Cycles Identifying Vertices and Edges in
Binary Hypercubes and 2-dimensional Tori

Iiro Honkala* Mark G. Karpovsky
Department of Mathematics College of Engineering
University of Turku Boston University
20014 Turku, Finland Boston, MA 02215, USA
e-mail: honkala@utu.fi e-mail: markkar@bu.edu

Simon Litsyn
Department of Electrical Engineering — Systems
Tel-Aviv University
Ramat-Aviv 69978, Israel

e-mail: litsyn@eng.tau.ac.il

Abstract

A set of subgraphs Ci, C>, ..., Cx in a graph G is said to identify
the vertices (resp. the edges) if the sets {j : v € C;} (resp. {j : e € C;})
are nonempty for all the vertices v (edges €) and no two are the same
set. We consider the problem of minimizing & when the subgraphs C;
are required to be cycles or closed walks. The motivation comes from
maintaining multiprocessor systems, and we study the cases when G is
the binary hypercube, or the two-dimensional p-ary space endowed with
the Lee metric.

1 Introduction

Assume that G is an undirected graph, and that each vertex (node) contains
a processor and each edge represents a connection (dedicated communication
link) between two processors. We want to maintain the system, and consider
the situation in which at most one of the processors (or alternatively, at most
one of the connecting wires between the processors) is not working. This is a
reasonable assumption if the probability of error is small, or if we make checking
rounds regularly enough.

*Research supported by the Academy of Finland under grant 44002.

A lot of work has been done, when the idenfication of malfunctioning proces-
sors 18 made using balls in the following way: we choose some of the processors,
and each of them checks its r-neighbourhood, i.e.; all the processors that are
within graphic distance r, and reports YES/NO depending on whether it has
detected a problem or not. Based on these YES/NO answers, we want to be
able to tell the exact location of the malfunctioning processor or that all the
processors are fine (under the assumption that there is at most one malfunction-
ing processor). This approach has been suggested in [11], and further results
for typical multiprocessor architectures have been presented, for example, in [1],
[2], [10], [12], [13], [14] for binary hypercubes; in [4], [5], [6], [7], [8], [9] for the
square grid, king grid, triangular grid and hexagonal mesh. Binary hypercubes
and 2- and 3-dimensional meshes and tori are the the most popular architectures
for multiprocessors at the present time. For more on testing and diagnosis in
multiprocessor architectures, and the technical background, see [3], [17], [16].

In [17], the idea of using paths instead of balls is mentioned. The current
paper is the first one using this approach — although, to be precise, instead of
paths, we are actually using cycles (or closed walks). The mathematical problem
can then be formulated as follows. We send test messages and can route them
through this network in any way we like. What is the smallest number of
messages we have to send if based on which messages safely come back (i.e., the
idea is that the messages are routed to eventually reach the starting point) we
can tell which vertex (resp. edge) is faulty (if any)? We call these the verter
wdentification and edge identification problems.

We consider two variants of the problem.

We call a sequence vgejvies...eyv, of vertices v; in G and edges e¢; =
(v5—1,v;) in G a walk. If vg = v,, we call it a closed walk. In the first variant
we wish to find a collection of closed walks C4, Cs, ..., Cy such that every
vertex (resp. edge) belongs to at least one of them and, moreover, the sets
{j:v e} (vesp. {j: e € C;}) are all pairwise different. We denote the
minimum cardinality & by V*(G) (resp. £*(G)). Since a walk may contain the
same vertex and the same edge more than once, it is equivalent to require that
the subgraphs C1, Cs, ..., C} are connected (instead of closed walks).

For technical reasons ([3], [17]), we would like the walks to be cycles, i.e.,
closed walks voeivi ... vn, n > 3, where v; # v; whenever i # j, except that
vg = vp. Again, the requirement is that every vertex (resp. edge) belongs to
at least one of the cycles C1, Cs, ..., Cy and, moreover, the sets {j : v € C}}
(resp. {j : e € C;}) are different. We denote the minimum cardinality & in this
second — and more interesting — variant by V(G) (resp. E(G)).

