0 0 1 0 0 0 2 2 412 00 0 1 0 0 0 2 2 0 0 413 00 0 1 0 0 0 2 2 0 0 414 10 2 0 0 1 0 0 2 2 2 415 00 0 1 0 0 0 2 2 2 2 8size of the MTBDD(f) was redu
ed from 13 to 9 non-terminal nodes by using the proposedmethod.A. Advantages and limitations of the proposed methodRemark 5: The K-pro
edure performs the de
omposition of f with respe
t to the expansionrule f = (xi�� � ��xn)f0� (xi � � � � � xn)f1, where f0 and f1 are 
o-fa
tors of f for xi�� � ��xn = 0, and 1, respe
tively.The following example illustrates dependen
y of the solutions on the 
hoi
e of permutationmatri
es � and ve
tors � where the total auto
orrelation fun
tions take the maximum values,DRAFT



21TABLE IIIMapping of fun
tion values by ��14 .x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x150 0 0 0 0 0 0 0 1 1 1 1 1 1 1 10 0 0 0 1 1 1 1 0 0 0 0 1 1 1 10 0 1 1 0 0 1 1 0 0 1 1 0 0 1 10 1 0 1 0 1 0 1 0 1 0 1 0 1 0 10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150 1 1 0 0 1 1 0 1 0 0 1 1 0 0 10 1 1 0 1 0 0 1 0 1 1 0 1 0 0 10 1 0 1 1 0 1 0 1 0 1 0 0 1 0 10 1 0 1 0 1 0 1 1 0 1 0 1 0 1 00 15 12 3 6 9 10 5 11 4 7 8 13 2 1 14
TABLE IVMapping of fun
tion values by ��13 .x0 x1 x2 x3 x4 x5 x6 x70 0 0 0 1 1 1 10 0 1 1 0 0 1 10 1 0 1 0 1 0 10 1 2 3 4 5 6 70 1 0 1 1 0 1 00 1 0 1 0 1 0 10 1 1 0 1 0 0 10 7 1 6 5 2 4 3

DRAFT



22TABLE VMapping of fun
tion values by ��14 � ��13 .x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x150 0 0 0 0 0 0 0 1 1 1 1 1 1 1 10 0 0 0 1 1 1 1 0 0 0 0 1 1 1 10 0 1 1 0 0 1 1 0 0 1 1 0 0 1 10 1 0 1 0 1 0 1 0 1 0 1 0 1 0 10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150 1 0 1 1 0 1 0 0 1 0 1 1 0 1 00 1 0 1 1 0 1 0 1 0 1 0 0 1 0 10 1 0 1 0 1 0 0 1 0 1 0 1 0 1 00 1 1 0 0 1 1 0 1 0 0 1 1 0 0 10 15 1 14 12 3 13 2 7 8 6 9 11 4 10 5
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0 32 1Fig. 13. MTBDD(f�).in the 
ases when there are several maxima in the total auto
orrelation fun
tion for a givenfun
tion f .Example 5: (Dependen
y on �)Consider a Boolean fun
tion f given by the truth-ve
tor F = [0; 0; 1; 0; 1; 0; 0; 0; 1; 0; 0; 1; 0; 1; 0; 0℄T.For this fun
tion size(MTBDD(f)) = 9.The maximum value of the auto
orrelation fun
tion Bf(�) = 14 for the inputs � = 6,DRAFT



239, and 15. For � = 15 and �4(� = 15) = 2666666664 1 1 1 10 0 1 11 0 0 11 1 1 0
3777777775, we determine ��14 (� = 15) =2666666664 1 0 1 10 1 1 11 1 0 11 0 0 1

3777777775. The elements of the truth-ve
tor for f are reordered asF� = [0; 0; 0; 0; 0; 0; 0; 0; 1; 1; 0; 1; 1; 1; 0; 0℄T. We perform en
oding of pairs of adja
ent valuesas Q� = [0; 0; 0; 0; 1; 2; 1; 0℄T , where (0,0)=0, (1,1)=1, and (0,1)=2. For this fun
tion, themaximum value of the total auto
orrelation fun
tion max�BQ(�) = 6 for the input 2 = (010).For �3(� = 2) = 266664 0 0 11 0 00 1 0 377775, it follows ��13 (� = 2) = 266664 0 1 00 0 11 0 0 377775, and the 
orresponding re-ordering is Q� = [0; 0; 0; 0; 1; 1; 2; 0℄T , from where F� = [0; 0; 0; 0; 0; 0; 0; 0; 1; 1; 1; 1; 0; 1; 0; 0℄T.For the resulting f�, size(MTBDD(f�)) = 4.If for the maximum value of the auto
orrelation fun
tion Bf (�), we 
hoose the input � = 6,then for �4(� = 6) = 2666666664 1 0 0 00 1 1 01 0 0 10 0 1 1
3777777775, we determine ��14 (� = 6) = 2666666664 1 0 0 01 1 1 11 0 1 11 0 1 0

