
Application of Network Calculus to General
Topologies using Turn-Prohibition

David Starobinski, Mark Karpovsky, and Lev Zakrevski

Abstract— Network calculus is known to apply in general only to feed-
forward routing networks, i.e., networks where routes do not create cycles
of interdependent packet flows. In this paper, we address theproblem of
using network calculus in networks of arbitrary topology. For this purpose,
we introduce a novel algorithm, called turn-prohibition (TP), that breaks
all the cycles in a network and, thus, prevents any interdependence be-
tween flows. We prove that the TP-algorithm prohibits the useof at most
1/3 of the total number turns in a network, for any network topology. Using
analysis and simulation, we show that the TP-algorithm significantly out-
performs other approaches for breaking cycles, such as the spanning tree
and up/down routing algorithms, in terms of network utiliza tion and de-
lay bounds. Our simulation results also show that the network utilization
achieved with the TP-algorithm is within a factor of two of the maximum
theoretical network utilization, for networks of up to 50 nodes of degree
four. Thus, in many practical cases, the restriction of network calculus to
feed-forward routing networks may not represent a significant limitation.

Keywords—network calculus, acyclic networks, network stability, Qual-
ity of Service.

I. I NTRODUCTIONNETWORK calculus is a general paradigm for the provi-
sion of Quality of Service (QoS) in communication net-

works [6], [9], [16]. The main principle of network calculusis
to show that if all the input flows to a network satisfy a certain
set of constraints, then so do all the flows within the network.
The formulation of the constraints is simple enough to allowthe
computation of bounds on various performance measures, such
as delay and queue length, at each element of the network.

A well-known network calculus is the(�; �) calculus, first
introduced in [9] and further developed in [17] which provides
deterministic bounds on delay and buffering requirements in a
communication network. This model is useful for applications
requiring deterministic QoS guarantees [20].

The network calculus framework applies also to statistical
services [4], [13]. In particular, the minimum envelop rate
(MER) [5] and exponentially bounded burstiness (EBB) [26]
network calculi provide exponential bounds on various metrics
of interest. More recently, a network calculus, termed stochasti-
cally bounded burstiness (SBB) calculus [22], [24], was devel-
oped in order to capture the multiple time-scale and self-similar
behavior of the traffic, as observed over the Internet [15], [18],
[25]. The SBB calculus provides general stochastic bounds at
each node of a network.

A central problem shared by all network calculi is of deter-
mining the conditions under which a network is stable, meaning
that the queue length at each element of the network is bounded
according to some appropriate metric [5], [10]. It turns outthat

D. Starobinski and M. Karpovsky are with the ECE department at Boston
University. E-mail:fstaro,markkarg@bu.edu.

L. Zakrevski is with the ECE department at the New Jersey Institute of Tech-
nology. E-mail: zakr@adm.njit.edu.

The work of the second and third authors was supported in partby the National
Science Foundation under Grant MIP 9630096

network stability is easy to establish only forfeed-forwardrout-
ing networks, i.e., networks where routes do not create cycles
of interdependent packet flows. Such network are stable if and
only if the traffic load (utilization) at each element is smaller
than one [5], [10]. This condition is known as thethroughput
condition[26]. The case of non-feed-forward networks is gen-
erally much more complicated, with only a few notable excep-
tions (e.g. [17]). While the throughput condition remains neces-
sary for the stability of such networks, it is no longer sufficient.
A number of examples given in [14] illustrate this fact. Recent
results show that even networks of FIFO queues with(�; �) ses-
sions may be unstable [1].

An upper bound on the delay in arbitrary non-feed-forward
networks has recently been derived in [7]. Unfortunately, this
bound is useful only for very small link utilization. Specifically,
the maximum achievable link utilization is inversely propor-
tional to the maximum route length of any flow in the network.
For instance, for a network diameter of 6 hops, the maximum
utilization on any link does not exceed 20%.

In summary, network calculus is mostly useful for feed-
forward routing networks. This fact leads to the natural question
of how network calculus can be applied to networks of arbitrary
topology. The main contribution of this paper is to take on this
problem and provide an efficient solution to it.

Our approach is to pro-actively break all the possible cycles
in a network, by prohibiting (disabling) the use of some of the
network resources. This way, any interdependence between dif-
ferent flows can be prevented. The main challenge with this ap-
proach resides in minimizing the amount of resources that need
to be prohibited.

The simplest approach for breaking cycles in a network is to
construct a spanning tree and prohibit the use of links not be-
longing to the tree. However, a spanning tree approach is highly
inefficient since a large number links are unused, and links close
to the root become congested.

Instead, we propose to resort to a more sophisticated approach
based on the prohibition ofturns. Here, a turn is defined as a
specific pair of input-output links around a node [11]. The main
claim is that in order to break all the cycles in a network, it is
sufficient to prohibit a set of turns instead of a set of links,as is
the case with spanning trees (a turn(a; b;
) around some nodeb
is prohibited if not packets can be forwarded from link(a; b)
to link (b;
)). For instance, while a spanning tree may fully
prohibit the transmission of any packet through an output link
of some node, a turn-prohibition approach may allow the use of
this link, as long as packets arrive from a pre-determined set of
input links.

In this paper, we introduce a novel algorithm using
this approach, called the turn-prohibition algorithm (TP-
algorithm) [27]. This algorithm ensures that all the cyclesin

a network are broken, while maintaining global connectivity.
Moreover, forany network topology, it never prohibits more
than 1/3 of the total number of turns in the network. This
property provides a meaningful upper bound on the maximum
amount of resources that need to be sacrificed in order to guar-
antee a cycle-free network. The TP-algorithm exhibits a rea-
sonable computational complexity that is a polynomial in the
number of nodes. The proposed approach applies to network
nodes with general, non-blocking switching architectures.

