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A lot of work has been done, when the iden�cation of malfunctioning proces-sors is made using balls in the following way: we choose some of the processors,and each of them checks its r-neighbourhood, i.e., all the processors that arewithin graphic distance r, and reports YES/NO depending on whether it hasdetected a problem or not. Based on these YES/NO answers, we want to beable to tell the exact location of the malfunctioning processor or that all theprocessors are �ne (under the assumption that there is at most one malfunction-ing processor). This approach has been suggested in [11], and further resultsfor typical multiprocessor architectures have been presented, for example, in [1],[2], [10], [12], [13], [14] for binary hypercubes; in [4], [5], [6], [7], [8], [9] for thesquare grid, king grid, triangular grid and hexagonal mesh. Binary hypercubesand 2- and 3-dimensional meshes and tori are the the most popular architecturesfor multiprocessors at the present time. For more on testing and diagnosis inmultiprocessor architectures, and the technical background, see [3], [17], [16].In [17], the idea of using paths instead of balls is mentioned. The currentpaper is the �rst one using this approach | although, to be precise, instead ofpaths, we are actually using cycles (or closed walks). The mathematical problemcan then be formulated as follows. We send test messages and can route themthrough this network in any way we like. What is the smallest number ofmessages we have to send if based on which messages safely come back (i.e., theidea is that the messages are routed to eventually reach the starting point) wecan tell which vertex (resp. edge) is faulty (if any)? We call these the vertexidenti�cation and edge identi�cation problems.We consider two variants of the problem.We call a sequence v0e1v1e2 . . . envn of vertices vi in G and edges ei =(vi�1; vi) in G a walk. If v0 = vn, we call it a closed walk. In the �rst variantwe wish to �nd a collection of closed walks C1, C2, . . . , Ck such that everyvertex (resp. edge) belongs to at least one of them and, moreover, the setsfj : v 2 Cjg (resp. fj : e 2 Cjg) are all pairwise di�erent. We denote theminimum cardinality k by V �(G) (resp. E�(G)). Since a walk may contain thesame vertex and the same edge more than once, it is equivalent to require thatthe subgraphs C1, C2, . . . , Ck are connected (instead of closed walks).For technical reasons ([3], [17]), we would like the walks to be cycles, i.e.,closed walks v0e1v1 . . .vn, n � 3, where vi 6= vj whenever i 6= j, except thatv0 = vn. Again, the requirement is that every vertex (resp. edge) belongs toat least one of the cycles C1, C2, . . . , Ck and, moreover, the sets fj : v 2 Cjg(resp. fj : e 2 Cjg) are di�erent. We denote the minimum cardinality k in thissecond | and more interesting | variant by V (G) (resp. E(G)).In Section 2 we assume that G is the binary hypercube IFn2 , where IF2 =f0; 1g. Its vertices are all the binary words in IFn2 , and edge set consists ofall pairs of vertices connecting two binary words that are Hamming distanceone apart. We denote by d(x;y) the Hamming distance between the vectorsx;y 2 IFn2 and w(x) the number of ones in x. We give the exact answer tothe vertex identi�cation problem (using cycles), and lower and upper bounds2



di�ering only by the constant two in the edge identi�cation problem (usingclosed walks).In Section 3 we consider 2-dimensional tori, i.e., the p-ary space ZZ2p withrespect to the Lee metric. In the vertex identi�cation problem (using cycles)our lower and upper bounds di�er by at most two. The same is true for theedge identi�cation problem (using closed walks); for this problem the lower andupper bounds conincide when p � 3 is a power of two.2 Binary hypercubesIn this section we assume that G is the binary hypercube IFn2 and denote V (G)and E�(G) by V (n) and E�(n).For arbitrary sets, we have the following trivial identi�cation theorem:Theorem 1 A collection A1, A2, . . . , Ak of subsets of an s-element set Sis called identifying, if for all x 2 S the sets fi : x 2 Aig are nonemptyand di�erent. Given s, the smallest identifying collection of subsets consistsof dlog2(s + 1)e subsets. 