Application of Network Calculus to General
Topologies using Turn-Prohibition

David Starobinski, Mark Karpovsky, and Lev Zakrevski

Abstract—Network calculus is known to apply in general only to feed-
forward routing networks, i.e., networks where routes do na create cycles
of interdependent packet flows. In this paper, we address thproblem of
using network calculus in networks of arbitrary topology. For this purpose,
we introduce a novel algorithm, called turn-prohibition (T P), that breaks
all the cycles in a network and, thus, prevents any interdepsdence be-
tween flows. We prove that the TP-algorithm prohibits the useof at most
1/3 of the total number turns in a network, for any network topology. Using
analysis and simulation, we show that the TP-algorithm sigificantly out-
performs other approaches for breaking cycles, such as thepanning tree
and up/down routing algorithms, in terms of network utilization and de-
lay bounds. Our simulation results also show that the netwdk utilization
achieved with the TP-algorithm is within a factor of two of the maximum
theoretical network utilization, for networks of up to 50 nodes of degree
four. Thus, in many practical cases, the restriction of netwrk calculus to
feed-forward routing networks may not represent a significant limitation.

Keywords—network calculus, acyclic networks, network stability, Qual-
ity of Service.

|. INTRODUCTION

network stability is easy to establish only fieed-forwardrout-

ing networks, i.e., networks where routes do not createesycl
of interdependent packet flows. Such network are stabledf an
only if the traffic load (utilization) at each element is staal
than one [5], [10]. This condition is known as tt@oughput
condition[26]. The case of non-feed-forward networks is gen-
erally much more complicated, with only a few notable excep-
tions (e.g. [17]). While the throughput condition remaieses-
sary for the stability of such networks, it is no longer suit.

A number of examples given in [14] illustrate this fact. Reice
results show that even networks of FIFO queues yuithp) ses-
sions may be unstable [1].

An upper bound on the delay in arbitrary non-feed-forward
networks has recently been derived in [7]. Unfortunatedis t
bound is useful only for very small link utilization. Speciily,
the maximum achievable link utilization is inversely propo
tional to the maximum route length of any flow in the network.

ETWORK calculus is a general paradigm for the provfor instance, for a network diameter of 6 hops, the maximum
Nsion of Quality of Service (QoS) in communication netttilization on any link does not exceed 20%.

works [6], [9], [16]. The main principle of network calculis

In summary, network calculus is mostly useful for feed-

to show that if all the input flows to a network satisfy a cartaiforward routing networks. This fact leads to the naturalstioe

set of constraints, then so do all the flows within the networRf how network calculus can be applied to networks of arbyjtra

The formulation of the constraints is simple enough to aloey 10POlogy. The main contribution of this paper is to take as th

computation of bounds on various performance measurels, sBEoblem and provide an efficient solution to it. _

as delay and queue length, at each element of the network. ~ Our approach is to pro-actively break all the possible cycle
A well-known network calculus is thés, p) calculus, first N @ network, by prohibiting (disabling) the use of some & th

introduced in [9] and further developed in [17] which prossd network resources. This way, any interdependence between d

deterministic bounds on delay and buffering requirements i f€rent flows can be prevented. The main challenge with this ap
communication network. This model is useful for applicatio Proach resides in minimizing the amount of resources thedi ne
to be prohibited.

requiring deterministic QoS guarantees [20]. - , ,)
The network calculus framework applies also to statistical | N€ Simplest approach for breaking cycles in a network is to

services [4], [13]. In particular, the minimum envelop rat onstruct a spanning tree and prohibit the use of links net be

(MER) [5] and exponentially bounded burstiness (EBB) [2 ﬁn?f?ng to the treel. However;)asl_paknning tree asproz:\jclhl ml hig
network calculi provide exponential bounds on various iogtr ! eh|C|ent skl)nce alarge num gr INKS are unused, and i

of interest. More recently, a network calculus, termed\shst- to the root become congested. .