It is worth noting that the TP-algorithm is not the first algo-
rithm based on the concept of turn-prohibition. In particular,
the up/down routing scheme, developed in the context of a local
area network called Autonet, uses a similar concept [21]. How-
ever, this scheme does not systematically attempt at minimizing
the amount of prohibited turns in the network and its perfor-
mance is much less predictable. In particular, we show in the
sequel that the fraction of turns prohibited by this scheme may
tend to 1 in some networks. Furthermore, our numerical results
in Section V show that the TP-algorithm typically achieves a
throughput 10% to 20% higher than the up/down algorithm.

This paper is organized as follows. In Section II, we intro-
duce our graph-theoretic model of the network and related nota-
tions. Next, in Section III, we summarize the spanning tree and
up/down routing algorithms and indicate their limitations. Then,
in Section IV, we introduce the TP-algorithm, prove its main
properties, and illustrate it with concrete examples. Our simu-
lation results are presented in Section V, where we compare the
throughput and delay bounds achieved by the three algorithms.
The last section of this paper is devoted to concluding remarks.

II. M ODEL

We model a network by a directed graph. We define the graphG to be a collection ofN nodes andM links. A pair (n1; n2)
denotes a link directed from noden1 to noden2.

We restrict our attention to the typical case ofbi-directional
network topologies, that is networks where nodes are connected
by bi-directional links. We will define thedegreeof a node as the
number of output links of the node. For a bi-directional graph,
this number is equivalent to the number of input links to the
node.

A path from nodesn1 to n` in a graphG, is a sequence
of nodes(n1; n2; n3; : : : ; n`�1; n`), such that each two subse-
quent nodes are connected by a link. We say that a graphG is
connected, if for each nodei there exists a path to every other
nodej.

A cycle in G is defined to be a path where the firstlink
and the lastlink of the path are the same, for instance,(n1; n2; n3; : : : ; n`�1; n`; n1; n2): Note that the literature in
graph-theory typically defines a cycle as a path such that the
first node and the last node in the path are the same [8]. We will
refer to this latter definition as acycle of nodes.

Breaking all cycles of nodes is a too strong requirement for
network calculus. For instance, referring to Figure 1, the path(4; 1; 2; 4; 1) creates a cycle in the network, while the path(3; 4; 1; 2; 4; 6) does not (although it contains a cycle of nodes).
A cycle is thus created only when the same port (or link) is vis-
ited twice. In particular, a path may traverse several timesthe
same node without creating a cycle.

3

2 4

5

6 7

1

Fig. 1. Simple example of a connected graph

3

2 4

5

6 7

1

Fig. 2. A spanning tree for the the graph of Fig. 1. A link with an X represents
a prohibited link.

A pair of input-output links around a node is called aturn.
The three-tuple(a; b;
) will be used to represent a turn around
nodeb from link (a; b) to link (b;
). For instance, in Fig. 1, the
three-tuple(1; 2; 4) represent the turn from link(1; 2) to link(2; 4) around node 2.

Due to the symmetrical nature of bi-directional graphs, we
will consider the turns(a; b;
) and(
; b; a) to be the same turn.
The number of turns around a node of degreedi is equal todi(di � 1)=2. For instance, in Fig. 1, there are six turns around
node 4.

As shown in the sequel, an efficient approach for breaking
cycles in a network is based on theprohibition of turns. For
example, in Fig. 1, prohibiting the turn(1; 3; 4) means that no
packet can be forwarded from link(1; 3) to link (3; 4) (and from
link (4; 3) to link (3; 1)).
III. SUMMARY OF PREVIOUS APPROACHES FORBREAKING

CYCLES

In this section, we summarize two earlier approaches that pre-
serve network connectivity and break all the cycles in a network
of arbitrary topology.

A. Spanning Trees

The simplest approach for breaking all the cycles in a graph
is to construct aspanning tree. A spanning tree is a connected
sub-graph ofG that includes all the nodes ofG and does not
contain any cycle of nodes.

Spanning trees can be generated in various ways. One in-
volves picking a root node at random (for instance, the node with
the lowest id), and construct a shortest path tree using a Breadth
First Search (BFS) procedure [8]. An example of a spanning
tree generated that way is depicted in Fig. 2. In this example,
node 1 is chosen as the root.

A major drawback of the spanning tree approach is that a large
number of links are unused. Moreover, links near the root of the
spanning tree get congested, thus limiting the throughput of the
whole network.

3

2 4

5

6 7

1

Fig. 3. An up/down spanning tree for the the graph of Fig. 1. Anarc represents
a prohibited turn.

B. Up/Down Routing

The spanning tree approach turns out to be too restrictive in
preventing all cycles of nodes. As explained earlier, cycles in
networks arise only when a path can traverse the same link twice
or more. Instead of fully prohibiting use of links, a more effi-
cient approach is to prohibit use of turns.

With the up/down routingalgorithm [21], a spanning tree is
first constructed, and nodes are ordered according to the level at
which they are located on the tree (the level of a node is defined
at its distance from the root). Nodes at the same level are ordered
arbitrarily. Such an ordering of the nodes in a spanning treeis
illustrated in Fig. 2 where node 1 is the root of the tree, nodes 2,
3 and 4 are level 1 nodes, nodes 5 and 6 are level 2 nodes, and
node 7 is a level 3 node. Note that if another node were chosen
as the root, then the labels of the nodes would be changed.