2Of course, both the vertex and edge identi�cation problems are special casesof this problem, and for the binary hypercube with k = 2n vertices we get thelower bound V (n) � dlog2(2n + 1)e = n + 1:Theorem 2 V (n) = n+ 1 for all n � 3.Proof We construct n + 1 cycles all starting from the all-zero vector 0. LetC0 be any cycle starting from 0 which visits the all-one vector 1. The n cyclesC1, C2, . . . , Cn are constructed as follows. Given i, let Ci be a cycle of length2n�1 which visits exactly once all the 2n�1 points whose i-th coordinate equals0: this is simply an (n � 1)-dimensional Gray code (see, e.g., [15, p. 155]).These n+ 1 cycles together have the required property: a point x lies in Ciif and only if xi = 0. The cycle C0 guarantees that also the all-one vector liesin at least one cycle. 2In the previous proof the cycle C0 was of course only needed to satisfy thecondition that all the points lie in at least one cycle: if we were allowed to leaveone point outside, then the exact answer would be n instead of n+ 1.Consider now the edge identi�cation problem using closed walks.We can label the edges of the binary hypercube in the following way. Theedge connecting the two pointsx = (x1; x2; . . . ; xi; . . . ; xn)y = (x1; x2; . . . ; xi + 1; . . . ; xn)3



is denoted by (x1; x2; . . . ; xi�1; �; xi+1; . . . ; xn):The entries xj = 0 (j 6= i) are called the zeros of the edge. The number of edgesis clearly n2n�1.For the edge identi�cation problem our trivial result gives the lower boundE�(n) � dlog2(n2n�1 + 1)e:It is easy to verify that the right-hand side equals n + blog2 nc. Indeed, if2k�1 � n < 2k, then they both equal n+ k � 1. Consequently,E�(n) � n+ blog2 nc:Theorem 3 n+ blog2 nc � E�(n) � n + blog2 nc+ 2:Proof In view of the previous discussion it su�ces to construct n + k + 2suitable closed walks, where k = blog2 nc.Let Ci, i = 2; . . . ; n, be a closed walk that goes through all the vertices xwith xi = 0 and the edges between them.Let F be an (n � 1)-dimensional Gray code, a closed walk of length 2n�1which goes through all the 2n�1 vertices x with x1 = 0 exactly once.In the cycle F there can be edges which have exactly the same zeros (thesame number of them and in the same places). However, any two such edgescan be viewed as edges from a vertex x of weight w + 1 to two vertices y andz of weight w. By the de�nition of the Gray code, there are exactly two edgesadjacent to x and therefore for each zero pattern there can be at most twoedges of F that share that pattern. We now go through the cycle F and takethe second element in every pair of two consecutive edges that share the samezero pattern. By the construction no two of the chosen edges have a commonvertex. We now take H as a closed walk that contains all the edges betweenall the points whose �rst coordinate is 0 except the chosen ones. Constructingsuch a closed walk is easy: when n � 3, it is easy to see that we can for instancemove from every vertex to the all-zero vertex. Hence our graph is connected andsince we are allowed to use the same edges more than once, there is no problemgoing through all the edges.In particular, F and H together go through all the vertices x with x1 = 0and all the edges between them.Let S = f1; 2; . . .; ng and A1, A2, . . . , Ak+1 be subsets of S such thatthe sets fj : i 2 Ajg, i = 1; 2; . . . ; n are all di�erent and contain at most kelements. Moreover, we require that fj : 1 2 Ajg = ;. This is possible, becausek + 1 � dlog2(n + 1)e. We can take Aj to be the set of integers i 2 S suchthat the j-th bit in the binary representation of i�1 equals one. Using each Ajwe construct a closed walk Dj , j = 1; 2; . . . ; k + 1. Let j be �xed, and assumethat jAjj = m. For every x 2 IFn2 , denote by p(x) 2 IFm2 the projection of x4



