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Abstract— Network calculus is known to apply in gen- antees [22].
eral only to feed-forward routing netv_vorks, i.e., networks The network calculus framework applies also to statisti-
where routes do not create cycles of interdependent packetcal services [4], [15]. In particular, the minimum envelop

flows. In this paper, we address the problem of using net- . .
work calculus in networks of arbitrary topology. For this rate (MER) [5] and exponentially bounded burstiness

purpose, we introduce a novel graph-theoretic algorithm, (EBB) [28] network calculi provide exponential bounds
called turn-prohibition (TP), that breaks all the cycles ina 0N various metrics of interest. More recently, a network

network and, thus, prevents any interdependence between calculus, termed stochastically bounded burstiness (SBB)
flows. We prove that the TP-algorithm prohibits the use of calculus [24], [26], was developed in order to capture the
at most 1/3 of the total number turns in a network, for any  multiple time-scale and self-similar behavior of the traffic,
network topology. Using analysis and simulation, we show 55 gphserved over the Internet [17], [20], [27]. The SBB

that the TP-aIgorlthm significantly outperforms (_)ther ar-  calculus provides general stochastic bounds at each node
proaches for breaking cycles, such as the spanning tree andOf a network

up/down routing algorithms, in terms of network utilization
and delay bounds. Our simulation results also show thatthe A central problem shared by all network calculi is of
network utilization achieved with the TP-algorithm is within ~ determining the conditions under which a network is sta-
a factor of two of the maximum theoretical network utiliza-  ple, meaning that the queue length at each element of the
tion, for networks of up to 50 nodes of degree four. Thus, network is bounded according to some appropriate met-
in many practical cases, the restriction of network calculus ric [5], [11]. It turns out that network stability is easy
to feed-forward routing networks may not represent a too . . .
significant limitation. to establish only foifeed-forwardrouting networ_ks, ie.,
. networks where routes do not create cycles of interdepen-
K?Y\Nords_. network .CaICUIUS’ acyclic networks, network dent packet flows. Such network are stable if and only if
stability, quality of service. ) o )
the traffic load (utilization) at each element is smaller than
one [5], [11]. This condition is known as thieroughput
condition[28]. The case of non-feed-forward networks is
ETWORK calculus is a general paradigm for the praenerally much more complicated, with only a few notable
vision of Quality of Service (QoS) in communicatiorexceptions (e.g. [19]). While the throughput condition re-
networks [6], [10], [18]. The main principle of networkmains necessary for the stability of such networks, it is no
calculus is to show that if all the input flows to a networkonger sufficient. A number of examples given in [16] il-
satisfy a certain set of constraints, then so do all the flodustrate this fact. Recent results show that even networks
within the network. The formulation of the constraintef FIFO queues witlio, p) sessions may be unstable [1].
is simple enough to allow the computation of bounds on|t is worth noting that an upper bound on the delay
various performance measures, such as delay and qu@ugrbitrary non-feed-forward networks has recently been
length, at each element of the network. derived in [7]. Unfortunately, this bound is useful only
A well-known network calculus is thés, p) calculus, for very small link utilization. Specifically, the maximum
firstintroduced in [10] and further developed in [19] whictachievable link utilization is inversely proportional to the
provides deterministic bounds on delay and buffering reraximum route length of any flow in the network. For
quirements in a communication network. This model iastance, for a network diameter of 6 hops, the maximum
useful for applications requiring deterministic QoS guautilization on any link does not exceed 20%.
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I. INTRODUCTION



Our approach is to pro-actively break all the possible 1 /3\

cycles in a network, by prohibiting (disabling) the use of °
some of the network resources. This way, we prevent any
interdependence between different flows. The main chal-
lenge with this approach resides in minimizing the amount 2 \4/ \6/ @
of resources that need to be prohibited.
The simplest approach for breaking cycles in a network Fig. 1. Simple example of a connected graph

is to construct a spanning tree and prohibit the use of links

not belc_mgi.ng to the.tr.ee. However, a Spanning.tree H1ated notations. Next, in Section Ill, we summarize the
proach is hlghly inefficient since a large number links a8 anning tree and up/down routing algorithms and indi-
unused, and links close to the root become congested. 416 their limitations. Then, in Section IV, we introduce
Instead, we propose to resort to a more sophisticaigf Tp-algorithm, prove its main properties, and illustrate
approach based on the prohibitiontafns Here, a tum i with concrete examples. Our simulation results are pre-
is defined as a specific pair of input-output links aroundganted in Section V, where we compare the throughput and
node [12]. The main claim is that in order to break all thge|ay hounds achieved by the three algorithms. The last

cycles in a network, it is sufficient to prohibit a set of turnggstion of this paper is devoted to concluding remarks.
instead of a set of links, as is the case with spanning trees

(a turn (a, b, c) around some nodé is prohibited if not Il. M ODEL

packets can be forwarded from lirfk, b) to link (b, ¢)).