3777777775. Thus, wereorder the elements of F for the given f as F� = [0; 0; 0; 0; 1; 1; 0; 0; 0; 0; 1; 0; 1; 1; 0; 0℄T.For en
oding Q� = [0; 0; 1; 0; 0; 2; 1; 0℄T , where (0; 0)) = 0, (1; 1) = 1, and (1; 0) = 2, themaximum values of the total auto
orrelation fun
tion of Q� is 6 for the input 4 = (100).For �3(� = 4) = 266664 0 0 10 1 01 0 0 377775, we determine ��13 (� = 4) = �3(� = 4). Therefore, the 
orre-sponding reordering is Q� = [0; 0; 1; 1; 0; 2; 0; 0℄T , whi
h produ
esF� = [0; 0; 0; 0; 1; 1; 1; 1; 0; 0; 1; 0; 0; 0; 0; 0℄T. For the resulting f�, we determine size(MTBDD(f�)) =5. Example 6: (Dependen
y on �) DRAFT



24For f in the previous example, if we 
hose for the maximum value of Bf(�) the input � = 15and the matrix �4;� (� = 15) = 2666666664 1 1 0 00 0 1 11 0 1 00 1 0 0
3777777775, whi
h requires ��14;� (� = 15) = 2666666664 1 0 0 10 0 0 11 0 1 11 1 1 1

3777777775,then we determine the reordering F� = [0; 0; 0; 0; 0; 0; 1; 1; 1; 1; 1; 0; 0; 0; 0; 0℄T. For the en-
oding �(Q) = [0; 0; 0; 1; 1; 2; 0; 0℄T , the maximum value of the total auto
orrelation fun
tionis max�BQ�(�) = 6 for the input � = 7 = (111). For �3(� = 7) = 266664 1 1 01 0 10 1 0 377775, we get
��13 (� = 7) = 266664 1 0 10 0 11 1 1 377775, whi
h indu
es a reordering Q� = [0; 0; 0; 0; 2; 0; 1; 1℄T . From there,F� = [0; 0; 0; 0; 0; 0; 0; 0; 1; 0; 1; 1℄T. For the resulting f�, size(MTBDD(f�)) = 5.However, if we 
hose �3;� (� = 7) = 266664 0 1 11 1 00 1 0 377775, and the 
orresponding ��13;� (� = 7) =266664 0 1 10 0 11 0 1 377775, we get the reordering Q� = [0; 0; 1; 1; 0; 0; 2; 0℄T , whi
h produ
es the ve
torF� = [0; 0; 0; 0; 1; 1; 1; 1; 0; 0; 0; 0; 1; 0; 0; 0℄T. For the resulting f�, size(MTBDD(f�)) = 5.The reason for the in
reased size is that �3;� (� = 7), unlike �3(� = 7), did not pairedtogether sequen
es of four 0. This pairing in MTBDD(f�) means assignment of identi
alsubve
tors of length four to the same logi
 value for x1. In this 
ase that is the negative literalxi. Thanks to that, the subtree rooted in the node pointed by x1in the MTBDD is redu
edto a single 
onstant node.The proposed method provides for redu
tion of a number of subtrees 
onsisting of a non-terminal node and two 
onstant nodes, sin
e it produ
es pairs of equal fun
tion values. Thelarger subtrees, whi
h 
orrespond to the equal subve
tors of orders 2k, k > 1 are not taken intoa

ount at this step. The method fails in the 
ase when we 
hose a permutation matrix whi
hdoes not provide a grouping of isomorphi
 smallest subtrees into a larger subtree. Example 7DRAFT