to the subspace obtained by deleting the coordinates xi of x = (x1; x2; . . . ; xn)for which i =2 Aj . The walk Dj �rst goes through all the edges between all thevertices x such that p(x) = 0m, then moves along the Gray code F (here weuse the fact that 1 =2 Aj) to a vertex z such that p(z) = 00:::01 2 IFm2 , and goesthrough all the edges between all the vertices x such that p(x) = 00:::01 and soon. All in all, the closed walk Dj contains an edge e = (x;y) =2 F if and onlyif p(x) = p(y). This means that if � in e is in the i-th coordinate and e =2 F ,then e 2 Dj if and only if i =2 Aj .We show that these n+ k + 2 closed walks C2, . . . , Cn, F , H, D1, D2, . . . ,Dk+1, have the required property.By the construction, for every i, 1 � i � n, there is a set Aj not containingi, and therefore all the edges are present in at least one of these closed walks.Hence, if there is an edge which is not working in the hypercube, then at leastone of our messages does not come back.We can therefore assume that we know that there is exactly one edge e =(e1; e2; . . . ; ek�1; �; ek+1; . . . ; en) which is faulty.Clearly, for i = 2; 3; . . . ; n, ei = 0 (and in particular ei 6= �) if and only ife 2 Ci. Similarly, e1 = 0 if and only if e 2 F or e 2 H.Hence, based on the information whether or not e 2 Ci for i = 1; 2; . . . ; n,e 2 F and e 2 H, we can tell the location of all the zeros in e.Next, we check whether or not e 2 F ; if so, we can tell exactly what e is,because at most two of the edges in F share the same zero pattern and exactlyone of them is in H.So, we can assume that the faulty edge is none of the edges in F . But thismeans that e 2 Dj if and only if the j-th bit in the binary representation ofk � 1 is 0. Using all the closed walks Dj we can �nd all the bits in the binaryrepresentation of k � 1. Hence we know where the zeros are in e and where �is; the remaining coordinates are ones. 2Example 1 Consider the case n = 5.First we construct the closed walk C2, C3, C4 and C5. Consider, for instance,the closed walk C5. It goes through all the edges between vertices ����0. Thesevertices and the edges between them form an Eulerian subgraph, because all thevertices have an even degree, and we take C5 to be the Eulerian cycle 00000,10000, 11000, 01000, 00000, 00100, 10100, 10000, 10010, 11010, 11000, 11100,10100, 10110, 11110, 11100, 01100, 01110, 11110, 11010, 01010, 01110, 00110,10110, 10010, 00010, 00110, 00100, 01100, 01000, 01010, 00010, 00000.The cycle F is 00000, 01000, 01100, 00100, 00110, 01110, 01010, 00010,00011, 01011, 01111, 00111, 00101, 01101, 01001, 00001.In the cycle F , the edges between 01000 and 01100 and between 01100 and00100 have the same zero pattern, and there are three other similar pairs. Toconstruct H, we take every second of each pair, i.e., the edges between 01100 and00100, the one between 01110 and 010101, the one between 01111 and 00111,and �nally the one between 01101 and 01001. The relevant graph now has eight5



vertices with odd degree and is no longer Eulerian. Nevertheless, it is very easyto construct a closed walk containing all its edges (and no others).We still need the closed walks D1, D2 and D3. For instance, D1 = f5g.Starting from 00000, D1 �rst goes through all the edges between the verticeswhich have 0 in the last coordinate (in the case we can use C5, if we like), andthen it moves from 00000 to 00001 along F , i.e., via the points 01000, 01100,00100, 00110, 01110, 01010. Then starting from 00001 it goes through all theedges between vertices which have 1 in the last coordinate (we can just changethe last bits in C5 to 1's). Finally, it returns to 00001 and moves back 00000along F .3 The case G = ZZ2p with respect to the Lee met-ricIn this section G is the set ZZnp endowed with the Lee metric, i.e., two vertices(x1; x2; . . . ; xn) and (y1; y2; . . . ; yn) are adjacent if and only if xj � yj = �1 fora unique j and xi = yi for all i 6= j. We denote V (G), V �(G) and E�(G) byV (p; n), V �(p; n) and E(p; n).The case n = 1 is not di�cult. In this case only the functions V �(p; 1) andE�(p; 1) are applicable.Theorem 4 V �(p; 1) = E�(p; 1) = dp=2e for all p � 5.Proof It is natural to denote the vertices by 1, 2, . . . , p. Then j is adjacent toj � 1 and j + 1 (modulo p).For each of the p pairs (1; 2), (2; 3), . . . , (p � 1; p), (p; 1) there has to be aclosed walk separating the points, i.e., a closed walk containing exactly one ofthem. However, the set of vertices contained in any closed walk (or any con-nected subgraph) is of the form fi; i+1; . . . ; jg (again modulo p). Consequentlythis closed walk only separates the elements in two of our pairs, namely (i�1; i)and (j; j + 1). Hence V �(p; 1) � p=2 and we have the lower bound.If p � 6 is even, then we can use the walks (1; 2; 3), (3; 4; 5), (5; 6; 7), . . . ,(p�1; p; 1). If p � 5 is odd, then we can take the walks (1; 2; 3), (3; 4; 5), (5; 6; 7),. . . , (p� 2; p� 1; p), (p; 1) instead.Clearly, the problem for the edges is the same as the one for the vertices,and hence E�(p; 1) = V �(p; 1). 