For instance, while a spanning tree may fully prohibit the e model a network by a directed graph. We define the
transmission of any packet through an output link of songéaphG to be a collection ofV nodes and\/ links. A pair
node, a turn-prohibition approach may allow the use of thig1, n2) denotes a link directed from node to noder;.

link, as long as packets arrive from a pre-determined set ofVe restrict our attention to the typical case lif
input links. directional network topologies, that is networks where

In this paper, we introduce a novel algorithm usingodes are connected by bi-directional links. We will de-

this approach, called the turn-prohibition algorithm (THLe thedegreeof a node as the number of output links of
algorithm) [29]. This algorithm ensures that all the cycld§e node. For a bi-directional graph, this number is equiv-
in a network are broken, while maintaining global conne@lent to the number of input links to the node.
tivity. Moreover, forany network topology, it never pro- A path from nodesn; to n, in a graphG, is a se-
hibits more than 1/3 of the total number of turns in the neguence of nodegy, na, ns, . . ., g1, n¢), such that each
work. This property provides a meaningful upper bourfd/o subsequent nodes are connected by a link. We say that
on the maximum amount of resources that need to be sa@raphG is connectedif for each nodei there exists a
rificed in order to guarantee a cycle-free network. The TPath to every other nodg
algorithm exhibits a reasonable computational complexity A cyclein G is defined to be a path where the filisk
that is a polynomial in the number of nodes in the networnd the laslink of the path are the same, for instance,
It is applicable to network nodes of general, non-blockingp 1, n2, ns, . .., ne—1,n¢,n1,n2). Note that the literature
switching architecture. in graph-theory typically defines a cycle as a path such that
The TP-algorithm is not the first algorithm based on tHe first node and the last node in the path are the same [9].
concept of turn-prohibition. In particular, the up/dowiVe will refer to this latter definition as @ycle of nodes
routing scheme, developed in the context of a local areaBreaking all cycles of nodes is a too strong requirement
network called Autonet, uses a similar concept [23]. Hovier network calculus. For instance, referring to Figure 1,
ever, this scheme does not systematically attempt at mithie path(4, 1,2, 4, 1) creates a cycle in the network, while
mizing the amount of prohibited turns in the network antthe path(3,4,1,2,4,6) does not (although it contains a
its performance is much less predictable. In particulaycle of nodes). A cycle is thus created only when the
we show in the sequel that the fraction of turns prohilsame port (or link) is visited twice. In particular, a path
ited by this scheme may tend to 1 in some networks. Fumay traverse several times the same node without creating
thermore, our numerical results in Section V show that tlaecycle.
TP-algorithm typically achieves a throughput 10% to 20% A pair of input-output links around a node is called a
higher than the up/down algorithm. turn. The three-tuplda, b, c) will be used to represent a
This paper is organized as follows. In Section Il, weurn around nodé from link (a, b) to link (b, c¢). For in-
introduce our graph-theoretic model of the network argfance, in Fig. 1, the three-tuplg, 2, 4) represents the turn
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Fig. 2. A spanning tree for the the graph of Fig. 1. A link withrig. 3. An up/down spanning tree for the the graph of Fig. 1.
an X represents a prohibited link. An arc represents a prohibited turn.
from link (1, 2) to link (2, 4) around node 2. to the level at which they are located on the tree (the level

Due to the symmetrical nature of bi-directional graphgf a node is defined at its distance from the root). Nodes at
we will consider the turnga, b,c) and(c, b, a) to be the the same level are ordered arbitrarily. Such an ordering of
same turn. The number of turns around a node of degreghe nodes in a spanning tree is illustrated in Fig. 2 where
is equal tod;(d; — 1)/2. For instance, in Fig. 1, there arenode 1 is the root of the tree, nodes 2, 3 and 4 are level 1
six turns around node 4. nodes, nodes 5 and 6 are level 2 nodes, and node 7 is a

As shown in the sequel, an efficient approach for brealgvel 3 node. Note that if another node were chosen as the
ing cycles in a network is based on t@hibitionof turns.  root, then the labels of the nodes would be changed.

For example, in Fig. 1, prohibiting the tuti, 3,4) means  Once the nodes are ordered, a l{ik;) is considered to
that no packet can be forwarded from lifk, 3) to link  go “up”if i > j. Otherwise, it is said to go “down”. A turn
(3,4) (and from link(4, 3) to link (3, 1)). (a,b, c) is referred to as an up/down turn if nodezif> b
andc > b. Respectively, a down/up turn is a turn such that
a < bandc < b. A key observation is that any cycle must
involve at least one up/down turn and one down/up turn.