In Section 2 we assume that G is the binary hypercube IF5 where IFy =
{0,1}. Tts vertices are all the binary words in IF5, and edge set consists of
all pairs of vertices connecting two binary words that are Hamming distance
one apart. We denote by d(x,y) the Hamming distance between the vectors
x,y € IF} and w(x) the number of ones in x. We give the exact answer to
the vertex identification problem (using cycles), and lower and upper bounds

differing only by the constant two in the edge identification problem (using
closed walks).

In Section 3 we consider 2-dimensional tori, i.e., the p-ary space ZZZ, with
respect to the Lee metric. In the vertex identification problem (using cycles)
our lower and upper bounds differ by at most two. The same is true for the
edge identification problem (using closed walks); for this problem the lower and
upper bounds conincide when p > 3 is a power of two.

2 Binary hypercubes

In this section we assume that G is the binary hypercube IF5 and denote V(G)
and E*(G) by V(n) and E*(n).

For arbitrary sets, we have the following trivial identification theorem:

Theorem 1 A collection Ay, As, ..., Ap of subsets of an s-element set S
is called identifying, if for all @ € S the sets {i : @ € A;} are nonemply
and different. Given s, the smallest identifying collection of subsets consists
of [logy(s + 1)] subsets. O

Of course, both the vertex and edge identification problems are special cases
of this problem, and for the binary hypercube with & = 2" vertices we get the
lower bound

V(n) > flog(2" +1)] = n+ 1.
Theorem 2 V(n) =n+1 for alln > 3.

Proof We construct n + 1 cycles all starting from the all-zero vector 0. Let
Cy be any cycle starting from 0 which visits the all-one vector 1. The n cycles
C1, Cy, ..., C, are constructed as follows. Given i, let C; be a cycle of length
27~1 which visits exactly once all the 27~ points whose i-th coordinate equals
0: this is simply an (n — 1)-dimensional Gray code (see, e.g., [15, p. 155]).
These n + 1 cycles together have the required property: a point z lies in C}
if and only if z; = 0. The cycle Cy guarantees that also the all-one vector lies
in at least one cycle. a

In the previous proof the cycle Cy was of course only needed to satisfy the
condition that all the points lie in at least one cycle: if we were allowed to leave
one point outside, then the exact answer would be n instead of n + 1.

Consider now the edge identification problem using closed walks.

We can label the edges of the binary hypercube in the following way. The
edge connecting the two points

X = (21,22, ..., Tiy...,Tn)

y=(x1,20,..,2;+1,...,2)

is denoted by
(T, @2, 0 Ty 1, ¥, g1, -, Tn).

The entries 2; = 0 (j # ¢) are called the zeros of the edge. The number of edges
is clearly n27 1.
For the edge identification problem our trivial result gives the lower bound

E*(n) > |—log2(n?”_1 + 1)].

It is easy to verify that the right-hand side equals n + |log, n|. Indeed, if
2k=1 < n < 2% then they both equal n + k — 1. Consequently,

B*(n) > n + [logy).
Theorem 3 n+ |log,n] < E*(n) < n+ |log, n| + 2.

Proof In view of the previous discussion it suffices to construct n + k + 2
suitable closed walks, where k& = [log, n].

Let C;, ¢ = 2,...,n, be a closed walk that goes through all the vertices x
with 2; = 0 and the edges between them.

Let I be an (n — 1)-dimensional Gray code, a closed walk of length 2"~}
which goes through all the 27"~1 vertices x with #; = 0 exactly once.

In the cycle F' there can be edges which have exactly the same zeros (the
same number of them and in the same places). However, any two such edges
can be viewed as edges from a vertex x of weight w 4+ 1 to two vertices y and
z of weight w. By the definition of the Gray code, there are exactly two edges
adjacent to x and therefore for each zero pattern there can be at most two
edges of F' that share that pattern. We now go through the cycle F' and take
the second element in every pair of two consecutive edges that share the same
zero pattern. By the construction no two of the chosen edges have a common
vertex. We now take H as a closed walk that contains all the edges between
all the points whose first coordinate is 0 except the chosen ones. Constructing
such a closed walk is easy: when n > 3, it is easy to see that we can for instance
move from every vertex to the all-zero vertex. Hence our graph is connected and
since we are allowed to use the same edges more than once, there is no problem
going through all the edges.