Once the nodes are ordered, a link(i; j) is considered to go
“up” if i > j. Otherwise, it is said to go “down”. A turn(a; b;
)
is referred to as an up/down turn if node ifa > b and
 > b.
Respectively, a down/up turn is a turn such thata < b and
 < b.
A key observation is that any cycle must involve at least one
up/down turn and one down/up turn. Therefore all the cycles
in a graph can be broken by prohibiting all the down/up turns.
This also means that all the other types of turns can be permitted.
Thus, packets are allowed to traverse links not belonging tothe
spanning tree as long as they are not forwarded along down/up
turns. An up/down spanning tree, for the graph of Fig. 1, is
depicted in Fig. 3. The arcs represent the prohibited turns.For
instance, around node 4, turns(2; 4; 3), (2; 4; 1) and(1; 4; 3) are
all prohibited. On the other hand, turn(2; 4; 6) is permitted.
Thus, the up/down spanning tree approach still allows to make
use of link(2; 4), unlike the simple spanning tree approach.

The up/down routing algorithm leads to markedly better per-
formance than the simple spanning tree approach. Nevertheless,
links near the root still remain more likely to get congestedthan
other links in the network.

Another problem is that the performance of the up/down
scheme depends critically on the selection of the spanning tree
and on which node is chosen as the root of the tree. To illus-
trate this fact, Figures 4 and 5 show the same graph, but with
different node labeling. We note that the total number of turns
in this graph is on the order ofN2. For the case of Fig. 4, only
the turns(i; i + 1; 1), 1 < i < N , are prohibited. The fraction
of prohibited turns is thus on the order of1=N , and tends to 0
asN gets very large. On the other hand, for the case depicted
in Fig. 5, all the turns around nodeN are prohibited, and the
fraction of prohibited turn in the graph tend to 1 asN gets very
large. In general, the the up/down scheme will perform some-
where between these two extremes depending on the location of

1 2 3 4 5 NN−1

Fig. 4. Up/Down: A node labeling resulting in a small fraction of prohibited
turns.

N−1 12345N

Fig. 5. Up/Down: A node labeling resulting in a large fraction of prohibited
turns.

the root.
Example 1:In order to make the previous example concrete in

term of delay bounds, assume that a(�; �) session is established
in both directions between each pair of nodes in the network of
Figs. 4 and 5. Here, the parameters� and� correspond to the
bucket rate and bucket depth (burstiness), respectively. Assume
further that flow shapers are implemented at each node such that
the(�; �) characterization of each flow remains the same within
the network [16]. Each node implements a FIFO output queue-
ing architecture, and the capacity of each link isC. Assuming
that the throughput condition is satisfied on each link, the delay
bound fork flows sharing a same link is�D = k�=C [9]. For the
case of Fig. 4, each node can communicate with each other node
within two hops, via node 1. Therefore, in this case, an end-to-
end delay bound for each flow will be�D = 2(N�1)�=C, sinceN � 1 flows share each link starting from node 1 or ending at it.
For the case of Fig. 5, all the communication needs to be done
over the bottom links, that is over the links(i; i + 1). It can
easily be checked that the delay bound on each link(i; i+ 1) is�D = i(N � i)�=C, which can be on the order of�D = N2�=C.
Worse, since a flow between node 1 and nodeN traversesN�1
hops, the resulting end-to-end delay bound for this flow is onthe
order of �D = N3�=C. This shows that the selection of the root
can have a tremendous effect on the network performance and
the delay bounds.

In summary, the choice of a “good” spanning tree is critical
for the performance of the up/down routing approach. Unfortu-
nately, there are currently no simple methods to find the treethat
minimizes the amount of prohibited turns, except for performing
an exhaustive, prohibitive search.

IV. T HE TURN-PROHIBITION ALGORITHM

In this section, we describe a new algorithm that provides
a robust upper bound on the amount of restricted network re-
sources [27]. In particular, the algorithm guarantees thatthe

fraction of prohibited turns, foranygiven graph, never exceeds
1/3. This is in contrast to the up/down routing algorithm, for
which the fraction of prohibited turns may tend to 1, as shown
in the previous section.

The turn-prohibition algorithm does not make use of a span-
ning tree. Instead, it considers iteratively each node in the net-
work and uses turn prohibition to break all the possible cycles
involving the node under consideration. At each step, the al-
gorithm selects the node of minimal degree. We will show
that this selection is the key in guaranteeing that the fraction
of prohibited turns never exceeds 1/3. A basic version of the
TP-algorithm is described in more details in the next section.

A major complication comes from the connectivity require-
ment, that is, the requirement that all the nodes must remain
connected at the end of the algorithm. The basic version of the
TP-algorithm does not generally guarantee connectivity. In Sec-
tion IV-B, we describe a full version of the TP-algorithm that
breaks all the cycles, preserves connectivity, and guarantees that
no more than 1/3 of the turn are prohibited. This algorithm is
recursive in nature. Note that the up/down routing algorithm au-
tomatically satisfies the connectivity requirement by firstcon-
structing a spanning tree.

A. Basic Version

We first introduce a simpler version of the TP-algorithm, that
forms the basis of the full version. The algorithm performs the
following iteration:
Step 1: Select a node of minimal degree. Denote this node as
nodea.
Step 2: Prohibit all the turns around nodea, that is, prohibit all
the turns of the type(b; a;
).
Step 3: Permit all the turns starting from nodea, that is, permit
all the turns of the type(a; b;
).
Step 4: Delete nodea and the links incident to it, and repeat the
procedure until all the nodes in the graph have been deleted.