cally bounded burstiness (SBB) calculus [22], [24], wassaliev Instead, we propose toresorttoamore soph_|st|caf[ed agiproa
oped in order to capture the multiple time-scale and setftar base.d. on t.he prohlbltlon aﬂrns Here, a turn is defined asa
behavior of the traffic, as observed over the Internet [1E3],[specific pair of input-output links around a node [11]. Theémma

[25]. The SBB calculus provides general stochastic boumdscé\aim is that in order to break all the cycles in a networksit i

each node of a network sufficient to prohibit a set of turns instead of a set of lirksjs
A central problem shared by all network calculi is of deter.t-he case with spanning trees (a tnb,) around some node

mining the conditions under which a network is stable, mea@ni's prohibited if not packets can be forwarded from lifik b)

that the queue length at each element of the network is b(mUn(E% I|n.k.(b, c)). For [ns.tance, while a spanning tree may fuI.Iy
according to some appropriate metric [5], [10]. It turns that prohibit the transmission of any packet through an outpkt li
' ' of some node, a turn-prohibition approach may allow the dise o

this link, as long as packets arrive from a pre-determinédfse
input links.

In this paper, we introduce a novel algorithm using
this approach, called the turn-prohibition algorithm (TP-
algorithm) [27]. This algorithm ensures that all the cydles

D. Starobinski and M. Karpovsky are with the ECE departmérBaston
University. E-mail:{staro,markkar@bu.edu.

L. Zakrevski is with the ECE department at the New Jerseytinstof Tech-
nology. E-mail: zakr@adm.nijit.edu.

The work of the second and third authors was supported irbydite National
Science Foundation under Grant MIP 9630096

a network are broken, while maintaining global conneativit 1
Moreover, forany network topology, it never prohibits more
than 1/3 of the total number of turns in the network. This
property provides a meaningful upper bound on the maximum
amount of resources that need to be sacrificed in order te guar 2
antee a cycle-free network. The TP-algorithm exhibits a rea
sonable computational complexity that is a polynomial ia th
number of nodes. The proposed approach applies to network
nodes with general, non-blocking switching architectures

It is worth noting that the TP-algorithm is not the first algo- 1
rithm based on the concept of turn-prohibition. In partul
the up/down routing scheme, developed in the context ofal loc
area network called Autonet, uses a similar concept [21wHo
ever, this scheme does not systematically attempt at naimigi @
the amount of prohibited turns in the network and its perfor-
mance is much Iess_ predictable. In _partICUIar’ _Ne show in tp% 2. A spanning tree for the the graph of Fig. 1. A link with 4 represents
sequel that the fraction of turns prohibited by this scherag m ™ 3 prohibited link.
tend to 1 in some networks. Furthermore, our numerical tesul
in Section V show that the TP-algorithm typically achieves a
throughput 10% to 20% higher than the up/down algorithm. A pair of input-output links around a node is calleduan.

This paper is organized as follows. In Section II, we intréFhe three-tuplda, b, ¢) will be used to represent a turn around
duce our graph-theoretic model of the network and relatéa-nonodeb from link (a, b) to link (b, ¢). For instance, in Fig. 1, the
tions. Next, in Section Ill, we summarize the spanning tree athree-tuple(1,2,4) represent the turn from linkl,2) to link
up/down routing algorithms and indicate their limitatiofifen, (2, 4) around node 2.
in Section IV, we introduce the TP-algorithm, prove its main pye to the symmetrical nature of bi-directional graphs, we
properties, and illustrate it with concrete examples. Quws il consider the turnga, b, ¢) and(c, b, a) to be the same turn.
lation results are presented in Section V, where we compare fhe number of turns around a node of degdgds equal to

throughput and delay bounds achieved by the three algasithm, (4, — 1)/2. For instance, in Fig. 1, there are six turns around
The last section of this paper is devoted to concluding rémar ngde 4.