In particular, F' and H together go through all the vertices x with z; = 0
and all the edges between them.

Let S = {1,2,...,n} and Ay, Ao, ..., Agy1 be subsets of S such that
the sets {j : i € A;}, ¢ = 1,2,...,n are all different and contain at most k
elements. Moreover, we require that {j : 1 € A;} = 0. This is possible, because
k+ 12> Jlogo(n+1)]. We can take A; to be the set of integers ¢ € S such
that the j-th bit in the binary representation of ¢ —1 equals one. Using each A;
we construct a closed walk D;, j =1,2,...,k+ 1. Let j be fixed, and assume
that |A;| = m. For every x € IF}, denote by p(x) € IFy" the projection of x

to the subspace obtained by deleting the coordinates x; of x = (#1,22,...,2p)
for which 7 ¢ A;. The walk D; first goes through all the edges between all the
vertices x such that p(x) = 0™, then moves along the Gray code F' (here we
use the fact that 1 ¢ A;) to a vertex z such that p(z) = 00...01 € IFY", and goes
through all the edges between all the vertices x such that p(x) = 00...01 and so
on. All in all, the closed walk D; contains an edge e = (x,y) ¢ F if and only
if p(x) = p(y). This means that if % in e is in the é-th coordinate and e ¢ F|
then e € D; if and only if i ¢ A;.

We show that these n 4+ k + 2 closed walks Cs, ..., C,, F', H, D1, Do, ..
Dy41, have the required property.

By the construction, for every ¢, 1 <7 < n, there is a set A; not containing
t, and therefore all the edges are present in at least one of these closed walks.
Hence, if there is an edge which is not working in the hypercube, then at least
one of our messages does not come back.

We can therefore assume that we know that there is exactly one edge e =
(e1,€9,...,€5—1,%, €41, .., €n) Which is faulty.

Clearly, for i = 2,3,...,n, ¢, = 0 (and in particular e; # *) if and only if
e € C;. Similarly,e; =0 ifand onlyife € Foree H.

Hence, based on the information whether or not e € C; for ¢ = 1,2, ..
e € Fand e € H, we can tell the location of all the zeros in e.

Next, we check whether or not e € F'; if so, we can tell exactly what e 1s,
because at most two of the edges in F' share the same zero pattern and exactly
one of them is in H.

So, we can assume that the faulty edge is none of the edges in F'. But this
means that e € D; if and only if the j-th bit in the binary representation of
k —11s 0. Using all the closed walks D); we can find all the bits in the binary
representation of & — 1. Hence we know where the zeros are in e and where *
is; the remaining coordinates are ones. ad

*

"n’

Example 1 Consider the case n = 5.

First we construct the closed walk Cy, C's, C4y and C5. Consider, for instance,
the closed walk Cf5. It goes through all the edges between vertices #**%0. These
vertices and the edges between them form an Eulerian subgraph, because all the
vertices have an even degree, and we take (5 to be the Eulerian cycle 00000,
10000, 11000, 01000, 00000, 00100, 10100, 10000, 10010, 11010, 11000, 11100,
10100, 10110, 11110, 11100, 01100, 01110, 11110, 11010, 01010, 01110, 00110,
10110, 10010, 00010, 00110, 00100, 01100, 01000, 01010, 00010, 00000.

The cycle F' is 00000, 01000, 01100, 00100, 00110, 01110, 01010, 00010,
00011, 01011, 01111, 00111, 00101, 01101, 01001, 00001.

In the cycle F', the edges between 01000 and 01100 and between 01100 and
00100 have the same zero pattern, and there are three other similar pairs. To
construct H, we take every second of each pair, i.e., the edges between 01100 and
00100, the one between 01110 and 010101, the one between 01111 and 00111,
and finally the one between 01101 and 01001. The relevant graph now has eight

vertices with odd degree and is no longer Eulerian. Nevertheless, it is very easy
to construct a closed walk containing all its edges (and no others).