The iterations of the TP-algorithm are illustrated in Fig. 6.
First, node 7 is selected. There is no turn around node 7, and
thus no turn is prohibited. Turns(7; 6; 5) and(7; 6; 4) are per-
mitted. Node 7 and link(6; 7) are then deleted and the procedure
is repeated. At the next stage, either of nodes2, 5 or 6 can be
selected, as they are all of the same minimal degree2. Assume
that node 6 is selected. Then, the turn(4; 6; 5) is prohibited, and
the turns(6; 4; 1), (6; 4; 2), (6; 4; 3) and(6; 5; 3) are all permit-
ted. Node 6 and links(4; 6) and(5; 6) are now deleted from the
graph. The procedure continues until all the nodes have been
considered. The final set of prohibited turns is(4; 6; 5), (1; 3; 4)
and(2; 4; 1) (other solutions are also possible). Note that this
one turn less than for the up/down spanning tree example given
in the previous section.

The TP-algorithm satisfies the following properties:

Theorem 1 The TP-algorithm breaks all the cycles.

Proof: The proof is by induction. The induction hypothesis
is that, at each step of the algorithm, all the cycles involving
a deleted node have already been broken. This hypothesis is
clearly true for the first node selected, since all the turns around
it are prohibited. Now suppose thati nodes have already been

3

2 4

5

6 7

1

3

2 4

5

6 7

1

3

2 4

5

6 7

1

3

2 4

5

6 7

1

3

2 4

5

6 7

1

3

2 4

5

6 7

1

3

2 4

5

6 7

1

(b)

 (a)

(c)

(d)

(e)

(f)

(g)

Fig. 6. Successive iterations of the TP-algorithm

deleted, and all the cycles involving them have been broken.
The next node under consideration is, say, nodeni+1. We dis-
tinguish between two types of turns around nodeni+1. First, we
consider the turns that involve at least one node that has already
been deleted. These turns have been permitted in one of the pre-
vious steps of the algorithm, but can not lead to a cycle since,
by the induction hypothesis, all the cycles involving a deleted
node have already been broken. Second, we consider the turns
around nodeni+1 that do not involve a previously deleted node.
The TP-algorithm prohibits all these turns, and thus breaksall
the remaining cycles that could have involved nodeni+1. The
induction hypothesis is thus justified, and the proof of the claim
is complete.

Remark:Consider the last node deleted by the algorithm. All
the turns around it are permitted. Thus, no cycle of nodes can
originate from it, since otherwise a cycle (of links) would auto-
matically be created. In other words, no path can traverse the
last deleted node more than once. We will use this property in
the sequel.

Theorem 2 The TP-algorithm prohibits at most 1/3 of the turns.

Proof: At each step, the algorithm selects a node of minimal
degree. Suppose that the selected nodeni has a degreedi. The
total number of prohibited around nodeni is di(di � 1)=2.

By definition, nodeni hasdi neighbors. Each neighbornj
has a degree,dj , that is larger or equal thandi. The number
of permitted turns starting from nodeni and involving node a
neighbornj is dj �1. The total number of permitted turns start-
ing fromni is thus

Pdij=1 dj � 1 � di(di � 1). This quantity is
at least twice as large as the number of prohibited turns. Thus,
at most 1/3 of the turns are prohibited.

Theorem 3 The basic version of the TP-algorithm preserves
connectivity under the assumption that, at each step of the al-
gorithm, the graph consisting of the non-deleted nodes remains
connected.

Proof: Suppose that, at stepi, nodeni is deleted. We select a
link from nodeni to one of its non-deleted neighbors, say nodenj , and refer to the link as aselected link. For instance in Fig. 6,
the links(7; 6), (6; 4), (5; 3), etc., are successively picked as se-
lected links. Note that the TP-algorithm guarantees that all the
turns between selected links are permitted. From the assump-
tion, once nodeni has been deleted, there remains a connected
graph ofN � i non-deleted nodes. The same procedure is re-
peated for each of these nodes. As the algorithm terminates,we
end up with a graph ofN nodes andN � 1 (selected) links. The
only graph that satisfies such a property is a spanning tree. Thus,
connectivity is guaranteed.

B. Full Version

Unfortunately, the assumption, on which Theorem 3 is based,
does not hold in general, as illustrated in Fig 7. Suppose that
the first node selected is node 7, and turn(6; 7; 8) is prohibited.
Then, the graph is broken into two components of connectivity,
namely, nodesf1; 2; 3; 4; 5; 6g andf8; 9; 10; 11g, and the global
connectivity is lost.

In general, once all the turns around some nodea have been
prohibited, the remaining nodes in the graph will be split intoK � 1 different components of connectivityG1; G2; : : : ; GK .
In order to preserve global connectivity, the full version of the
algorithm must permit some of the turns around nodea. To this
end, the full algorithm selectK links connecting nodea to each
component. These links are referred to asspecial links. All the
turns between special links are permitted. In Fig. 8, the special
links are links(7; 6) and(7; 8).

At a first glance, it seems that all what remains to do is to
recursively run the algorithm within each component of connec-
tivity. Unfortunately, such a scheme would indeed break allthe
cycleswithin components of connectivity, but not necessarily
cyclesacrosscomponents of connectivity. This fact is illustrated
in Fig. 8. Here the turn(6; 7; 8) has been permitted (to guaran-
tee connectivity) and the TP-algorithm has been run within each
component connectivity. Cycles within the components have
indeed been broken, but cycles across components, such as the
cycle(7; 8; 9; 10; 11; 8; 7; 6; 5; 3; 4; 6; 7; 8), still exist.

Note that cycles across components of connectivity arise only
due to the presence of cycles of nodes within components.
Specifically, for each component, these cycles of nodes must
start from the node connected to the special link (in Fig. 8, these
are nodes6 and8).

The solution to this problem consists of preventing cycles of
nodes that originate from a node connected to a special link.We
remind now the property that that no cycles of nodes can orig-
inate from the last node deleted by the TP-algorithm (see the
remark following Theorem 1). We are now going to take ad-
vantage of this property and make sure that, for each component

of connectivity, the node connected to the special link willbe
the last one to be deleted. For this purpose, we will mark the
node and refer to it as aspecial node. By making sure that the
special node is the last one to be deleted, the full TP-algorithm
guarantees that no cycles on node will originate from it.