In this section, we summarize two earlier approach&serefore all the cycles in a graph can be broken by pro-
that preserve network connectivity and break all the cyclibiting all the down/up turns. This also means that all the
in a network of arbitrary topology. other types of turns can be permitted. Thus, packets are al-
lowed to traverse links not belonging to the spanning tree
as long as they are not forwarded along down/up turns. An

The simplest approach for breaking all the cycles inuwgp/down spanning tree, for the graph of Fig. 1, is depicted
graph is to construct spanning tree A spanning tree is a in Fig. 3. The arcs represent the prohibited turns. For in-
connected sub-graph 6f that includes all the nodes 6f stance, around node 4, turf®s 4, 3), (2,4, 1) and(1, 4, 3)
and does not contain any cycle of nodes. are all prohibited. On the other hand, tui4, 6) is per-

Spanning trees can be generated in various ways. Oniged. Thus, the up/down spanning tree approach still al-
involves picking a root node at random (for instance, thews to make use of link2, 4), unlike the simple spanning
node with the lowest id), and construct a shortest path trteee approach.
using a Breadth First Search (BFS) procedure [9]. An ex-The up/down routing algorithm leads to markedly better
ample of a spanning tree generated that way is depictegarformance than the simple spanning tree approach. Nev-
Fig. 2. In this example, node 1 is chosen as the root.  ertheless, links near the root still remain more likely to get

A major drawback of the spanning tree approach is thedngested than other links in the network.

a large number of links are unused. Moreover, links nearAnother problem is that the performance of the up/down
the root of the spanning tree get congested, thus limitisgheme depends critically on the selection of the spanning
the throughput of the whole network. tree and on which node is chosen as the root of the tree. To
illustrate this fact, Figures 4 and 5 show the same graph,
but with different node labeling. We note that the total

The spanning tree approach turns out to be too restriesmber of turns in this graph is on the order/éf. For
tive in preventing all cycles of nodes. As explained earlighe case of Fig. 4, only the turiig i + 1,1), 1 < i < N,
cycles in networks arise only when a path can traverse e prohibited. The fraction of prohibited turns is thus on
same link twice or more. Instead of fully prohibiting use athe order ofl /N, and tends to 0 a& gets very large. On
links, a more efficient approach is to prohibit use of turnghe other hand, for the case depicted in Fig. 5, all the turns

With the up/down routingalgorithm [23], a spanning around nodéV are prohibited, and the fraction of prohib-
tree is first constructed, and nodes are ordered accordiegl turn in the graph tend to 1 &8 gets very large. In

I1l. SUMMARY OF PREVIOUSAPPROACHES FOR
BREAKING CYCLES

A. Spanning Trees

B. Up/Down Routing
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Fig. 4. Up/Down: A node labeling resulting in a small fractioriFig. 5. Up/Down: A node labeling resulting in a large fraction
of prohibited turns. of prohibited turns.

general, the the up/down scheme will perform somewheatetwork resources [29]. In particular, the algorithm guar-
between these two extremes depending on the locatioraatees that the fraction of prohibited turns, &y given
the root. graph, never exceeds 1/3. This is in contrast to the
Example 1:In order to make the previous example corup/down routing algorithm, for which the fraction of pro-
crete in term of delay bounds, assume thdta) ses- hibited turns may tend to 1, as shown in the previous sec-
sion is established in both directions between each paim.
of nodes in the network of Figs. 4 and 5. Here, the pa-The turn-prohibition algorithm does not make use of a
rameters ando correspond to the bucket rate and buckepanning tree. Instead, it considers iteratively each node in
depth (burstiness), respectively. Assume further that flawe network and uses turn prohibition to break all the possi-
shapers are implemented at each node such thatthg¢ ble cycles involving the node under consideration. At each
characterization of each flow remains the same withgtep, the algorithm selects the node of minimal degree. We
the network [18]. Each node implements a FIFO outputill show that this selection is the key in guaranteeing that
queueing architecture, and the capacity of each link.is the fraction of prohibited turns never exceeds 1/3. A basic
Assuming that the throughput condition is satisfied on eagérsion of the TP-algorithm is described in more details in
link, the delay bound fok flows sharing a same link isthe next section.
D = ko/C [10]. For the case of Fig. 4, each node can A major complication comes from the connectivity re-
communicate with each other node within two hops, Viguirement, that is, the requirement that all the nodes must
node 1. Therefore, in this case, an end-to-end delay boygghain connected at the end of the algorithm. The basic
for each flow will beD = 2(N — 1)o/C, sinceN — 1 version of the TP-algorithm does not generally guarantee
flows share each link starting from node 1 or ending @bnnectivity. In Section IV-B, we describe a full version
it. For the case of Fig. 5, all the communication needg the TP-algorithm that breaks all the cycles, preserves
to be done over the bottom links, that is over the linksonnectivity, and guarantees that no more than 1/3 of the
(4,4 + 1). It can easily be checked that the delay boungdrn are prohibited. This algorithm is recursive in nature.
on each link(i,i + 1) is D = i(N — i)o/C, which can Note that the up/down routing algorithm automatically sat-

be on the order oD = N20/C. Worse, since a flow jsfies the connectivity requirement by first constructing a
between node 1 and nodétraversesV — 1 hops, the re- spanning tree.

sulting end-to-end delay bound for this flow is on the order
of D = N35/C. This shows that the selection of the roop. Basic Version

can have a tremendous effect on the network performance = ] ) )
and the delay bounds. We first introduce a simpler version of the TP-algorithm,

that forms the basis of the full version. The algorithm per-
forms the following iteration:

~ Insummary, the choice of a "good” spanning tree is Crie, 1: Select a node of minimal degree. Denote this node
ical for the performance of the up/down routing approacle nodes.

