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Abstract

This paper presents reviews and briefly discuss re-
cent development in spectral methods in switching and
multiple-valued logic theory and the design of digital sys-
tems.

1 Introduction

In switching theory and multiple-valued (MV)
logic, spectral techniques are used as alternative methods
providing for efficient solutions of different tasks where
the classical approaches appear inefficient or complex for
applications. In this paper, we review and discuss some
recent research work in this area.

2 Group Theoretic Approach to Spectral
Techniques

In this approach, discrete functions are considered
as a mappingf : G ! P , whereG is a finite not nec-
essarily Abelian group, andP is a field that may be the
complex fieldC or a finite (Galois) fieldGF (p). The set
of all functions onG intoP is denoted byP (G), and the
structure of a linear vector space is assumed forP (G).

Switching functionsf : f0; 1gn ! f0; 1g, and MV
functionsf : f0; : : : ; p� 1gn ! f0; : : : ; p� 1g, with n

variables, are considered as particular examples, whenP

is GF (2) andGF (p), andG is the direct product ofn
support groups ofGF (2) andGF (p), respectively. We
denote these domain groups byC n

2
andCn

p
, assuming

the addition inGF (2) andGF (p) componentwise as the
group operations. Alternatively, switching and MV func-
tions are considered as subsets of complex-valued func-

tions inC(Cn

2
) andC(Cn

p
), in which case the logic val-

ues for arguments and function values, conveniently rep-
resented by 0,1 and0; : : : ; p � 1, with 0 assigned to the
unity inG, are considered as the corresponding integers.

In P (G), Fourier analysis is defined in terms of
unitary irreducible group representations ofG over P ,
which in the case of Abelian groups reduce to group char-
acters, providing that some restrictions between the car-
dinality of G and characteristic ofP ensuring the exis-
tence of a Fourier transform are satisfied.

The group theoretic approach permits an easy way
to derive relationships among the most often used trans-
forms in this area, the Walsh, arithmetic, and Reed-
Muller transforms. Generalizations to MV functions and
related transforms are straightforward [3].

The discrete Walsh transform is the Fourier trans-
form in C(Cn

2
), since is defined with respect to the

discrete Walsh functions which are group characters of
C2 over C, in the same way as in the Fourier trans-
form, the exponential functionsejwx, w; x 2 R, are the
group characters of the locally compact Abelian group
of the real numbersR. The Walsh functions are prod-
uct of elements of the incomplete inC(Cn

2
) set of n

Rademacher functions, which are switching variables in
(0; 1) ! (1;�1) coding. Thus, in this coding,xi maps
into 1� 2xi, xi 2 f0; 1g. Due to that, if the Walsh func-
tions are represented as product of first order polynomials
in terms of switching variables, then after a simple cal-
culation, the Walsh series expansion, in terms of Walsh
coefficients, converts into the arithmetic expression, in
terms of arithmetic transform coefficients. The calcu-
lation consist of determination of products of switching
variables by expanding the parenthesis, expressing the
Walsh coefficients in terms of function values, and re-
assignment of coefficient to the products. Reed-Muller



Table 1. Number of coefficients for f(x) =

sin(x).

Walsh Arithmetic Arithmetic-Haar Fourier
65538 59930 55481 18144

expressions follow by replacing the fieldC by GF (2),
which means, by recalculating the coefficients modulo 2
and replacing the additions and subtractions by modulo
2 addition (EXOR). Relationships to the discrete Haar
transform are straightforward, if the discrete Haar func-
tions are expressed in terms of switching variables.

In this setting, the use of the non-Abelian quater-
nion groupQ2, see for example [15], can be consid-
ered as the recoding of triplets of switching variables
(xixjxk) in C3

2
by a single variable inQ2. Thus,C(C3r

2
)

is replaced byC(Qr

2
). The relationship to the Fourier

transform onQ2, which is defined in terms of unitary ir-
reducible representations ofQ2 overC consisting of four
one-dimensional and a single two dimensional represen-
tation, is straightforward, if the group representations are
expressed in terms of switching variables. In the same
way, an extension to the arithmetic-Haar transform in
C(Qr

2
) is achieved [?].
The following example shows that such replace-

ment of the domain group may be useful in practice.