Due to the recursive nature of the TP-algorithm, one of theK
components of connectivity, say component 1, may already con-
tain a special node. For this component, the node connected to
the selected link is not marked as special. Thus, a cycle of nodes
originating from this node may exist. However, cycles across
components are still prevented since none of the other compo-
nents of connectivity contains a cycle of nodes (a cycle across
components of connectivity arises only if at least two compo-
nents contain a cycle of nodes originating from the node con-
nected to the special link). The following theorem summarizes
our results:

Theorem 4 The full version of the TP-algorithm breaks all the
cycles and preserves global connectivity.

The formal description of the full TP-algorithm follows. Itis
based on a recursive procedureTP(G0), where the argumentG0
represents a component of connectivity:

ProcedureTP(G0) :
Step 1: Select the node of minimal degree inG0, excluding the
special node (if there is such one). If several nodes of minimal
degree are available, then select first a node that is not a neighbor
of the special node. Denote the selected node as nodea.
Step 2: Prohibit all the turns around nodea, that is, prohibit all
the turns of the type(b; a;
).
Step 3: Permit all the turns starting from nodea, that is, permit
all the turns of the type(a; b;
).
Step 4: If the remaining graph is broken intoK � 1 compo-
nents of connectivityG1; G2; : : : ; GK , then selectK special
links connecting nodea to each component, and permit all the
turns between the special links.
Step 5: If a special node exists inG0, then it should be
in G1. For each of the other components of connectivityG2; G3; : : : ; GK , the node connected to the special link is
marked as a special node.
Step 6: Delete nodea and the links incident to it. If there is only
one remaining node inG0 then delete it and return the procedure.
Otherwise, invoke recursively the procedure for each component
of connectivity, that is, performTP(G1),TP(G2),: : :,TP(GK).

The algorithm is started by invokingTP(G), whereG corre-
sponds to the whole graph. Note that initially, no node is marked
as special. An illustration of the results of the TP-algorithm is
given in Fig. 9. In this case, we suppose that node 7 is the first
selected node. After deleting node 7 and the links incident to it,
the graph is broken into two components of connectivity. Then,
links (7; 6) and(7; 8) are selected as special links and node 8
is selected as a special node. Note that node 6 could also have
been selected as a special node, but this is unnecessary sinceK
components of connectivity require onlyK � 1 special nodes,
as explained earlier.

We now show that the first step of the algorithm guarantees
that at most 1/3 of the turns are prohibited.

3

2 4

5

6 7

1

8

9 10

11

Fig. 7. An implementation where all the cycles are broken, but connectivity is
lost

3

2 4

5

6 7

1

8

9 10

11

Fig. 8. An implementation where connectivity is preserved,but not all the
cycles are broken

Theorem 5 The full version of the TP-algorithm prohibits at
most 1/3 of the turns.

Proof: At each step, the algorithm selects the node of minimal
degree in the component of connectivity, excluding the special
node. If there exist several nodes of minimal degree, then the
algorithm selects first a node that is not a neighbor of the special
node.

Suppose that the selected node,ni, is of degreedi. The num-
ber of prohibited turns aroundni is at mostdi(di�1)=2 (maybe
less if there are special links). We now distinguish betweentwo
cases.

First, suppose thatni is not a neighbor of the special node.
Then, all the neighbors ofni have a degree greater or equal thanni, and the fraction of prohibited turns is smaller or equal than
1/3, exactly as in the proof of theorem 2.

Next, suppose that the selected nodeni is a neighbor of the
special node. Let’s denote the degree of the special node byd0.
If di � d0, then, again, it follows immediately that at most 1/3
of the turns are prohibited. Now, suppose thatdi > d0. Clearly,
nodeni has at leastdi � d0 neighbors that are not connected to
the special node. The degree of these neighbors must be strictly
greater thandi, otherwise one of them would have been selected
instead ofni. The otherd0 � 1 neighbor have a degree larger
or equal todi. The last neighbor is the special node, of de-
greed0. Overall, the total number of permitted turns is at least(di� d0)di+(d0� 1)(di� 1)+ (d0� 1) = di(di� 1), which is
twice as large as the number of prohibited turns. Thus, at most
1/3 of the turns are prohibited.

Example 2:Assume the same setting as in Example 1. It is
easy to check that the final set of prohibited turns obtained by
TP-algorithm is the same as with the “intelligent” node labeling
of Fig. 4. Thus, the end-to-end delay bound for each flow will
be �D = 2(N � 1)�=C.

C. Generalization for Links of Non-Uniform Weights

So far, we have only considered networks where all the links
have the same weight (value). In reality, different links have

3

2 4

5

6 7

1

8

9 10

11

Fig. 9. The full TP-algorithm. The special node and special links are marked in
bold. Connectivity is preserved, and all the cycles are broken.

3

4

5

6 7

1

2

1

1

1

10

1

10

1

1

1

Fig. 10. Applying the generalized TP-algorithm to a weighted graph. The
number adjacent to each link represents the weight of the link.

different characteristics such as data rates or physical lengths.
Consequently, different turns have varying importance as well.

In order to take on this issue, we propose the following frame-
work. We suppose that each link(a; b) has a weightwab, andwba = wab. We assume that the weights of links are ad-
ditive. We can then define the weight of a turn(a; b;
) aswab
 = wab + wb
. Thus, more important turns are represented
by higher weights.