25illustrates that feature of the method.Example 7: Consider a fun
tion f = x2x4+x2x3x4+x1x2x4+x1x3x4. The truth-ve
tor forthis fun
tion is given by F = [1; 0; 1; 0; 0; 1; 1; 0; 1; 0; 1; 0; 0; 1; 0; 1℄T . size(MTBDD(f)) = 6for this truth ve
tor.The maximum value of Bf (�) is equal to 12, whi
h means that we may generate six pairsof equal values for f at the level for x4. Then, the method proposed in this paper produ
esMTBDDs with the size equal to 7. However, the ordering of variables approa
h results in theMTBDDs of sizes 5, 6, and 7 [24℄.However, if we �rst perform en
oding Q = [2; 2; 3; 2; 2; 2; 3; 3℄T , where (1; 0) = 2, and(0; 1) = 3, and then apply the proposed method, we get a MTBDD of size 5, by alwaystaking the smallest value for � . This follows from the property that in Q, we have �ve pairsdenoted by 2 and three pairs denoted by 3, whi
h permits an immediate redu
tion of subtrees
onsisting of three non-terminal nodes.We note that the method proposed in the paper is based on an extended set of allowedpermutation matri
es for the inputs, 
ompared to the one used in DD optimization by orderingof variables. The pri
e for su
h extension is minor, sin
e the values for f 
an be easilydetermined from f� assigned to f . Therefore, the proposed method permits to derive eÆ
ientsolutions whi
h 
an not be a
hieved by the ordering of variables. In this respe
t, the proposedmethod relates to the 
onsiderations in [2℄ and [7℄. In [2℄ , the same approa
h to BDDsminimization by using an extended set of permutation matri
es was proposed starting from
ube representations of fun
tions and performing transformations of 
ubes. However, noalgorithm or heuristi
 for determination of a transformation for 
ubes has been proposed.Instead, for ea
h given fun
tion f , a parti
ular transformation is determined by the inspe
tionof the 
hara
teristi
s of f . In [7℄, the method in [2℄ was extended into the method of truth tablepermutation, and further elaborated by proposing two heuristi
 algorithms for determinationof a suitable permutation of the fun
tion values for f permitting redu
tion of the size of theBDD for f .To 
on
lude this se
tion we note that the method proposed in this paper results in BDDswhi
h are not larger and in most 
ases smaller than BDDs produ
ed by methods based onordering of variables. DRAFT



26Example 8: Consider a fun
tion f = x1x2x3 + x2x3x4. The truth-ve
tor for this fun
tion isF = [0; 0; 0; 0; 0; 0; 0; 1; 0; 0; 0; 0; 0; 0; 1; 1℄T. The optimization by ordering of variables produ
esa MTBDD of size 5. However, the method proposed in this paper, produ
es a MTBDD of size4 in the following way. The maximum value for Bf(�) = 14 for the inputs � = 1; 8; 9. For sim-pli
ity, we 
hoose � = 1, whi
h implies �4(� = 1) is the identity matrix of order 4, and performthe en
oding as Q = [0; 0; 0; 2; 0; 0; 0; 1℄T . The maximum of the total auto
orrelation fun
tionfor Q is 6 and it is a
hieved for � = 4 = (100). For a matrix �3(� = 4) = 266664 0 0 10 1 01 0 0 377775, whi
his self-inverse over GF (2), we get the reordering Q� = [0; 0; 0; 0; 0; 0; 2; 1℄T , whi
h produ
esF� = [0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; 1; 1℄T. For thus determined f�, size(MTBDD(f�)) = 4.B. Modi�ed K-pro
edureThe approa
h for design of optimized LT-BDDs des
ribed in the previous se
tion was devel-oped for the 
ase when Ln�1 � Ln�2 � : : : � L1, where Li is the number of nodes at the level
orresponding to xi+1 in the BDD 
orresponding to the original ordering of variables. Sin
ethese inequalities are not always satis�ed the following simple modi�
ation of the proposedpro
edure may be very eÆ
ient.Pro
edure 3: (Modi�ed K-pro
edure)1. Compute max� 6=0Bfn(�) = Bn, where fn = f , and n is the number of variables in fn.2. Compress fn into fn�q by en
oding q-tuples of su

essive fun
tion values for fn, forq = 1; : : : ; n� 1.3. Compute maxiBfi = Bft. 4. Apply K-pro
edure to ft.This modi�
ation of the original pro
edure may in
rease the amount of 
omputation by thefa
tor of 2 at most.C. Analyti
al 
omputation of auto
orrelation fun
tionsWe note that total auto
orrelation fun
tions and optimal LT-BDDs in many 
ases may be
omputed analyti
ally. To illustrate this point we 
onsider a devi
e implementing an error-
orre
ting pro
edure based on a linear 
ode V of length n with k-information bits [13℄.A 
ode V 
orre
t errors from set E � Zn2 i� v1 � e1 6= v2 � e2 for any v1; v2 2 V andDRAFT