We still need the closed walks Dy, Dy and Ds. For instance, D; = {b}.
Starting from 00000, D; first goes through all the edges between the vertices
which have 0 in the last coordinate (in the case we can use Cs, if we like), and
then it moves from 00000 to 00001 along F', i.e., via the points 01000, 01100,
00100, 00110, 01110, 01010. Then starting from 00001 it goes through all the
edges between vertices which have 1 in the last coordinate (we can just change
the last bits in C5 to 1’s). Finally, it returns to 00001 and moves back 00000
along F'.

3 Thecase G = ZZ with respect to the Lee met-
ric

In this section (' is the set Z; endowed with the Lee metric, i.e., two vertices
(21,29,...,2,) and (y1,%2,...,Yn) are adjacent if and only if z; — y; = £1 for
a unique j and x; = y; for all ¢ # j. We denote V(G), V*(G) and E*(G) by
Vip,n), V*(p,n) and E(p,n).

The case n = 1 is not difficult. In this case only the functions V*(p, 1) and
E*(p, 1) are applicable.

Theorem 4 V*(p, 1) = E*(p, 1) = [p/2] for all p > 5.

Proof It is natural to denote the vertices by 1, 2, ..., p. Then j is adjacent to
Jj—1and j+ 1 (modulo p).
For each of the p pairs (1,2), (2,3), ..., (p — 1,p), (p, 1) there has to be a

closed walk separating the points, i.e.; a closed walk containing exactly one of
them. However, the set of vertices contained in any closed walk (or any con-
nected subgraph) is of the form {i,i+1,...,j} (again modulo p). Consequently
this closed walk only separates the elements in two of our pairs, namely (i —1, %)
and (4,7 +1). Hence V*(p, 1) > p/2 and we have the lower bound.

If p > 6 is even, then we can use the walks (1,2,3), (3,4,5), (5,6,7), ...,
(p—1,p,1). If p > 5is odd, then we can take the walks (1,2, 3), (3,4, 5), (5,6,7),
o (p=2,p—1,p), (p,1) instead.

Clearly, the problem for the edges is the same as the one for the vertices,
and hence E*(p,1) = V*(p, 1). a

Consider the case n = 2. The graph is now a p x p torus (cf. Figure 1;
we have only drawn the vertices). For each ¢, denote by (1,4), (2,4), ..., (p,9)
the vertices on the ¢-th horizontal row from the bottom. We operate on the
coordinates modulo p. Each vertex (¢,) is adjacent to the four vertices (i—1, j),
(i+1,4), (i,5—1) and (é,5 + 1). For instance, (1,p) and (1, 1) are adjacent.

Theorem 5 [2log,p| +1 < V(p,2) <2[loga(p+)] + 1 for allp > 4.

N St

Figure 1: The cycles D and F'.

Proof In the construction we refer to three special cycles D, E and F. The
cycle D begins (1, p), (2,p), (2,p—1), ..., and moves alternately one step to the
right and one step down until it circles back to (1,p). The cycle E is obtained
from D by shifting the cycle down by one step; and the cycle F' from E by
shifting down by one step. Throughout the proof we illustrate the construction
in the case p = 12; for the cycle D and F', see Figure 1.

As the first step, take & = [log, p], and let A be the k& x p matrix whose
j-th column is the binary representation of j — 1.

For p = 12, we have

— o oo
—_ o o
— o = o

=

1
0
1
1

Il
cooco
oo o
oo —o
o= o
oo o~
—_ o ok
o= o =

1

From each row A; of A we form a cycle B; as follows. Each row A; begins with
0. Our cycle always starts from the vertex (1,1) € D, and moves to (1, p) and
then to (2, p). The cycle is built using the following rules:

Assume that we currently lie in (k,p—k+2) € D.

o If the k-th bit of A; is 0, then we take one step down and one
step to the right to (k+ 1,p—k+1) € D.

Figure 2: The cycle Bs.

o Ifthe k-th bit of A; is 1, then we move up along the k-th column
and circle round to the point (k,p — k + 1) and take one step
to the right to (k+ L, p—k+1) € D.