We now introduce a “generalized” TP-algorithm that aims at
minimizing the sum of the weights of prohibited turns. For this
purpose, only the first step of the algorithm needs to be modified.
Denote byWi the sum of the weights of the links incident to
nodeni, i.e., Wi = Pdij=1 wij . Then, instead of selecting a
node of minimal degree, the generalized algorithm will select a
nodeni for whichWi is minimal (excluding the special node, if
there is such one). For instance, in Fig. 10, node 7 withW7 = 1
is first selected. Next, either node 2 or node 5 are selected sinceW2 =W5 = 2. The procedure then continues until all the nodes
are considered and deleted.

Using an approach similar to the proofs of Theorem 2 and 5,
it can be shown that the overall weight of the turns prohibited by
the generalized TP-algorithm is at most 1/2 of the total weight of
the turns in the network. This bound is valid for any graph topol-
ogy and any distribution of weights. An illustration of the gen-
eralized TP-algorithm for a weighted graph is given in Fig. 10.

D. Discussion

Computational Complexity:The worst-case computational
complexity of the TP-algorithm is polynomial inN , more pre-
ciselyO(N2d), whered represents the maximal degree of any
node in the network. This complexity is certainly reasonable, as
long as the network topology does not change too often.

A derivation of this complexity is as follows. At each step
of the algorithm, one node is deleted from further consideration.
Thus, the algorithm consists of at mostN steps. At each of these
steps the following computations are performed:
1. A node of minimal degree is selected, an operation of com-
plexityO(N).
2. The components of connectivity are determined. Using a
spanning tree construction algorithm, the complexity of this op-

eration isO(Nd).
3. On the order ofO(d2) turns are considered for permis-
sion/prohibition.
Therefore, the computational complexity of each step isO(Nd),
and the overall complexity of the algorithm isO(N2d).

Irreducibility: The TP-algorithm, as described in the previous
section, does not guarantee irreducibility, which means that a fi-
nal set of prohibited turns may include one or more redundant
turns. In other words, it is possible that one of the prohibited
turns could in fact have been permitted without creating anycy-
cle.

A version of the TP-algorithm guaranteeing irreducibilityis
described in [27]. The basic idea is to mark a node as special
only if it is absolutely needed. In general, the performanceof a
TP-algorithm guaranteeing irreducibility is only marginally bet-
ter than the one that was described therein.

Note that even when irreducibility is guaranteed, the TP-
algorithm may not necessarily lead to a minimum solution, that
is, a solution with the smallest possible number of prohibited
turns. This is because the first step of the algorithm permits
to select arbitrarily one among several nodes which satisfythe
same constraints. The selection of different nodes at a particu-
lar stage may lead to different final sets of prohibited turnswith
different number of elements.

Decentralized Implementation:The current implementation
of TP-algorithm requires knowledge of the full network topol-
ogy, unlike the spanning tree and up/down spanning tree al-
gorithms. Nevertheless, the TP-algorithm can still be imple-
mented in a decentralized fashion as a link-state algorithmlike
OSPF [19].

Routing: A set of prohibited turns constructed by the TP-
algorithm does not completely specify the routing strategysince
several valid routes may exist between any source/destination
pair (the connectivity property guarantees that at least one route
exists). A reasonable goal is thus to develop a decentralized al-
gorithm that can determine the shortest path between any source
and destination, while forwarding packets only over permitted
turns.

It turns out that the traditional Bellman-Ford routing algo-
rithm can be generalized in order to perform this task [27]. The
memory required by this algorithm is on the order ofO(Nd), at
each node, since a different vector of distances to the destina-
tions needs to be maintained for each of thed input links. We
note that the problem of finding a good routing algorithm is sep-
arate from the problem of constructing a set of prohibited turns,
which means that the same routing algorithm can be used with
up/down routing restrictions.

V. SIMULATION RESULTS

In this section, we present the results of simulations compar-
ing the performance of the spanning tree, up/down routing, and
turn-prohibition algorithms.

Our simulator is based on randomly generated, connected
graphs. Every node in these graphs has the same degree, i.e.d = 4, but the total number of nodes varies. The links have
identical weights.

Once a random graph is generated, each of three cycle-
breaking algorithms are run on top it in order to determine a

nodes TP-alg up/down sp. tree
16 0.23 0.27 0.72
32 0.23 0.27 0.73
64 0.22 0.26 0.73
128 0.21 0.26 0.73
255 0.21 0.25 0.73

TABLE I

FRACTION OF TURNS PROHIBITED BY EACH SCHEME AS A FUNCTION OF

THE TOTAL NUMBER OF NODES. ALL THE NODES ARE OF DEGREE FOUR.

set of prohibited links/turns. Routing matrices are then deter-
mined using the generalized version of the Bellman-Ford algo-
rithm. All the results presented correspond to averages over 100
graphs with identical parameters.

A. Fraction of Prohibited Turns

We first compute the fraction of turns prohibited by each
scheme, as a function of the total number of nodes. This met-
ric gives a good indication on the amount of unused network
resources. Ideally, the fraction of prohibited turns should be as
small as possible.

The performances of the three schemes are compared in Ta-
ble I. We remark that the TP-algorithm prohibits about 10% to
20% fewer turns than the up/down scheme. The simple span-
ning tree algorithms performs significantly worse than the two
other algorithms. Interestingly, the results seem to be rather in-
sensitive to the total number of nodes in the network.

B. Throughput

We now consider the throughput achieved by the three differ-
ent schemes. This metric is computed as follows. We assume
that a flow is established between each pair of nodes in the net-
work, in both directions. Each flow is routed along the shortest
path over the turn-prohibited graph (if multiple paths of same
length are available, then one of them is arbitrarily selected).
Next, we determine thebottleneck link, which is the link shared
by the maximum number of flows. The throughput is then de-
fined as the capacity of the bottleneck link divided by the num-
ber of flows sharing it. In other words, the throughput is the
maximum possible rate at which each flow can transmit without
saturating the network.