Unfortunately, there are currently no simple methods @cep 2: Prohibit all the turns around node that is, pro-
find the tree that minimizes the amount of prohibited turngyit all the turns of the typéb, a, c).

except for performing an exhaustive, prohibitive SearCh-Step 3:Permit all the turns starting from node that is,
permit all the turns of the typgu, b, ¢).
Step 4: Delete node: and the links incident to it, and re-

In this section, we describe a new algorithm that prgeat the procedure until all the nodes in the graph have
vides a robust upper bound on the amount of restricte@en deleted.

IV. THE TURN-PROHIBITION ALGORITHM



- ":é\r -- —(é‘, previous steps of the algorithm, but can not lead to a cycle
' Y since, by the induction hypothesis, all the cycles involv-
_K‘\ 7 ing a deleted node have already been broken. Second, we
consider the turns around nodeg,; that do not involve a
previously deleted node. The TP-algorithm prohibits all
these turns, and thus breaks all the remaining cycles that
could have involved node;, 1. The induction hypothesis
is thus justified, and the proof of the claim is completg.

Remark: Consider the last node deleted by the algo-
rithm. All the turns around it are permitted. Thus, no cycle
of nodes can start and end at it, since otherwise a cycle (of
links) would automatically be created. Therefore, no path
can traverse the last deleted node more than once. We will
use this property in the sequel.

Theorem 2 The TP-algorithm prohibits at most 1/3 of the
turns.

(9)

Fig. 6. Successive iterations of the TP-algorithm

Proof: At each step, the algorithm selects a node of min-

imal degree. Suppose that the selected nodeas a de-

_ _ _ . _greed;. The total number of prohibited turns around node

The iterations of the TP-algorithm are illustrated iny, is 4,(d; — 1) /2.

Fig. 6. First, node 7 is selected. There is no turn aroundgy, definition, noden; hasd; neighbors. Each neigh-

node 7, and thus no turn is prohibited. Tu(fs6, 5) and bor n; has a degreet;, that is larger or equal td;. The

(7.6,4) are permitted. Node 7 and lin6, 7) are then nymper of permitted turns starting from nodgand in-

deleted and the procedure is repeated. At the next sta@iving neighbom; is d; — 1. The total number of permit-

either of node<, 5 or 6 can be selected, as they are . " i g i

of the same minimal degre2 Assume that node 6 is sea“w- turns starting from; isthusy ;. d; —1 > di(d; ~1).
“This quantity is at least twice as large as the number of pro-

lected. Then, the tur(y, 6,5) is prohibited, and the_tumshibited turns. Thus, at most 1/3 of the turns are prohibited.
(6,4,1), (6,4,2), (6,4,3) and(6,5,3) are all permitted. 1

Node 6 and linkg4,6) and(5,6) are now deleted from

the graph. The procedure continues until all the nodBemarkin the case of a complete graph, where each node
have been considered. The final set of prohibited turlfsconnected to each other node, the TP-algorithm pro-
is (4,6,5), (1,3,4) and(2,4,1) (other solutions are alsohibits exactly 1/3 of the turns. Thus, the bound provided
possible). Note that this one turn less than for the up/doWi the theorem is tight.

spanning tree example given in the previous section.

The TP-algorithm satisfies the following properties: Theorem 3 The basic version of the TP-algorithm pre-
serves connectivity under the assumption that, at each step

Theorem 1 The TP-algorithm breaks all the cycles. of the algorithm, the graph consisting of the non-deleted

_ . ) ) . nodes remains connected.
Proof: The proof is by induction. The induction hypoth-

esis is that, at each step of the algorithm, all the cyclPsoof: Suppose that, at stépnoden; is deleted. We select
involving a deleted node have already been broken. Thidink from noden; to one of its non-deleted neighbors,
hypothesis is clearly true for the first node selected, sinsay noden;, and refer to the link as selected link For

all the turns around it are prohibited. Now suppose thainstance in Fig. 6, the links7,6), (6,4), (5,3), etc., are
nodes have already been deleted, and all the cycles invauecessively picked as selected links. Note that the TP-
ing them have been broken. The next node under considjorithm guarantees that all the turns between selected
eration is, say, node; ;. We distinguish between twolinks are permitted. From the assumption, once nede
types of turns around node;, ;. First, we consider the has been deleted, there remains a connected grajgh-af
turns that involve at least one node that has already bewm-deleted nodes. The same procedure is repeated for
deleted. These turns have been permitted in one of #ch of these nodes. As the algorithm terminates, we end



1 f?’\ 5 9 @ nents. Specifically, for each component, these cycles of
nodes must start from the node connected to the special

m link (in Fig. 8, these are nodésands).
2 4 6 /7\ 8 1 The solution to this problem consists of preventing cy-
N N U NG -
cles of nodes that originate from a node connected to a
Fig. 7. An implementation where all the cycles are broken, b§becial link. We remind now the property that that no cy-

connectivity is lost cles of nodes can originate from the last node deleted by
the TP-algorithm (see the remark following Theorem 1).
1 @ S 9 @ We are now going to take advantage of this property and

make sure that, for each component of connectivity, the

N\ node connected to the special link will be the last one to

2 & &/ U &/ 1 be deleted. For this purpose, we will mark the node and
Fig. 8. An implementation where connectivity is preserved, b[f_?fer toit .as aspecial node By making sure that the spe-

not all the cycles are broken cial node is the last one to be deleted, the full TP-algorithm
guarantees that no cycles on node will originate from it.