The cycle Bs is given in Figure 2 when p = 12.

If p is not a power of two, then there is no all 1 column in A, which implies
that a vertex v belongs to all the cycles By, Bs, ..., By if and only if v € D. If
p 1s a power of two, then we also take D itself to our collection of cycles.

The idea is that apart from a belt D consisting of two diagonals, we can say
that a vertex v = (z,y) belongs to By if and only the k-th bit in the binary
representation of @ — 1 is 1. In other words, if we know that v ¢ D, then we
can determine x using the B-cycles.

In a similar way, we can construct k& more cycles Cy, Cs, ..., Ct for deter-
mining the y-coordinate of v. For all i = 1,2,... k, the cycle C; starts from
(1,p—2) € F and is built using the following rules:

Assume that we currently lie in (k,p—k —1) € F.

e If the (p—k — 1)-st bit of A; is 0, we move one step to the right
and one down, to the vertex (k+1,p—k — 2).

e If the (p— &k — 1)-st bit of A; is 1, we move to the left along the

Figure 3: The cycle Cs.

(p — k — 1)-st row and circle round until we reach the vertex
(k+1,p—k—1), and move one step down to (k+1,p—k—2).

The cycle (' is illustrated in Figure 3.

Again, if p is not a power of two, a vertex v belongs to all the cycles Cy, ...,
Cy, if and only if v € F'. If p is a power of two, we also take F' in our collection
of cycles.

We claim that the cycles By, By, ..., By, C1, Cs, ..., C} and E, together
with D and F if p is a power of two, have the required property. Clearly, the
number of cycles is 2[log,(p + 1)] + 1.

First of all, all vertices are in at least one of our cycles. The idenfication
of the empty set 1s therefore clear. It suffices to show that we can identify an
unknown vertex v = (z,y) based on the information, which of our cycles it
belongs to.

We first decide whether or not v € D, and similarly whether or not v € F'.
If neither, then the B-cycles tell us the z-coordinate and the C-cycles the y-
coordinate of v, and we are done. Assume that v € D. Since D and F' have an
empty intersection, we can use the C-cycles to determine the y-coordinate of v.
There are only two vertices in 1D with a given y-coordinate, and exactly one of
them belongs to £, so we can identify v. In the same way, if v € F', then the
B-cycles tell us the z-coordinate of v. Again the cycle E tells us, which one of

*—
[]
*—
[]
*—
[]

. . . ¥
. e . .
. . . ¥
. e . .
. 9 . 9 -

Figure 4: The closed walk Ds.

the two remaining vertices in F' with the same z-coordinate v is. ad

If we want to do the identification using paths, i.e., walks not containing a
vertex more than once, we can just delete an arbitrary edge from each of the
cycles constructed in the previous theorem.

To identify the edges, we again consider the easier problem of using closed
walks.

Theorem 6 |2log, p| +2 < E*(p,2) < 2[log, p] + 2, p > 3.

Proof The number of edges is 2p?, and the lower bound is clear.

Denote by X; (V;) the vertical (resp. horizontal) cycles consisting of all the
edges between the vertices (¢, %) (resp. (*,1)).

Let k = [log, p].

As the first two closed walks, take D =Y; and F =Y UX, UX,U.. . UX,.

Form the k closed walks By, Bs, ..., By using the rows of the matrix A
in the proof of Theorem 5 as follows. Let B; be the union of X; UY; over all
indices j such that the j-th entry in A; equals 1.

Together, the k£ + 2 closed walks chosen so far already contain all the edges,
so the identification of the empty set is clear. We try to identify an unknown
edge e.

10

To complete the construction, we use the rows A; to construct £ more closed
walks D; as follows. For all j such that the j-th entry in A; is 1 we take the
eycle (4, 1), (7,2), G+ 1,2), (+1,3) (+2,3), ..., (j, 1) as a part of D;. To
connect these cycles; we then take Y3 (or any fixed Y-cycle), and reverse the
status of all edges in Y5: we remove all the chosen edges that belong to Y5 and
take as edges of D; all the edges of Y3 not previously chosen. The resulting
graph is clearly connected (but not a cycle in general). The closed walk Ds for
p =12 is drawn in Figure 4.