<)

@

Fig. 1. Simple example of a connected graph

G
G

“)

5

G
G

As shown in the sequel, an efficient approach for breaking
cycles in a network is based on tpeohibition of turns. For
We model a network by a directed graph. We define the grapkample, in Fig. 1, prohibiting the turfl, 3,4) means that no
G to be a collection ofV nodes andV links. A pair (n1,n2) packet can be forwarded from lirfk, 3) to link (3, 4) (and from
denotes a link directed from nodsg to noden.,. link (4,3) to link (3, 1)).
We restrict our attention to the typical casebdfdirectional
network topologies, that is networks where nodes are cdadec||| syMMARY OF PREVIOUS APPROACHES FORBREAKING
by bi-directional links. We will define théegreeof a node as the CYCLES
number of output links of the node. For a bi-directional drap
this number is equivalent to the number of input links to the In this section, we summarize two earlier approaches tteat pr

Il. MODEL

node. serve network connectivity and break all the cycles in a netw
A path from nodesn; to n, in a graphG, is a sequence of arbitrary topology.
of nodes(n;,ns,ns,...,ne_1,n¢), such that each two subse-

quent nodes are connected by a link. We say that a gkajgh A. Spanning Trees

connectedif for each node there exists a path to every other) _)
nodej. The simplest approach for breaking all the cycles in a graph

A cyclein G is defined to be a path where the filistk is to construct a;par!ning tree A spanning tree is a connected
and the lastlink of the path are the same, for instancesub-graph ofx that includes all the nodes 6f and does not
(n1,m2,m3, ..., me_1,m,n1,n2). Note that the literature in contain any cycle of nodes.
graph-theory typically defines a cycle as a path such that theSpanning trees can be generated in various ways. One in-
first node and the last node in the path are the same [8]. We willlves picking a root node at random (for instance, the ndtte w
refer to this latter definition as@ycle of nodes the lowest id), and construct a shortest path tree using adBne

Breaking all cycles of nodes is a too strong requirement first Search (BFS) procedure [8]. An example of a spanning
network calculus. For instance, referring to Figure 1, ththp tree generated that way is depicted in Fig. 2. In this example
(4,1,2,4,1) creates a cycle in the network, while the patRode 1is chosen as the root.

(3,4,1,2,4,6) does not (although it contains a cycle of nodes). A major drawback of the spanning tree approach is that a large
A cycle is thus created only when the same port (or link) is visumber of links are unused. Moreover, links near the rodtef t
ited twice. In particular, a path may traverse several tithes spanning tree get congested, thus limiting the throughpiliso
same node without creating a cycle. whole network.

)
2 3 4
Fig. 3. An up/down spanning tree for the the graph of Fig. 1.afmrepresents 2 N 4

a prohibited turn.

Fig. 4. Up/Down: A node labeling resulting in a small fractiof prohibited
turns.

B. Up/Down Routing

The spanning tree approach turns out to be too restrictive in
preventing all cycles of nodes. As explained earlier, cydte
networks arise only when a path can traverse the same licke twi
or more. Instead of fully prohibiting use of links, a more -effi
cient approach is to prohibit use of turns.

With the up/down routingalgorithm [21], a spanning tree is @ (4) (3) (2)
first constructed, and nodes are ordered according to theédev
which they are located on the tree (the level of a node is d&fingg- 5. Up/Down: A node labeling resulting in a large fraotiof prohibited
atits distance from the root). Nodes at the same level aeredd ™
arbitrarily. Such an ordering of the nodes in a spanningigsee
illustrated in Fig. 2 where node 1 is the root of the tree, ddle the root.