. ) Due to the recursive nature of the TP-algorithm, one of
up with a graph ofV nngs andv — 1 (selectgd) links. the K components of connectivity, say component 1, may
The only graph that.s_atlsfles such a property is a spannglpeady contain a special node. For this component, the
tree. Thus, connectivity is guaranteed. 1 hode connected to the special link is not marked as spe-

cial. Thus, a cycle of nodes originating from this node
may exist. However, cycles across components are still
B. Full Version prevented since none of the other components of connec-

Unfortunately, the assumption, on which Theorem 3 tiity contains a cycle of nodes (a cycle across components
based, does not hold in general, as illustrated in Fig 7. S@h-connectivity arises only if at least two components con-
pose that the first node selected is node 7, and(turh 8) tain a cycle of nodes originating from the node connected
is prohibited. Then, the graph is broken into two compd® the special link). The following theorem summarizes
nents of connectivity, namely, nod¢s, 2,3,4,5,6} and Our results:

10,11}, and the global connectivity is lost. . :
{8,9,10,11}, g y Theorem 4 The full version of the TP-algorithm breaks
In general, once all the turns around some ned&ave I th | nd preserv lobal connectivit
been prohibited, the remaining nodes in the graph will e 1€ CYcles and preserves g Y-

split into K > 1 different components of connectivity The formal description of the full TP-algorithm follows.

G1,Ga,...,Gk. In order to preserve global connectivit is based on a recursive proceddie(G’), where the ar-

ity, the full version of the algorithm must permit some ofjumentG’ represents a component of connectivity:

the turns around node To this end, the full algorithm se-  ProcedurdP(¢') :

lect K links connecting node to each component. TheseStep 1: Select the node of minimal degreeGh, excluding

links are referred to aspecial links All the turns between the special node (if there is such one). If several nodes of

special links are permitted. In Fig. 8, the special links areinimal degree are available, then select first a node that

links (7,6) and(7, 8). is not a neighbor of the special node. Denote the selected
At a first glance, it seems that all what remains to do i®de as node.

to recursively run the algorithm within each component &tep 2: Prohibit all the turns around nodg that is, pro-

connectivity. Unfortunately, such a scheme would indedibit all the turns of the typéb, a, c).

break all the cyclewithin components of connectivity, butStep 3: Permit all the turns starting from node that is,

not necessarily cyclescrosscomponents of connectivity. permit all the turns of the typé:, b, ¢).

This fact is illustrated in Fig. 8. Here the tuf6,7,8) Step 4:If the remaining graph is broken intg > 1 com-

has been permitted (to guarantee connectivity) and the T®nents of connectivityy,, Go,...,Gg, then selectk’

algorithm has been run within each component connespecial links connecting nodeto each component, and

tivity. Cycles within the components have indeed begyermit all the turns between the special links.

broken, but cycles across components, such as the cy®lep 5:If a special node exists i, then it should be

(7,8,9,10,11,8,7,6,5,3,4,6,7,8), still exist. in G1. For each of the other components of connectivity
Note that cycles across components of connectivity ariég, Gs, . . . , Gk, the node connected to the special link is

only due to the presence of cycles of hodes within compaarked as a special node.




Step 6: Delete noder and the links incident to it. If there ("1 fg\
is only one remaining node i@’ then delete it and return

the procedure. Otherwise, invoke recursively the proce-

dure for each component of connectivity, that is, perform 2 4)
TP(G1),TP(G2),.. ., TP(Gk).

The algorithm is started by invokin§P(G), whereG Fig._9. The full TP-fiIgorithm. The s_p_eci_al node and special
corresponds to the whole graph. Initially, no node is links are marked in bold. Connectivity is preserved, and all
marked as special. An illustration of the results of the TP- the cycles are broken.
algorithm is given in Fig. 9. In this case, we suppose that
node 7 is the first selected node. After deleting node 7 andExample 2:Assume the same setting as in Example 1.
the links incident to it, the graph is broken into two comk is easy to check that the final set of prohibited turns ob-
ponents of connectivity. Then, linkg,6) and(7,8) are tained by TP-algorithm is the same as with the “intelli-
marked as special links and node 8 is marked as a spegiht” node labeling of Fig. 4. Thus, the end-to-end delay
node. Note that node 6 could also have been marked asoand for each flow will beD = 2(N — 1)a/C. |
special node, but this is unnecessary siAcepecial links
require onlyK — 1 special nodes, as explained earlier.

We now show that the first step of the algorithm guara
tees that at most 1/3 of the turns are prohibited.