27e1; e2 2 E. If V 
orre
t l errors, then E 
ontains all Pli=00B� ni 1CA ve
tors e with jjejj 6= l andsome errors e with jjejj � l + 1, where jjejj is the Hamming weight of e.A 
ode V is not extendable for a given E i� for any x 2 Zn2 there exists a unique v 2 Vand a unique e 2 E su
h that x = v � e, jEj = 2n�k.A devi
e implementing an error-
orre
ting pro
edure based on a given V has n inputs, noutputs, and for input x produ
es output e = f(x) su
h that there exist v 2 V and x = v� e.(Sin
e V 
orre
ts set of errors E, this e is unique.) For this devi
e, we have for the totalau
orrelation fun
tion [13℄ Bf (�) = 8><>: 2n; � 2 V ;0; � =2 V :If V is an (n; k) 
ode, the K-pro
edure will require k steps. For the resulting optimallinear transform �, the rows of (h1; : : : ; hn�k) of � form a basis in the null-spa
e for V . Thus,� = 2666666664 h1...hn�kO Ik
3777777775, where Ik is the (k � k) identity matrix, and the 
orresponding LT-BDDwill have 2(n�k) � 1 nodes.Example 9: Consider a (5; 2) 
ode with the generating matrix [13℄ G = 264 1 0 1 1 00 1 1 0 1 375.It is easy to 
he
k that this 
ode 
an 
orre
t all single errors and two double errors 00011,and 10001. In this 
ase, Bf (�) = 8><>: 32; if � = 00000; 10110; 01101; 110110; otherwise; , and

��1 = 2666666666664
1 1 1 0 01 0 0 1 00 1 0 0 10 0 0 1 00 0 0 0 1

3777777777775. Therefore, z1 = x1 � x2 � x3, z2 = x1 � x4, z3 = x2 � x5. Fig. 14shows the resulting optimal BDD.VI. Experimental ResultsWe performed experiments 
omparing BDDs and LT-BDDs for ben
hmark fun
tions usedin logi
 design and for randomly generated multiple-output swit
hing fun
tions. DRAFT
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oder for the (5; 2) shortened Hamming 
ode.We used a program for 
al
ulation of auto
orrelation fun
tions and performing the Pro-
edure for linearization of Boolean fun
tions working with ve
tor representations of Booleanfun
tions. For this reason, the experiments are restri
ted to fun
tions of a small number ofvariables. However, if the 
al
ulation are performed over BDDs by using the DD-methodsfor 
omputation of Walsh transform, and the Wiener-Khin
hin theorem, then the proposedapproa
h 
an be applied for fun
tions whi
h 
an be pro
essed by other DD-methods, sin
e themain 
omplexity of the proposed method relates to the 
al
ulation of the total auto
orrelationfun
tions.In Table VI, we present numbers of inputs (In), outputs (Out), 
onstant nodes (
n), andin 
olumns denoted by MTBDD(f) and MTBDD(f�), we 
ompared numbers of non-terminalnodes (ntn), whose sum with the numbers of 
onstant nodes produ
es the size (s), and thewidth (w) of the MTBDDs for the initial ordering of variables and LT-MTBDDs derived by theauto
orrelation fun
tions. The 
olumn MTBDD(fv) shows the number of non-terminal nodesand widths of MTBDDs for the optimal orderings of variables determined by the brute for
emethod based on 
omparing all possible orderings. The existing methods for optimizationof DDs by variables ordering are heuristi
s and mostly produ
e the nearly optimal solutions.Therefore, the provided 
omparison is the strongest 
hallenge for the proposed method. Thistable presents the results for the method based on auto
orrelation fun
tions for the smallestvalues for � where the autoorrelation fun
tions take the maximum values. The other 
hoi
esfor � and �, may produ
e smaller LT-MTBDDs.In Table VII we 
ompare the number of non-terminal nodes of MTBDDs for the initialDRAFT