3 and 4 are level 1 nodes, nodes 5 and 6 are level 2 nodes, anglxample 1:n order to make the previous example concrete in
node 7 is a level 3 node. Note that if another node were chosgfm of delay bounds, assume thdtap) session is established
as the root, then the labels of the nodes would be changed. jn both directions between each pair of nodes in the netwbrk o

Once the nodes are ordered, a lifikj) is considered to go Figs. 4 and 5. Here, the parametgrands correspond to the
‘up”if i > j. Otherwise, itis said to go “down”. Aturfu,b,c) bucket rate and bucket depth (burstiness), respectivelsume
is referred to as an up/down turn if nodedif> b andc > b. fyrther that flow shapers are implemented at each node sath th
Respectively, adown/up turnis aturn such that bandc < b. the(c, p) characterization of each flow remains the same within
A key observation is that any cycle must involve at least oRge network [16]. Each node implements a FIFO output queue-
Up/dOWn turn and one dOWn/Up turn. Therefore all the CYCI% architecture, and the Capacity of each linkCis Assuming
in a graph can be broken by prohibiting all the down/up turngat the throughput condition is satisfied on each link, thiey
This also means that all the other types of turns can be pgednit hound fork flows sharing a same link 8 = ko /C [9]. For the
Thus, packets are allowed to traverse links not belonginbeo case of Fig. 4, each node can communicate with each other node
spanning tree as long as they are not forwarded along down{iighin two hops, via node 1. Therefore, in this case, an ead-t
turns. An up/down spanning tree, for the graph of Fig. 1, ind delay bound for each flow will b@ = 2(N — 1)o/C, since
depicted in Fig. 3. The arcs represent the prohibited tufes. N _ 1 flows share each link starting from node 1 or ending at it.
instance, around node 4, turf¥s4, 3), (2,4, 1) and(1,4,3) are For the case of Fig. 5, all the communication needs to be done
all prohibited. On the other hand, tu(@, 4,6) is permitted. over the bottom links, that is over the links i + 1). It can
Thus, the up/down spanning tree approach still allows toemakasily be checked that the delay bound on each(link+ 1) is
use of link(2, 4), unlike the simple spanning tree approach. D = j(\V — i) /C, which can be on the order & = N2¢/C.

The up/down routing algorithm leads to markedly better pepyorse, since a flow between node 1 and nadeaversesV — 1
formance than the simple spanning tree approach. Nevestelhops, the resulting end-to-end delay bound for this flow ithen
links near the root still remain more likely to get congedteah order of D = N35/C. This shows that the selection of the root

other links in the network. can have a tremendous effect on the network performance and
Another problem is that the performance of the up/dowfe delay bounds.]

scheme depends critically on the selection of the spanngsy t

and on which node is chosen as the root of the tree. To illus- _) o
trate this fact, Figures 4 and 5 show the same graph, but witH" Summary, the choice of a “good” spanning tree is critical
different node labeling. We note that the total number ofigur for the performance of the up/down routing approach. Unfort
in this graph is on the order d¥2. For the case of Fig. 4, only nallte_ly,_ there are currently no s_|mple methods to find thettrate
the turns(i,i + 1,1), 1 < i < N, are prohibited. The fraction Minimizes the amount of prohibited turns, except for perfing

of prohibited turns is thus on the order bfN, and tends to 0 &n exhaustive, prohibitive search.

as N gets very large. On the other hand, for the case depicted
in Fig. 5, all the turns around nod¥ are prohibited, and the
fraction of prohibited turn in the graph tend to 1/8sgets very In this section, we describe a new algorithm that provides
large. In general, the the up/down scheme will perform soma&-robust upper bound on the amount of restricted network re-
where between these two extremes depending on the locdtiosaurces [27]. In particular, the algorithm guarantees that