Notice that our definition of throughput is not the only possi-
ble one. In particular, flows that do not traverse the bottleneck
link could in fact transmit at a higher rate. We may then resort
to a max-min criterion [2], or any other similar criteria, todeter-
mine the appropriate transmission rate for each flow. However,
we expect the relative performance of the schemes to remain
about the same.

Table II compares the throughput achieved by the three algo-
rithms. We present results that are normalized by the through-
put obtained with the TP-algorithm. We remark that the per-
formance of both the up/down and spanning tree algorithms de-
grades, as a function of the total number of nodes, compared to
the TP-algorithm. The probable reason for this behavior is that
spanning trees become deeper with the increase in the number

nodes TP-alg up/down sp. tree
16 1 0.95 0.31
32 1 0.92 0.28
64 1 0.88 0.23
128 1 0.82 0.19
255 1 0.74 0.16

TABLE II

THROUGHPUT OF EACH SCHEME. THE VALUES ARE NORMALIZED BY THE

THROUGHPUT OBTAINED WITH THETP-ALGORITHM .

nodes shortest-path TP-algorithm
16 1 0.85
32 1 0.62
64 1 0.45
128 1 0.32
255 1 0.21

TABLE III

COMPARISON BETWEEN THE THROUGHPUT OF THETP-ALGORITHM AND

THE, SO-CALLED , SHORTEST PATH SCHEME THAT ACHIEVES THE

MAXIMUM THEORETICAL THROUGHPUT.

of nodes, and therefore links close to the root get more and more
congested.

We next compare the throughput achieved by the TP-
algorithm with the maximum theoretical throughput in a net-
work. The maximum throughput is achieved when no net-
work resources are prohibited. In this case, we can employ
a “shortest-path” scheme, where every flow takes the shortest
possible path from any source to any destination. Note that the
throughput achieved with the shortest-path scheme represents
an upper bound on the best possible achievable throughput in
any feed-forward routing network. Of course, a shortest-path
scheme can not be implemented in practice as network stability
is not guaranteed.

Table III presents interesting results. We observe that with
up to 64 nodes, the throughput achieved by the TP-algorithm
is within a factor of about two of the maximum theoretical
throughput. This result indicates that the restriction of network
calculus to feed-forward routing network may not be too signifi-
cant for small to mid-size networks, in terms of network utiliza-
tion.

C. Delay Bounds

Finally, we compare the performance of the TP-algorithm and
the up/down routing algorithm with respect to delay bounds.We
assume the same setting as in Example 1 of section III-B, ex-
cept that we now consider random graphs. The end-to-end de-
lay bound�D for a flow is computed as follows. Suppose that a
flow traversesK links and the number of flows on each link ismk, where1 � k � K. Then, an expression for the end-to-end
delay bound is given by�D =PKk=1mk�=C. Thus, the end-to-
end delay bound is proportional to the quantity

PKk=1mk, the
sum of the number of flows on each link that a flow traverses.

In Fig. 11, we depict the fraction of flows with delay bound

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X (time units)

F
ra

ct
io

n
of

 fl
ow

s
w

ith
 d

el
ay

 b
ou

nd
 g

re
at

er
 th

an
 X

up/down

TP

Fig. 11. Delay bound: turn-prohibition versus up/down.

exceeding a threshold ofx time units, for networks of64 nodes
(a time unit corresponds to the quantity�=C). The results are
consistent with those of the previous section, where the TP al-
gorithm is shown to outperform the up/down algorithm. For
instance, the probability that a delay bound exceeds 600 time
units is 18% for up-down, but only 10% for TP.

VI. CONCLUDING REMARKS

In this paper, we have addressed and proposed a concrete so-
lution to the problem of applying network calculus to networks
of arbitrary topology. We introduced the turn-prohibition(TP)
algorithm that breaks all the cycles in any given network, and
prohibits the use of at most 1/3 of the turns. We showed that
the TP-algorithm can be generalized to networks with weighted
links. Moreover, the computational complexity of the algorithm
was shown to be only quadratic in the number of nodes. Us-
ing analysis and simulations, we showed that the TP-algorithm
achieve higher performance, in terms of throughput and delay,
than other algorithms used for breaking cycles, such as the span-
ning tree and the up/down routing algorithms. We note, though,
that the difference between the TP and spanning tree algorithms
is much more significant than between the TP and up/down algo-
rithms. Our simulations also revealed that, for networks ofmod-
erate size, the network utilization achieved by the TP-algorithm
is reasonably close to the maximum theoretical network utiliza-
tion. Specifically, our simulations showed that, for networks of
up to 50 nodes of degree four, the network utilization obtained
with the TP-algorithm is at least half the highest possible net-
work utilization. We expect the difference to be even smaller
for nodes of larger degrees. Thus, in many practical cases, the
restriction of network calculus to feed-forward routing networks
may not represent a significant limitation, making this frame-
work particularly appealing for implementation in practical QoS
architectures, such as DiffServ [3].

We conclude this paper by noting that the TP-algorithm rep-
resents a universal method for breaking cycles, and, as such, can
potentially improve the performance of many other networking
applications. In particular, it brings the potential of significantly

improving the performance of local area networks, such as Giga-
bit Ethernet, where packet-forwarding loops and deadlocksneed
to be prevented [12], [23]. These networks currently implement
the simple spanning-tree algorithm [19]. It can also be useful
for preventing the appearance of deadlocks in wormhole rout-
ing networks, such as networks of workstations (NOWs) [28].
These examples illustrate the general problematic nature of cy-
cles in networks, and the promise of turn-prohibition to provide
a unifying solution methodology.

ACKNOWLEDGEMENTS

The assistance of Shameek Gupta in running the numerical
experiments is gratefully acknowledged.