€. Generalization for Links of Non-Uniform Weight

So far, we have only considered networks where all the
Theorem 5 The full version of the TP-algorithm prohibitslinks have the same weight (value). In reality, different
at most 1/3 of the turns. links have different characteristics such as data rates or

_ physical lengths. Consequently, different turns have vary-
Proof: At each step, the algorithm selects the node of Mifyg importance as well.

imal degree in the component of connectivity, excluding |, order to take on this issue, we propose the follow-

the special node. If there exist several nodes of minin’ml‘J framework. We suppose that each lifik b) has a
degree, then the algorithm selects first a node that is n%@ightw », andwy, — w,;. We assume that the weights
neighbor of the special node. _ of links are additive (the weight of a link could corre-

Suppose that the selected node, is of degreed;. gnqnq 1o the revenue generated by letting packets use the
The number of prohibited turns around is at most link). We can then define the weight of a tum b, c) as

d;(d; — 1)/2 (maybe less if there are special links). W%Jabc — wyy -+ whe. Thus, More important turns are repre-
now distinguish between two cases. sented by greater weights.

First, ﬁuppOﬁehthati.ishnot a nﬁighbor of the special We now introduce a “generalized” TP-algorithm that
node. Then, all the neighbors _ﬂf ave a o!egree great(_araims at minimizing the sum of the weights of prohibited
or equal tham;, and the fraction of proh|b|ted turns 'Sturns. For this purpose, only the first step of the algorithm
smaller or equal than 1/3, exactly as in the proof of thefs . 4< to be modified. Denote By, the sum of the weights
rem 2. _ _ of the links incident to node;, i.e., W; = Z?;l Wij.

Next, SUPPOse that tt?e selected noges a neighbor Then, instead of selecting a node of minimal degree, the
of the spe/mal node. L/ets denote '_the_degree Of_ the Sp_eﬂgheralized algorithm will select a nodewith minimum
node byd'. If d; < d', then, again, it fOIIOW_S _|mmed|- weight WW; (excluding the special node, if there is such
ately that at most 1/3 of the turns are prohibited. NO\gne)_ For instance, in Fig. 10 (inspired by the NSFNET

/ ! ! )
suppose thad; > d'. Clearly, noder; has at Iea_s’ﬂ" —d topology [8]), node NE with weightV\g = 4 is first
neighbors that are not connected to the special node. The.~ted. Next node CO with weightco = 4 is se-
degree- of these neighbors must be strictly grealtelr‘17_15"""”Iected (remind that the links incident to node NE have been
otherwise one of them would have been selected insteadata in the previous step). The procedure continues un-

of n;. The otherd’ — 1_ neighpor have a degree larger Ofil all the nodes have been considered and deleted.
equal tad;. The last neighbor is the special node, ofdegreeUsing an approach similar to the proofs of Theorem 2

d'. Overall, the total number of permitted turns is at Ieagt . . )
' nd 5, we show in Appendix A that the overall weight of
(di — d)d; + (d —1)(d; — 1) + (d —1) = di(d; — 1), We Show In Appendix verall welg

L . L the turns prohibited by the generalized TP-algorithm is at
which s twice as large as the number_of prohibited turq%ost 1/2 of the total weight of the turns in the network.
Thus, at most 1/3 of the tums are prohibited. This bound is valid for any graph topology and any distri-
bution of weights.



tion, that is, a solution with the smallest possible number
of prohibited turns. This is because the first step of the
algorithm permits to select arbitrarily one among several
nodes which satisfy the same constraints. The selection
of different nodes at a particular stage may lead to differ-
ent final sets of prohibited turns with different number of
elements.

Decentralized ImplementatioThe current implemen-
tation of TP-algorithm requires knowledge of the full net-
work topology, unlike the spanning tree and up/down span-
Fig. 10. Applying the generalized TP-algorithm to a weighteding tree algorithms. Nevertheless, the TP-algorithm can

graph. The number adjacent to each link represents &l be implemented in a decentralized fashion as a link-

weight of the link. state algorithm, such as OSPF [21].
Routing: A set of prohibited turns constructed by the
D. Discussion TP-algorithm does not completely specify the routing

strategy since several valid routes may exist between any

. . ) . . source/destination pair (the connectivity property guaran-
tional complexity of the TP-algorithm is polynomial i, tees that at least one route exists). A reasonable goal is

. 2 .
more preciselfO(N*d), whered represents the max'm‘ﬁ’llthus to develop a decentralized algorithm that can deter-

de_gree of any node in the network. This complexity is “Mine the shortest path between any source and destination,
tainly reasonable, as long as the network topology does n%t. . .

while forwarding packets only over permitted turns.
change too often.

A derivation of this complexity is as follows. At each It turns out that the traditional Bellman-Ford routing al-

step of the algorithm, one node is deleted from further co orithm can easily be generalized in order to perform this

sideration. Thus, the algorithm consists of at nTgsiteps. ask [13], [29]. The only difference with respect o the

) . original Bellman-Ford algorithm is that updates are now
At each of these steps the following computations are Per varded only over permitted turns. The memory re-

Computational ComplexityThe worst-case computa-

;orr:ed:d ¢ minimal d . | q . guired by this algorithm is on the order 6f Nd), at each
- ANO _e of minimal degree Is selected, an operation E)de, since a different vector of distances to the destina-
complexityO(N).