2Consider the case n = 2. The graph is now a p � p torus (cf. Figure 1;we have only drawn the vertices). For each i, denote by (1; i), (2; i), . . . , (p; i)the vertices on the i-th horizontal row from the bottom. We operate on thecoordinates modulo p. Each vertex (i; j) is adjacent to the four vertices (i�1; j),(i+ 1; j), (i; j � 1) and (i; j + 1). For instance, (1; p) and (1; 1) are adjacent.Theorem 5 b2 log2 pc + 1 � V (p; 2) � 2dlog2(p+ 1)e+ 1 for all p � 4.6



s s s s s s s s s s s ss s s ss s s ss s s ss s s ss s s ss s s sss s s ss s ss s s s s s s ss s s s s s s ss s s s s s s ss s s s s s s ss s s s s s s ss s s s s s s ss s s s s s s ss s s s s s s s s s s ss s s s s s s s s s s ss s s s s s s s s s s ss s s s s s s s s s s s
D

D FF
Figure 1: The cycles D and F .Proof In the construction we refer to three special cycles D, E and F . Thecycle D begins (1; p), (2; p), (2; p�1), . . . , and moves alternately one step to theright and one step down until it circles back to (1; p). The cycle E is obtainedfrom D by shifting the cycle down by one step; and the cycle F from E byshifting down by one step. Throughout the proof we illustrate the constructionin the case p = 12; for the cycle D and F , see Figure 1.As the �rst step, take k = dlog2 pe, and let A be the k � p matrix whosej-th column is the binary representation of j � 1.For p = 12, we haveA = 0BB@ 0 0 0 0 0 0 0 0 1 1 1 10 0 0 0 1 1 1 1 0 0 0 00 0 1 1 0 0 1 1 0 0 1 10 1 0 1 0 1 0 1 0 1 0 1 1CCA :From each row Ai of A we form a cycle Bi as follows. Each row Ai begins with0. Our cycle always starts from the vertex (1; 1) 2 D, and moves to (1; p) andthen to (2; p). The cycle is built using the following rules:Assume that we currently lie in (k; p� k + 2) 2 D.� If the k-th bit of Ai is 0, then we take one step down and onestep to the right to (k + 1; p� k + 1) 2 D.7
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Figure 2: The cycle B3.� If the k-th bit of Ai is 1, then we move up along the k-th columnand circle round to the point (k; p� k + 1) and take one stepto the right to (k + 1; p� k + 1) 2 D.The cycle B3 is given in Figure 2 when p = 12.If p is not a power of two, then there is no all 1 column in A, which impliesthat a vertex v belongs to all the cycles B1, B2, . . . , Bk if and only if v 2 D. Ifp is a power of two, then we also take D itself to our collection of cycles.The idea is that apart from a belt D consisting of two diagonals, we can saythat a vertex v = (x; y) belongs to Bk if and only the k-th bit in the binaryrepresentation of x � 1 is 1. In other words, if we know that v =2 D, then wecan determine x using the B-cycles.In a similar way, we can construct k more cycles C1, C2, . . . , Ck for deter-mining the y-coordinate of v. For all i = 1; 2; . . .; k, the cycle Ci starts from(1; p� 2) 2 F and is built using the following rules:Assume that we currently lie in (k; p� k � 1) 2 F .� If the (p�k�1)-st bit of Ai is 0, we move one step to the rightand one down, to the vertex (k + 1; p� k � 2).� If the (p� k� 1)-st bit of Ai is 1, we move to the left along the8