29ordering of variables (MTBDD(f)), the optimal ordering (MTBDD(fv)), the initial orderingwith negated edges (MTBDD(fw)), the ordering determined by lover-bound sifting methodwith negated edges (MTBDD(fr), and by the auto
orrelation fun
tions (MTBDD(f�)) forbinary-valued single output randomly generated fun
tions. It should be noted that in theused pa
kage for sifting, the nodes with negated edges are used, while for other methods thisoptimization is not performed. This is the reason that for some fun
tions, the numbers ofnodes and the width for DDs produ
ed by lower-bound sifting are smaller than the numberof nodes for optimal ordering of variables without using the negated edges. It is interesting tonote that in some 
ases, as for example f1, f7, n6, n7, the method based on auto
orrelationfun
tions although without negated edges produ
es the results 
lose to the sifting with negatededges.From these experiments, the following 
on
lusions 
an be made.1. The proposed method is very e�e
tive when the integer equivalent fun
tion f(x) de�nedby a given multiple-output fun
tion (see [13℄) takes a large number of di�erent values,whi
h however, do not repeat periodi
ally as sequen
es of order 2k, k = 1; : : : ; n� 1. Thisis the 
ase, for example, of n-bit adders. It follows from Table VI that for adders transitionfrom BDDs to LT-BDDs results in almost 50% redu
tion of the sizes of the 
orrespondingde
ision diagrams.For adders, the method produ
es the LT-MTBDDs with minimal width, however, but thesizes of LT-MTBDDs are larger than in the 
ase of optimal ordering of variables. It shouldbe noted that reordering of variables does not redu
e the widths of MTBDDs for adders.The self-inverse matrix � des
ribing the optimal ordering of variables for adders 
an bederived from the values �i 
orresponding to the maximum values of total auto
orrelationfun
tions by writing ea
h 1-bit of �i in the separate row of � starting from the largest �i.For example, for the 2-bit adder, the total auto
orrelation fun
tion Bf takes the maximumvalue for �1 = 5 = (0101) and �2 = 10 = (1010). Therefore, � = 2666666664 1 0 0 00 0 1 00 1 0 00 0 0 1
3777777775.2. The method is less eÆ
ient when the equal values of the original fun
tion f repeatthemselves as sequen
es of order 2k. In the 
orresponding MTBDDs, these sequen
esDRAFT



30result in isomorphi
 subtrees, whi
h permits redu
tion of numbers of nodes at the upperlevels in the MTBDDs. In these 
ases, pairing fun
tion values at the Hamming distan
e 1by the total auto
orrelation fun
tion may destroy the equal sequen
es of order 2k, wherek > 1, whi
h results in larger MTBDDs.As it is dis
ussed in [7℄, that feature is 
hara
teristi
 for methods using permutations offun
tion values for multiple-output fun
tions [2℄, [7℄. Sin
e any reordering of variablesis a permutation of fun
tion values, the same remark applies to optimization of DDs byreordering of variables.The fun
tions 
on1 and ex1010 in Table 6, are examples where the proposed methodredu
es both the sizes and the widths of the MTBDD. For the fun
tion misex1 the methodprovides redu
ed width and the same size. The fun
tion 
lip is an example where theproposed method in
reased the width but not the size. For the fun
tion t481, the method
annot redu
e neither the size and the width of the MTBDD. The explanation is that inthe fun
tion t481 sequen
e 1101 repeats itself many times, whi
h permits redu
tion of anumber of nodes at upper levels resulting in a MTBDD of a smaller size.The method is ineÆ
ient for multiple-output fun
tions whose integer valued equivalentfun
tions 
ontain few equal values. In these 
ases, we 
an not produ
e large numbers ofpairs of equal values resulting in a redu
tion of the number of nodes in MTBDDs. Theexamples are multipliers and the ben
hmark fun
tion bw.3. The method is eÆ
ient for randomly generated multiple-output fun
tions. It should benoted that in this 
ase the initial MTBDDs are usually large and the ordering of variablesdoes not provide for redu
tion of their sizes. Savings in the number of non-terminal nodesof MTBDDs for randomly generated fun
tions (see Table 7) range from 1.4% for f3 to45.06% for n3. Savings in the width of MTBDDs range from 1.06% for f9 to 17.86% forf7 and 20% for f2, and 51.62% for n3. For f6, the method produ
ed the larger MTBDD,sin
e in this 
ase the random numbers generator produ
ed equal sequen
es. In some 
ases,as for example for n6, the method produ
ed the smaller LT-MTBDsD than for the originalordering, however, larger than MTBDDs for the optimal orderings.4. An important feature of the proposed method is that, unlike sifting, it 
an be appliedto the redu
tion of MTBDDs of symmetri
 fun
tions, where the permutation of variablesDRAFT