. _ _tions needs to be maintained for each of theput ports.
2. The components of connectivity are determined. USiOgs hote that the problem of finding a good routing algo-

a spanning tree construction algorithm, the complexity ﬂ{hm is separate from the problem of constructing a set of

this ope;]ratlog |$9(Nd)2. idered f __prohibited turns, which means that the same routing algo-
3. On the order oD(d") tumns are considered for PEMISYithm can be used with up/down routing restrictions. An

sion/prohibition. _ _ example of a procedure for constructing a shortest-path
Therefore, the computational complexity of each SterButing table is provided in Appendix B.

is O(Nd), and the overall complexity of the algorithm
is O(N2d).

Irreducibility: The TP-algorithm, as described in the
previous section, does not guarantee irreducibility, whichIn this section, we present the results of simulations
means that a final set of prohibited turns may include oaemparing the performance of the spanning tree, up/down
or more redundant turns. In other words, it is possible thguting, and turn-prohibition algorithms.
one of the prohibited turns could in fact have been permit-Our simulator is based on randomly generated, con-
ted without creating any cycle. nected graphs. Every node in these graphs has the same

A version of the TP-algorithm guaranteeing irreducibildegree, i.e.d = 4, but the total number of nodes varies.
ity is described in [29]. The basic idea is to mark a nodehe links have identical weights.
as special only if it is absolutely needed. In general, theOnce a random graph is generated, each of three cycle-
performance of a TP-algorithm guaranteeing irreducibilityreaking algorithms are run on top it in order to determine
is only marginally better than the one that was describadset of prohibited links/turns. Routing matrices are then
therein. determined using the generalized version of the Bellman-

Note that even when irreducibility is guaranteed, the TIPord algorithm. All the results presented correspond to
algorithm may not necessarily lead to a minimum solaverages over 100 graphs with identical parameters.

V. SIMULATION RESULTS



# nodes| TP-alg | up/down| sp. tree # nodes| TP-alg | up/down| sp. tree
16 0.23 0.27 0.72 16 1 0.95 0.31
32 0.23 0.27 0.73 32 1 0.92 0.28
64 0.22 0.26 0.73 64 1 0.88 0.23
128 0.21 0.26 0.73 128 1 0.82 0.19
255 0.21 0.25 0.73 255 1 0.74 0.16

TABLE | TABLE Il

THROUGHPUT OF EACH SCHEME THE VALUES ARE
NORMALIZED BY THE THROUGHPUT OBTAINED WITH THE
TP-ALGORITHM.

FRACTION OF TURNS PROHIBITED BY EACH SCHEME AS A
FUNCTION OF THE TOTAL NUMBER OF NODES ALL THE
NODES ARE OF DEGREE FOUR

A. Fraction of Prohibited Turns # ricgdes shortelst-path TP-e:)Ig8oE:ithm
We first compute the fraction of turns prohibited by each 32 1 0.62
scheme, as a function of the total number of nodes. This 64 1 0.45
metric gives a good indication on the amount of unused 128 1 0.32
network resources. ldeally, the fraction of prohibited turns 255 1 021
should be as small as possible.
TABLE IlI

The performances of the three schemes are compared in
Table I. We remark that the TP-algorithm prohibits about
10% to 20% fewer turns than the up/down scheme. Thd P-ALGORITHM AND THE, SO-CALLED, SHORTEST PATH
simple spanning tree algorithms performs significantly SCHEME THAT ACHIEVES THE MAXIMUM THEORETICAL
worse than the two other algorithms. Interestingly, the re- THROUGHPUT
sults seem to be rather insensitive to the total number of
nodes in the network.

COMPARISON BETWEEN THE THROUGHPUT OF THE

that the performance of both the up/down and spanning

B. Throughput tree algorithms degrades, as a function of the total number

We now consider the throughput achieved by the threénodes, compared to the TP-algorithm. The probable rea-
different schemes. This metric is computed as followson for this behavior is that spanning trees become deeper
We assume that a flow is established between each peth the increase in the number of nodes, and therefore
of nodes in the network, in both directions. Each floWnks close to the root get more and more congested.
is routed along the shortest path over the turn-prohibitedWe next compare the throughput achieved by the TP-
graph (if multiple paths of same length are available, thefgorithm with the maximum theoretical throughput in a
one of them is arbitrarily selected). Next, we determingetwork. The maximum throughput is achieved when no
the bottleneck link which is the link shared by the maxi-network resources are prohibited. In this case, we can
mum number of flows. The throughput is then defined asploy a “shortest-path” scheme, where every flow takes
the capacity of the bottleneck link divided by the numbéhe shortest possible path from any source to any destina-
of flows sharing it. In other words, the throughput is thgon. Note that the throughput achieved with the shortest-
maximum possible rate at which each flow can transnpiath scheme represents an upper bound on the best possi-
without saturating the network. ble achievable throughput in any feed-forward routing net-

Notice that our definition of throughput is not the onlyvork. Of course, a shortest-path scheme can not be imple-
possible one. In particular, flows that do not traverse tiheented in practice as network stability is not guaranteed.
bottleneck link could in fact transmit at a higher rate. We
may then resort to a max-min criterion [2], or any other Table Ill shows that with up to 64 nodes, the throughput
similar criteria, to determine the appropriate transmissiachieved by the TP-algorithm is within a factor of about
rate for each flow. However, we expect the relative perfdwo of the maximum theoretical throughput. This result
mance of the schemes to remain about the same. indicates that the restriction of network calculus to feed-