Using D and F, we can first tell if e is a vertical or a horizontal edge.
Moreover, if it is a vertical edge, we can use the closed walks By, By, ..., By
and determine the index ¢ for which e € X;. Similarly, if e is a horizontal edge,
we can find the index ¢ for which ¢ € Y;.

Then using the closed walks Dy, Ds, ..., Dy, we can find the exact location
of the edge e. ad

Corollary 1 Ifp > 3 is a power of two, then E*(p,2) = 2log, p + 2.

Acknowledgment: The first author would like to thank Petri Rosendahl
and Tero Laithonen for useful comments.

References

[1] U. Blass, I. Honkala, S. Litsyn, Bounds on identifying codes, Discrete
Mathematics 241 (2001) 119-128.

[2] U. Blass, I. Honkala, S. Litsyn, On binary codes for identification, Journal
of Combinatorial Designs 8 (2000) 151-156.

[3] K. Chakrabarty, M. G. Karpovsky, L. B. Levitin, Fault isolation and
diagnosis in multiprocessor systems with point-to-point connections, in:
Fault tolerant parallel and distributed systems, Kluwer, 1998, pp. 285-
301.

[4] 1. Charon, O. Hudry, A. Lobstein, Identifying codes with small radius in
some infinite regular graphs, submitted.

[5] I. Charon, I. Honkala, O. Hudry, A. Lobstein, General bounds for identi-
fying codes in some infinite regular graphs, Electronic Journal of Combi-

natorics 8(1) (2001) R39.

[6] I. Charon, I. Honkala, O. Hudry, A. Lobstein, The minimum density of
an identifying code in the king lattice, Discrete Mathematics, submitted.

[7] G. Cohen, I. Honkala, A. Lobstein, G. Zémor, On codes identifying ver-
tices in the two-dimensional square lattice with diagonals, IEEE Transac-
tions on Computers 50 (2001) 174-176.

11

[8] G. Cohen, I. Honkala, A. Lobstein, G. Zémor, Bounds for codes identifying
vertices in the hexagonal grid, STAM Journal on Discrete Mathematics 13
(2000) 492-504.

[9] G. Cohen, I. Honkala, A. Lobstein, G. Zémor, ”On identifying codes,” DI-
MACS Series in Discrete Mathematics and Theoretical Computer Science,
Proceedings of the DIMACS Workshop ” Codes and Association Schemes”
AMS, Providence, 2001, pp. 97-109.

[10] I. Honkala, T. Laihonen, S. Ranto, On codes identifying sets of vertices in
Hamming spaces, Designs, Codes and Cryptography 24 (2001) 193-204.

[11] M. G. Karpovsky, K. Chakrabarty, L. B. Levitin, On a new class of codes
for identifying vertices in graphs, IEEE Transactions on Information The-

ory 44 (1998) 599-611.

[12] T. Laihonen, Sequences of optimal identifying codes, IEEE Transactions
on Information Theory, to appear.

[13] T. Laihonen, S. Ranto, Families of optimal codes for strong identification,
Discrete Applied Mathematics, to appear.

[14] S. Ranto, I. Honkala, T. Laihonen, Two families of optimal identifying
codes in binary Hamming spaces, IEEE Transactions on Information The-
ory, to appear.

[15] Rosen, K. H. (ed.), Handbook of Discrete and Combinatorial Mathemat-
ics, CRC Press, Boca Raton, 2000.

[16] L. Zakrevski, M. G. Karpovsky, Fault-tolerant message routing in com-
puter networks, Proc. Int. Conf. on Parallel and Distributed Processing
Techniques and Applications, 1999, pp. 2279-2287.

[17] L. Zakrevski, M. G. Karpovsky, Fault-tolerant message routing for mul-
tiprocessors, in: J. Rolim (Ed.),Parallel and Distributed Processing,
Springer, 1998, pp. 714-731.

12