IV. THE TURN-PROHIBITION ALGORITHM

fraction of prohibited turns, foanygiven graph, never exceed
1/3. This is in contrast to the up/down routing algorithn, fo
which the fraction of prohibited turns may tend to 1, as show
in the previous section.
The turn-prohibition algorithm does not make use of a span- @)
ning tree. Instead, it considers iteratively each node énrté-
work and uses turn prohibition to break all the possible &yc

gorithm selects the node of minimal degree. We will sh
that this selection is the key in guaranteeing that the ifsact
of prohibited turns never exceeds 1/3. A basic version of the ()
TP-algorithm is described in more details in the next sectio

i e = _ -5

A major complication comes from the connectivity requir Yev
ment, that is, the requirement that all the nodes must remg T -
connected at the end of the algorithm. The basic versioneof -i-le T
TP-algorithm does not generally guarantee connectivitec- ©
tion IV-B, we describe a full version of the TP-algorithm tha CI o
breaks all the cycles, preserves connectivity, and gueearhat NNy 'Q_l_'?’," 5,
no more than 1/3 of the turn are prohibited. This algorithm is AN
recursive in nature. Note that the up/down routing algamitu- "2r- f:'\ 4~

tomatically satisfies the connectivity requirement by fash- @
structing a spanning tree.

)) Fig. 6. Successive iterations of the TP-algorithm
A. Basic Version

We first introduce a simpler version of the TP-algorithmjth
forms the basis of the full version. The algorithm perforimes t
following iteration:

Step 1: Select a node of minimal degree. Denote this node
nodea.

Step 2: Prohibit all the turns around node that is, prohibit all
the turns of the typéb, a, ¢).

Step 3: Permit all the turns starting from nodethat is, permit

%Ieleted, and all the cycles involving them have been broken.
The next node under consideration is, say, nedg . We dis-
tinguish between two types of turns around neglg, . First, we
8nsider the turns that involve at least one node that haadyr
been deleted. These turns have been permitted in one ofahe pr
vious steps of the algorithm, but can not lead to a cycle since
by the induction hypothesis, all the cycles involving a tksdie
node have already been broken. Second, we consider the turns

all the turns of the typéa, b, c). around noder;,, that do not involve a previously deleted node.

Step 4: Delete.nodez and the I_inks incidentto it, and repeat thery, TP-algorithm prohibits all these turns, and thus bredks
procedure until all the nodes in the graph have been deleted.the remaining cycles that could have involved nagde;. The

The iterations of the TP-algorithm are illustrated in Fig. qn uction hypothesis is thus justified, and the proof of tiain
First, node 7 is selected. There is no turn around node 7, qg%omplete 1

thus no turn is prohibited. Turng,6,5) and(7,6,4) are per-
mitted. Node 7 and link6, 7) are then deleted and the procedure
is repeated. At the next stage, either of no2les or 6 can be Remark:Consider the last node deleted by the algorithm. All
selected, as they are all of the same minimal degre&ssume the turns around it are permitted. Thus, no cycle of nodes can
that node 6 is selected. Then, the tn6, 5) is prohibited, and originate from it, since otherwise a cycle (of links) woulata
the turns(6,4, 1), (6,4,2), (6,4, 3) and(6, 5, 3) are all permit- matically be created. In other words, no path can traverse th
ted. Node 6 and linkét, 6) and(5, 6) are now deleted from the last deleted node more than once. We will use this property in
graph. The procedure continues until all the nodes have béba sequel.
considered. The final set of prohibited turn$4s6, 5), (1, 3, 4)
and(2,4,1) (other solutions are also possible). Note that thisheorem 2 The TP-algorithm prohibits at most 1/3 of the turns.
one turn less than for the up/down spanning tree exampl&give
in the previous section. Proof: At each step, the algorithm selects a node of minimal
The TP-algorithm satisfies the following properties: degree. Suppose that the selected nodeas a degred;. The
total number of prohibited around nodeis d;(d; — 1)/2.
By definition, noden; hasd; neighbors. Each neighbar;
has a degreed;, that is larger or equal thag;. The number
Proof: The proof is by induction. The induction hypothesi®f permitted turns starting from node and involving node a
is that, at each step of the algorithm, all the cycles invavi n€ighbom; is d; — 1. The total number of permitted turns start-
a deleted node have already been broken. This hypothesisigfromn; is thusZ?;1 d; —1 > d;(d; — 1). This quantity is
clearly true for the first node selected, since all the turnsiad at least twice as large as the number of prohibited turnss;Thu
it are prohibited. Now suppose thahodes have already beerat most 1/3 of the turns are prohibited.]