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Figure 3: The cycle C2.(p � k � 1)-st row and circle round until we reach the vertex(k+1; p� k� 1), and move one step down to (k+1; p� k� 2).The cycle C2 is illustrated in Figure 3.Again, if p is not a power of two, a vertex v belongs to all the cycles C1, . . . ,Ck, if and only if v 2 F . If p is a power of two, we also take F in our collectionof cycles.We claim that the cycles B1, B2, . . . , Bk, C1, C2, . . . , Ck and E, togetherwith D and F if p is a power of two, have the required property. Clearly, thenumber of cycles is 2dlog2(p+ 1)e+ 1.First of all, all vertices are in at least one of our cycles. The iden�cationof the empty set is therefore clear. It su�ces to show that we can identify anunknown vertex v = (x; y) based on the information, which of our cycles itbelongs to.We �rst decide whether or not v 2 D, and similarly whether or not v 2 F .If neither, then the B-cycles tell us the x-coordinate and the C-cycles the y-coordinate of v, and we are done. Assume that v 2 D. Since D and F have anempty intersection, we can use the C-cycles to determine the y-coordinate of v.There are only two vertices in D with a given y-coordinate, and exactly one ofthem belongs to E, so we can identify v. In the same way, if v 2 F , then theB-cycles tell us the x-coordinate of v. Again the cycle E tells us, which one of9
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Figure 4: The closed walk D3.the two remaining vertices in F with the same x-coordinate v is. 2If we want to do the identi�cation using paths, i.e., walks not containing avertex more than once, we can just delete an arbitrary edge from each of thecycles constructed in the previous theorem.To identify the edges, we again consider the easier problem of using closedwalks.Theorem 6 b2 log2 pc + 2 � E�(p; 2) � 2dlog2 pe+ 2, p � 3.Proof The number of edges is 2p2, and the lower bound is clear.Denote by Xi (Yi) the vertical (resp. horizontal) cycles consisting of all theedges between the vertices (i; �) (resp. (�; i)).Let k = dlog2 pe.As the �rst two closed walks, take D = Y1 and E = Y1[X1 [X2 [ . . .[Xp.Form the k closed walks B1, B2, . . . , Bk using the rows of the matrix Ain the proof of Theorem 5 as follows. Let Bi be the union of Xj [ Yj over allindices j such that the j-th entry in Ai equals 1.Together, the k+ 2 closed walks chosen so far already contain all the edges,so the identi�cation of the empty set is clear. We try to identify an unknownedge e. 10



To complete the construction, we use the rows Ai to construct k more closedwalks Di as follows. For all j such that the j-th entry in Ai is 1 we take thecycle (j; 1), (j; 2), (j + 1; 2), (j + 1; 3) (j + 2; 3), . . . , (j; 1) as a part of Di. Toconnect these cycles, we then take Y2 (or any �xed Y -cycle), and reverse thestatus of all edges in Y2: we remove all the chosen edges that belong to Y2 andtake as edges of Di all the edges of Y2 not previously chosen. The resultinggraph is clearly connected (but not a cycle in general). The closed walk D3 forp = 12 is drawn in Figure 4.Using D and E, we can �rst tell if e is a vertical or a horizontal edge.Moreover, if it is a vertical edge, we can use the closed walks B1, B2, . . . , Bkand determine the index i for which e 2 Xi. Similarly, if e is a horizontal edge,we can �nd the index i for which e 2 Yi.Then using the closed walks D1, D2, . . . , Dk, we can �nd the exact locationof the edge e. 2Corollary 1 If p � 3 is a power of two, then E�(p; 2) = 2 log2 p+ 2.Acknowledgment: The �rst author would like to thank Petri Rosendahland Tero Laihonen for useful comments.References[1] U. Blass, I. Honkala, S. Litsyn, Bounds on identifying codes, DiscreteMathematics 241 (2001) 119{128.[2] U. Blass, I. Honkala, S. Litsyn, On binary codes for identi�cation, Journalof Combinatorial Designs 8 (2000) 151{156.[3] K. Chakrabarty, M. G. Karpovsky, L. B. Levitin, Fault isolation anddiagnosis in multiprocessor systems with point-to-point connections, in:Fault tolerant parallel and distributed systems, Kluwer, 1998, pp. 285{301.[4] I. Charon, O. Hudry, A. Lobstein, Identifying codes with small radius insome in�nite regular graphs, submitted.[5] I. Charon, I. Honkala, O. Hudry, A. Lobstein, General bounds for identi-fying codes in some in�nite regular graphs, Electronic Journal of Combi-natorics 8(1) (2001) R39.[6] I. Charon, I. Honkala, O. Hudry, A. Lobstein, The minimum density ofan identifying code in the king lattice, Discrete Mathematics, submitted.[7] G. Cohen, I. Honkala, A. Lobstein, G. Z�emor, On codes identifying ver-tices in the two-dimensional square lattice with diagonals, IEEE Transac-tions on Computers 50 (2001) 174-176.11
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