Example 1 Consider a function f(x) = sin(x), where
f(x) and x are represented as 16-bit binary numbers.
This function can be considered as a multiple-output
switching function with 16 inputs xi and 16 outputs fi
and can be represented by an integer equivalent function
fZ =

P
16

i=1
fi. Table 1 shows the number of coeffi-

cients in the Walsh, the arithmetic, the arithmetic-Haar
expressions on the quaternion groups, and the Fourier
expression on the quaternion groups for f . In the case of
Fourier expressions, there are 5248 real and 5120 purely
imaginary coefficients. The rest of 7776 coefficients are
complex-valued, which means require twice more space
to be stored. However, even in this case, the Fourier ex-
pression appears the most compact in the number of non-
zero coefficients count.

2.1 FFT on non-Abelian Groups

Even tough applications of FFT on non-Abelian
groups have been suggested in [3], [4], and also used
somewhere else, see for example, [5], [15], and refer-
ences therein, the potential advantages of spectral meth-
ods on non-Abelian groups seems not yet to have been

properly exploited. In [?], the following question is
asked: ”The ultimate purpose must be to find out whether
this group (the quaternionQ2) may be as significant for
logic synthesis as it seems to be for filtering and other
signal processing tasks”.

In [13], and [14], some partial answers to this ques-
tion are provided by the way of a series of experiments.
It is shown, among the other things, that for functions for
more than 10 variables, FFT on quaternion groups per-
mits compromising between space and time complexities
of FFT. For example, ifn = 14, FFT on the quaternion
groups is 10 times faster than on the dyadic groups at the
price of three times more space.

Example 2 Table 2 compares the time (t) and space (m)
requirements for FFT on finite dyadic groups and the
quaternion groups. For n = 8; 9; 10; 14, we use the do-
main groups C8

2
, C9

2
, C10

2
, C14

2
, and C4Q

2

2
, Q3

2
, C2Q

3

2
,

C4Q
4

2
, respectively. The test functions are taken from

mcnc benchmarks.

Table 2. Complexity of FFT.

f n t m t m
adr4 8 60.90 46.39 125.80 100.27
misex1 8 33.20 35.14 73.70 89.17
rd84 8 116.10 46.39 133.90 101.39
mul4 8 63.40 45.27 129.70 99.29
9sym 9 379.80 86.39 324.60 193.30
apex4 9 464.00 86.39 336.00 196.96
clip 9 466.00 86.39 339.00 197.38
adr5 10 759.00 166.39 787.00 381.89
mul5 10 788.00 164.14 833.00 379.93
sao2 10 1531.00 166.39 763.00 375.99
adr7 14 233360.00 1926.39 78360.00 5334.39
misex3 14 801480.00 1926.39 75060.00 5331.19
mul7 14 123200.00 1618.28 65320.00 5165.25

3 Spectral Interpretation of DDs

Due to spectral interpretation of DDs, different
classes of DDs can be uniformly regarded as particular
examples of Spectral transform DDs (STDDs) [?], [16].
Spectral interpretation of DDs shows that assignment of
a given functionf to a DD through a decomposition by
expansion rules defining the nodes in the DD is equiv-
alent with performing a spectral transform off . Con-
stant nodes show the spectral coefficients, and products

2



of labels at the edges determine the basis functions with
respect to which the spectral transform is defined. The
basic DDs are those defined with respect to the iden-
tity transform. They are denoted as Binary DDs (BDDs)
Multi-terminal binary DDs (MTBDDs) [2], Multiple-
place DDs (MDDs) and Multi-terminal DDs (MTDDs)
[11], [?], depending on the domain set for variables and
the range for function values.

Each non-terminal node in a STDD is related with
two co-factors of the spectrumSf . In the case of ba-
sic DDs, these are co-factors off . For a node at the
i-th level, the co-factors are determined by an assign-
ment of the values for the first(i � 1) variables. The
co-factors are represented by subtrees rooted at the nodes
where point the outgoing edges of the considered node.
Since, the products of labels at the edges represent ba-
sis functions, when we determinef from a STDD, we
perform a transform inverse to that used in definition of
the STDD, which is specified by the labels at the edges.
We start from the constant nodes and follow the edges by
performing a composition of subfunctions represented at
the nodes multiplied with the labels at the edges. Thus,
we perform a direct spectral transform to representf by
a DD, and conversely, the inverse transform to determine
f from the DD. Fig. 2 illustrates the spectral interpre-
tation of DDs. This interpretation permits the following
remark, clarifying relationships between some DDs, as
well as the way and the analytic expressions in form of
which various DDs, as for example those considered in
[1], [6], [?], represent discrete functions.