31does not permit redu
tion of nodes. Symmetry implies equal sequen
es of order 2k forsome large k in the fun
tion values.First, we perform en
oding of su
h sequen
es, and after this we apply the method to thefun
tion g of 2n�k variables derived in this way. Then we determine g� for this fun
tion,and after the de
oding we get f� for the initial fun
tion f . Table VI in rows 20 to 24illustrates the method and 
ompares MTBDD(f) and MTBDD(f�) for some symmetri
ben
hmark fun
tions. For these ben
hmarks, we �rst perform en
oding of sequen
es offour su

essive input ve
tors, and then use the proposed method, and perform re-
odingbefore we determine the size of the MTBDD. For rd84/8, and 9sym/16, we performeden
oding of the sequen
es of 8 and 16 su

essive input ve
tors, respe
tively.VII. Closing RemarksTwo important problems in optimization of DD representations, ordering of variables, anddetermination of an optimal linear transformation of variables, 
an be related, expressed, andsolved using total auto
orrelation fun
tions. The 
omputational 
omplexity of this approa
hdoes not ex
eed min(O(n2n+k; O(2n)), where n is the number of variables and k is the num-ber of fun
tions. The approa
h permits uniform 
onsideration of single and multiple-outputfun
tions.We show that the method for linearization of Boolean fun
tions provides for a simple andeÆ
ient algorithm for determination of a nearly optimal linear transformation of variables.Then, we show that the total auto
orrelation fun
tion may be used to determine the orderof fun
tion values, whi
h re
ursively determine and minimize the width of ea
h level in therelated MTBDDs. Sin
e the proposed algorithm minimizes a number of nodes at ea
h level,it results in a redu
tion of the 
omplexity of MTBDDs. The proposed algorithms for bothordering of variables and 
onstru
ting quasioptimal linear transform of variables have simplesoftware implementations. The algorithms are deterministi
 in the sense that there are noheuristi
 involved at any step of the algorithms. Experiments with ben
hmarks and withrandomly generated fun
tions illustrate that the proposed method is on average very eÆ
ient.The proposed method performs a larger 
lass of transformations over variables 
ompared todynami
 reordering and related methods where just the reordering of variables is used. TheDRAFT



32TABLE VIMTBDD(f), MTBDD(fv), and MBTDD(f�) for ben
hmark and randomly generated fun
tions.MTBDD(f) MTBDD(fv) MTBDD(f�)f In Out 
n ntn w ntn w ntn wadd2 4 3 7 13 6 12 6 8 3add3 6 4 15 51 20 33 14 24 7add4 8 5 31 113 30 78 30 64 15add5 10 6 63 289 62 171 62 160 31add6 12 7 127 705 126 360 126 384 63add7 14 8 255 1665 254 741 254 896 127ex1010 10 10 177 894 383 - - 871 367misex1 8 11 17 6 17 6 17 5
lip 9 5 33 339 120 141 35 159 32t481 16 1 2 32 4 - - 103 46rd53 5 3 6 15 5 15 5 14 5rd73 7 3 8 28 7 28 7 17 6rd84 8 4 9 36 8 36 8 23 7rd84/8 8 4 9 36 8 36 8 18 69sym 9 1 2 33 6 33 6 24 59sym/16 9 1 2 33 6 33 6 9 3Randomly generated fun
tionsf2 8 1 2 75 30 68 25 66 24f3 8 1 2 73 28 67 23 72 27f6 8 1 2 58 18 58 18 69 25f7 8 1 2 72 28 70 26 67 23f8 8 3 8 174 64 167 60 168 59f9 8 4 16 222 95 216 90 219 94f10 8 3 5 139 56 135 54 136 54n1 8 2 3 84 30 77 25 80 26n2 8 2 3 89 29 80 26 87 27n3 8 2 3 91 31 85 27 50 15n4 8 2 3 90 31 83 24 89 28n5 8 2 3 82 27 76 22 77 24n6 8 2 2 68 25 59 18 62 19n7 8 2 2 72 28 64 21 63 20n8 8 2 2 72 29 64 22 72 28n9 8 2 2 73 28 69 25 68 25n10 8 2 2 118 41 111 36 115 42 DRAFT



33TABLE VIINon-terminal nodes in MTBDDs for initial ordering of variables, optimal ordering, initial ordering with negatededges, lower-bound sifting with negated edges, and auto
orrelation fun
tions.f MTBDD(f) MTBDD(fv) MTBDD(fw) MTBDD(fr) MTBDD(f�)f1 75 68 64 62 66f2 73 67 67 60 72f6 58 58 52 51 69f7 72 70 64 62 67n1 84 77 64 62 80n6 68 59 63 55 62n7 72 64 65 60 63n8 72 64 65 58 72n9 73 69 64 62 68method 
an be used to improve the results derived as the output of the dynami
 reordering.A
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