REFERENCES

[1] M. Andrews, “Instability of FIFO in Session-Oriented Networks,” in the
proceedings ofSODA 2000, pp. 440-447, San Francisco, January 2000.

[2] D. Bertsekas and R. Gallager,Data Networks,Prentice-Hall, 1992.
[3] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An

Architecture for Differentiated Services,” IETF Request for Comments:
2475, December 1998.

[4] R. Boorstyn, A. Burchard, J. Liebeherr, and C. Oottamakorn, “Statistical
Service Assurances for Traffic Scheduling Algorithms,”IEEE JSAC, Vol.
18, No. 12, pp. 2651-2664, December 2000.

[5] C.S. Chang, “Stability, Queue Length and Delay of Deterministic and
Stochastic Queueing Networks,”IEEE Trans. on Automatic Control, Vol.
39, No. 5, pp. 913-931, May 1994.

[6] C.S. Chang, Performance Guarantees in Communication Networks,
Springer Verlag, 2000.

[7] A. Charny and J.-Y. Le Boudec, “Delay Bounds in a Network with Aggre-
gate Scheduling,” in the proceedings ofQOFIS, pp. 1-13, Berlin, October
2000.

[8] T. Cormen, C. Leiserson, and R. Rivest,Introduction to Algorithms,
McGraw-Hill, 1990.

[9] R. Cruz, “A Calculus for Network Delay, Part I: Network Elements in
Isolation,” IEEE Trans. on Information Theory, Vol. 37, No. 1, pp. 114-
131, January 1991.

[10] R. Cruz, “A Calculus for Network Delay, Part II: NetworkAnalysis,” IEEE
Trans. on Information Theory, Vol. 37, No. 1, pp. 132-141, January 1991.

[11] C. Glass and L. Ni, “The Turn Model for Adaptive Routing,” Journal of
ACM, Vol. 5, pp. 874-902, 1994.

[12] M. Karol, S. Golestani, and D. Lee, “Prevention of Deadlocks and Live-
locks in Lossless, Backpressured Packet Networks,” in the proceedings of
INFOCOM 2000, pp. 1333-1342, Tel Aviv, Israel.

[13] E. Knightly and N. Shroff, “Admission Control for Statistical QoS: Theory
and Practice,”IEEE Network,Vol. 13, No. 2, pp. 20-29, March-April 1999.

[14] P. Kumar, “A Tutorial on Some New Methods for Performance Evaluation
of Queueing Networks,”IEEE JSAC, vol. 13, no. 6, pp. 970-980, August
1995.

[15] W. Leland, M. Taqqu, W. Willinger and D. Wilson, “On the Self-Similar
Nature of Ethernet Traffic (Extended Version),”IEEE/ACM Trans. on Net-
working, Vol. 2, No. 1, pp. 1-15, 1994.

[16] J.-Y. Le Boudec and P. Thiran,Network Calculus: A Theory of Determin-
istic Queueing Systems for the Internet, Springer-Verlag Lecture Notes on
Computer Science #2050, available on-line at http://icawww.epfl.ch.

[17] A. Parekh and R. Gallager, “A Generalized Processor Sharing Approach to
Flow Control in Integrated Services Networks: The MultipleNode Case,”
IEEE/ACM ToN, Vol. 2, No. 2, pp. 137-150, April 1994.

[18] V. Paxson and S. Floyd, “Wide Area Traffic: The Failure ofPoisson Mod-
eling,” IEEE/ACM Trans. on Networking, Vol. 3, No. 3, pp. 226-244, June
1995.

[19] R. Perlman,Interconnections Second Edition: Bridges, Routers, Switches,
and Internetworking Protocols, Addison Wesley, 2000.

[20] S. Shenker, C. Partridge, and R. Guerin, “Specificationof Guaranteed
Quality of Service,”IETF Request for Comments: 2212, September 1997.

[21] M. Shoreder et al. ,“Autonet: A High-Speed, Self-Configuring Local Area
Network Using Point-to-Point Links,”IEEE JSAC, Vol. 9, No. 8, pp. 1318-
1335, October 1991.

[22] D. Starobinski,Quality of Service in High Speed Networks with Multiple
Time-Scale Traffic, Ph.D. Dissertation, Technion - Israel Institute of Tech-
nology, Haifa, Israel, 1999.

[23] D. Starobinski and M. Karpovsky, “Turn Prohibition-based Packet
Forwarding in Gigabit Ethernets,” in the proceeding of theGigabit

Networking Workshop (GBN 2001), Anchorage, Alaska, April 2001.
http://www.comsoc.org/tcgn/conference/gbn2001/

[24] D. Starobinski and M. Sidi, “Stochastically Bounded Burstiness for Com-
munication Networks,”IEEE Trans. on Info. Theory, Vol. 46, No. 1, pp.
206-212, January 2000.

[25] D. Starobinski and M. Sidi, “Modeling and Analysis of Power-Tail Distri-
butions via Classical Teletraffic Methods,”Queueing Systems (QUESTA),
Vol. 36, Nos. 1-3, pp. 243-267, November 2000.

[26] O. Yaron and M. Sidi, “Performance and Stability of Communication Net-
works via Robust Exponential Bounds,”IEEE/ACM ToN, Vol. 1, No. 3,
pp. 372-385, June 1993.

[27] L. Zakrevski, Fault-Tolerant Wormhole Message Routing in Com-
puter/Communication Networks,Ph.D. Dissertation, Boston University,
2001.

[28] L. Zakrevski, M. Mustafa, and M. Karpovsky, “Turn Prohibition Based
Routing in Irregular Computer Networks,” in the proceedings of 7th Int.
Conf. On Parallel and Distributed Computer Systems (PDCS-2000).