Remark 1 A DD represents at the same time f and the
spectrum Sf with respect to the transform used in def-
inition of this DD. Thus, a DD is STDD(f ) and the
MTDD(Sf ).

Example 3 For a given switching function f , BDD(f ) is
FDD(Sf ), and conversely, BDD(Sf ) is FDD(f ), where
FDD stands for Functional DDs [7] denoted also as Pos-
itive Polarity Reed-Muller DDs (PPRMDDs) [10].

Example 4 Edge-valued binary DDs (EVBDDs) [6],
Factored EVBDDs (FEVBDDs) [?], Binary moment DDs
(BMDs) [1], their edge-valued version �BMD, Arith-
metic spectral transform DDs (ACDDs) [16], are graphic
representations for arithmetic expressions in C(Cn

2
).

Spectral interpretation corrects and generalizes a
statement that in DDs the number of outgoing edges per
nodes is necessarily equal to the number of different val-
ues the variables assigned to the nodes can take. It should
be formulated as follows.

Remark 2 Assume that for a given n-variable function
f , the domain group G of order g is the direct product

G G G= 1 2� G1

G2

IST
-1

IST

f

f

Sf

Sf

x1 x2

0 0

0 1

1 0

1 1

f

f(0)

f(1)

f(2)

f(3)

F

Sf

I

ST I

MTDD

STDD

Figure 1. Spectral interpretation of DD.

of n subgroups Gi, of orders gi, i = 1; : : : ; n. Then,
the number of outgoing edges of nodes at the i-th level is
equal to the cardinality 
i of the dual object of Gi.

It follows, that the maximum number of nodes per
levels, usually denoted as the width of DD, is determined
by the cardinality of the dual object� for G. For Abelian
groups� expresses the structure of a group isomporphic
to G. Therefore, the use of non-Abelian groups as do-
main groups for DDs permit a simultaneous reduction of
both the width and the number of levels, denoted as the
depth, of a DD. In circuit synthesis from DDs, these char-
acteristics, the depth and the width, relate to the propaga-
tion delay and the area of circuit.

Example 5 Table 3 and Table 5 compare the size (s), and
the width (w) of Shared BDDs (SBDDs) and Fourier DDs
(FNADDs) on quaternion groups for adders for multipli-
ers. We also show the number of non-terminal (ncn), the
constant nodes (cn), and the percent of used nodes in the
DD from the total of nodes in the corresponding decision
trees.

Table 4 and Table 6 compare the area (a = sw) and
percent of used nodes with respect to the toal of nodes in
the decision trees of Shared BDDs (SBDDs) and Fourier
DDs (FNADDs) on quaternion groups for adders for mul-
tipliers.

The discussed feature of non-Abelian groups be-
comes especially important when we want to reduce the
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Table 3. SBDDs and FNADDs for adders

SBDD FNADD
n ntn cn s w ntn cv s s
2 190 2 8 21 4 7 11 2
3 55 2 57 20 6 7 13 4
4 101 2 103 30 14 14 28 7
5 224 2 226 62 18 16 34 7
6 475 2 477 126 21 12 33 7

Table 4. Area and percent of used nodes SB-
DDs and FNADDs for adders

SBDD FNADD
n cubes a % a %
2 11 168 22.00 22 52.38
3 31 1140 42.86 52 31.70
4 75 3090 19.84 196 33.73
5 167 14012 10.98 238 8.31
6 355 60102 5.81 231 4.00

Table 5. SBDDs and FNADDs for multipliers

SBDD FNADD
n ntn cn size width ntn cv size width
2 17 2 19 5 4 10 14 2
3 61 2 63 15 9 20 29 4
4 157 2 159 39 24 42 66 11
5 471 2 473 114 37 50 87 17
6 786 2 788 192 45 49 94 22

Table 6. Area and percent of used nodes in
SBDDs and FNADDs for multipliers

SBDD FNADD
n cubes a % a %
2 7 95 14.28 28 9.52
3 32 945 11.27 116 9.75
4 128 6201 7.51 726 13.25
5 488 53912 5.54 1479 4.51
6 939 151296 2.34 2068 2.68

complexity of DD representations by using nodes with
increased number of outgoing edges. In group-theoretic
approach, the increased functionality of nodes is inter-
preted as the use of larger subgroupsG i in decomposition
of the domain groupG, in which case the non-Abelian
groups offer advantages, since it is always
i � gi.
It should be noted, related to this property, that non-
Abelian groups introduce matrix-valued constant nodes
in DDs. Each of these nodes can be represented by an
ordinary number valued DD by concatenating rows or
columns of the matrices in constant nodes. Thus, DDs
on non-Abelian groups permit two-level optimization of
DDs. First, we chose a suitable decomposition ofG,
where some ofGi may be non-Abelian groups, and then,
we chose the most compact DD representations for each
matrix-valued constant node.