Table 1l compares the throughput achieved by the thréward routing network may not be too significant for
algorithms. We present results that are normalized by thimall to mid-size networks, in terms of utilization of net-
throughput obtained with the TP-algorithm. We remankork resources.
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1= as the spanning tree and the up/down routing algorithms.
X oot \\ 1 We note, though, that the difference between the TP and
‘s,; 0sl \ | spanning tree algorithms is much more significant than be-
g - \ tween the TP and up/down algorithms. Our simulations
E’ 0.71 \ 1 also revealed that, for networks of moderate size, the net-
2 o6l N\ 4+ work utilization achieved by the TP-algorithm is reason-
:% osh upldown | ably close to the maximum theoretical network utilization.
S / Specifically, our simulations showed that, for networks of
s 04 AN 1 up to 50 nodes of degree four, the network utilization ob-
3 o3l \\\ 1 tained with the TP-algorithm is at least half the highest
“g o2k TP/ \\ | possible network utilization. We expect the differe_nce to
g ol \\ | be even smaller for nodes of larger degrees. Thus, in many
oo T practical cases, the restriction of network calculus to feed-

% 200 200 600 8(‘)0\1000 forward routing networks may not represent a significant

X (time units)

limitation, rendering this framework particularly appealing
for implementation in practical QoS architectures, such as
DiffServ [3], [7].

We conclude this paper by noting that the TP-algorithm
represents a universal method for breaking cycles, and, as
Finally, we compare the performance of the TPRsuch, can potentially improve the performance of many

algorithm and the up/down routing algorithm with respecther networking applications. In particular, it brings the
to delay bounds. We assume the same setting as in B&tential of significantly improving the performance of lo-
ample 1 of section IlI-B, except that we now consider ragal area networks, such as Gigabit Ethernet, where packet-
dom graphs. The end-to-end delay boulidor a flow forwarding loops and deadlocks need to be prevented [14],
is computed as follows. Suppose that a flow travefses[25]. These networks currently implement the simple
links and the number of flows on each linksis,, where spanning-tree algorithm [21]. It can also be useful for pre-
1 < k < K. Then, an expression for the end-to-end delaggnting the appearance of deadlocks in wormhole routing
bound is given byD = Ele mgo/C. networks, such as networks of workstations (NOWSs) [30],
In Fig. 11, we depict the fraction of flows with delay[31]. These examples illustrate the general problematic
bound exceeding some thresholdzofime units, for net- nature of cycles in networks, and the promise of turn-
works of 64 nodes (a time unit corresponds to the quairohibition to provide a unifying solution methodology.
tity o/C). The results are consistent with those of the pre-
vious section, where the TP algorithm is shown to outper-
form the up/down algorithm. For instance, in the case of The assistance of Shameek Gupta in running the numer-
up/down, 18% of the flows have a delay bound exceedii@l experiments is gratefully acknowledged.
600 time units, while this fraction is reduced to 10% for
the TP-algorithm.

Fig. 11. Delay bound: turn-prohibition versus up/down.

C. Delay Bounds
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weight of turns is prohibited. 1

APPENDIXB

In this appendix, we describe a simple procedure for
constructing a shortest-path routing table over a turn-
prohibited graph. For simplicity, we consider the case
of non-weighted graphs, but a similar approach applies to
weighted graphs as well. We assume that every node has
up to d neighbors, and the total number of nodes in the
network isN.

Initially, every network node (router) knows whether
each pair of its ports represents a permitted or prohibited
turn. This information can be maintained infax d ma-
trix P, whereP (i, j) = 1ifthe turn from port to port; is
permitted, andP (i, 7) = 0 if the turn is prohibited. In ad-
dition, every node maintains two matric&sand D, both
of sized x N. Specifically,R(i,n) = j if a message com-
ing from input porti, and destined to node, should be
forwarded to output porf. The entryD(i,n) represents
the current estimate of the length of the path from poot
the destinatiom.

The matricesR and D of some node are initialized as
follows for each port:

. . 0 forn=a
R(i,n), D(i,n) —{ s fornta

At each step, the elements of the matridésand D
of nodea are updated using the matricBg, Rz, ..., Rg
andDq, D., ..., D4 of each of its neighbors. HelR,,,
corresponds to the matriR of a neighbor that is con-
nected by a link to portn of nodea. A similar definition
holds forD,,,.

After ¢ steps, all paths of length smaller or equaltto
hops are determined. The updating rule at $tigas fol-
lows. SupposeD(i,n) = oo. If there exists a porin
such thatP(i,m) = 1 (i.e., the turn is permitted) and
D,,,(m',n) =t —1thenR(i,n) = mandD(i,n) = t.
The notationmn’ represents the input port of the neighbor
connected by a link to port: of nodea.

Note that the connectivity property of the TP-algorithm
guarantees that all the entries Bfwill ultimately be de-
termined. The procedure terminates after at mosteps.