3.1 DD-Methods for calculation of spectral
transforms

Spectral interpretation of DDs, establishes and ex-
plains relationships between FFT and DD-methods for
the calculation of spectral transforms. In both, FFT and
DD-methods, the calculation of a transform of a func-
tion onG = G1 � � �Gn is performed though a series of
n transforms of onGi. In DD-methods, these transforms
are performed by traversing MTBDD(f ) and processing
nodes and cross points level by level, by performing at
the i-th level, the operations described by the transform
matrix onGi, Ti. Componentwise operations over vec-
tors in FFT, are replaced by the operations over subtrees
representing subfunctions related to a node. Efficiency of
DD-methods, and ability to process large functions origi-
nates in the reduction performed in transforming DT into
DD

1. In DD-methods, the processing of constant subvec-
tors in the vector of function values is simplified and
reduced to the processing of a constant node.

2. There is no repeated processing of equal subvectors,
since the isomorphic subtrees are eliminated in the
reduction of the DD.

The basic operations in FFT are conveniently de-
scribed by some basic matrices used in definition of a
transform. In Kronecker product representable trans-
forms, these are factors in the Kronecker product for the
transform matrixT. Table 7 shows the basic matrices
for the most often used transforms inC(C n

2
). The ma-

tricesI(1) andW(1) are used in the matrix definition of
the Haar transform, although it is not Kronecker product
representable [3]. To calculate the spectrum of a function
f given by the MTBDD(f ), we perform at each node and
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Table 7. Basic matrices.

Identity Reed-Muller

I(1) =

�
1 0

0 1

�
R(1) =

�
1 0

1 1

�

Arithmetic Walsh

A(1) =

�
1 0

�1 1

�
W(1) =

�
1 1

1 �1

�

Table 8. Calculation times.

f In Out RM Walsh AR Haar
alu4 14 8 400 1590 640 2.26
apex4 9 19 270 370 160 1.69
misex3 14 14 310 1610 380 2.12
5xp1 7 10 50 20 10 0.11
sao2 10 4 50 30 40 0.20

the cross point the operations described byT i. Due to the
properties of the Haar matrix, a further simplification is
possible in calculation of the Haar spectrum. It is enough
to perform the calculations described byW(1) over the
first two values of the subfunctions related to the node.
Conversely, the inverse transform is calculated by per-
forming operations described by the inverses of the basic
transform matrices. Again, the savings are possible in the
case of the Haar transform. It is enough to process the
leftmost node at the each level in the DT. Generalizations
of this algorithm to functions in Fibonacci topologies and
related circuit synthesis from Fibonacci DDs are given in
[?].

Example 6 Table ?? shows the CPU times for calcu-
lation of different spectral transforms by using DD-
methods for some benchmark functions. The important
feature is that the algorithms are executable on a sim-
ple hardware. In this experiment, the calculations were
performed on a 133MHz Pentium PC with 32MBytes
of RAM. Savings in the case of the Haar transform,
achieved by the exploitation of properties of the Haar ma-
trix, are obvious.

This interpretation shows that in DD-methods, we
perform FFT over another data structure, instead over the
vectors, since the basic matrices determine the basic op-
erations in the corresponding FFT methods [12].

The same interpretation permits to define different
sets of basic functions used in spectral techniques, by as-
signing the basic transforms to the nodes of MTDDs, and
determining the labels at the edges from columns of the
inverse matrices. This is the same way in which we deter-
mine the expansion rules in different DDs. In particular,
Fourier DDs are determined by using the expansion rules
defined by the Fourier transform, which permits combi-
nation of Abelian and non-Abelian groups as subgropus
in decomposition of the domain groupG into a direct
product of subgroupsGi.

4 Closing Remarks

The complexity of problems in switching and MV
theory and logic design give rise for further application
of spectral techniques, since they may provide for sim-
ple and elegant analytic solutions where the traditional
approaches reduce to the brute force search methods.
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