Theorem 1 The TP-algorithm breaks all the cycles.

of connectivity, the node connected to the special link Wl

the last one to be deleted. For this purpose, we will mark the
Theorem 3 The basic version of the TP-algorithm preservesode and refer to it as gspecial node By making sure that the
connectivity under the assumption that, at each step of khe gpecial node is the last one to be deleted, the full TP-dlyuori
gorithm, the graph consisting of the non-deleted nodes isnaguarantees that no cycles on node will originate from it.
connected. Due to the recursive nature of the TP-algorithm, one offthe

] . components of connectivity, say component 1, may already co

Proof: Suppose that, at stepnoden; is deleted. We select ay4in 5 special node. For this component, the node connexted t
link from noden; to one of its non-deleted neighbors, say N0dfe selected link is not marked as special. Thus, a cycledéso
nj, a}nd refer to the link as selected link For in.stance:' in Fig. 6, originating from this node may exist. However, cycles asros
the links(7,6), (6,4), (5,3), etc., are successively picked as S&omponents are still prevented since none of the other cempo
lected links. Note that thg TP-aIgorlthm guarantees tHahal aonts of connectivity contains a cycle of nodes (a cycles&ro
turns between selected links are permitted. From the assumgmponents of connectivity arises only if at least two compo
tion, once node:; has been deleted, there remains a conneciggdis contain a cycle of nodes originating from the node con-

graph of V' — i non-deleted nodes. The same procedure is i€scted to the special link). The following theorem sumnesiz
peated for each of these nodes. As the algorithm terminaees, 5 ;; results:

end up with a graph oV nodes andV — 1 (selected) links. The
only graph that satisfies such a property is a spanning ttegs, T

T Theorem 4 The full version of the TP-algorithm breaks all the
connectivity is guaranteed.

cycles and preserves global connectivity.

The formal description of the full TP-algorithm follows.i#t
B. Full Version based on a recursive proceddi®(G’), where the argumeidt’

Unfortunately, the assumption, on which Theorem 3 is baséageseréts aél_cF)orgf)gnent of connectivity:
does not hold in general, as illustrated in Fig 7. Suppose tha roc.e urgP(G’) : . ,
the first node selected is node 7, and t(6r7, 8) is prohibited. Step 1: Select the node of minimal degreedi, excluding the

Then, the graph is broken into two components of conney;tivi?'oeCial node (if there is such one_). If several noples of milﬁm
namely, nodes1, 2,3, 4,5, 6} and{8,9, 10, 11}, and the global degree are available, then select first a node that is nogalnei
connec’tivity is lost. e of the special node. Denote the selected node as mode

In general, once all the turns around some nediave been Step 2: Prohibit all the turns around nodg that is, prohibit all

prohibited, the remaining nodes in the graph will be splibin the turns of the typéb, a, c). _ _ .

K > 1 different components of connectivity,, Go, . . ., G . Step 3: Permit all the turns starting from nodethat is, permit
In order to preserve global connectivity, the full versidrtire 2!l the tums of the typea, b, c). .

algorithm must permit some of the turns around nedeo this Step 4:1f the remaining graph is broken intf > 1 compo-
end, the full algorithm seledt” links connecting node to each r_1ents of connect|V|t)G1, Go,...,Gk, then selecti(SPec'a'
component. These links are referred tcspscial links All the INkS connecting node to each component, and permit all the

turns between special links are permitted. In Fig. 8, theispe turns between the special links.

links are links(7, 6) and(7, 8). Step 5:If a special node exists iG’, then it should be
At a first glance, it seems that all what remains to do is {§ 1 For each of the other components of connectivity
2,G3,..., Gk, the node connected to the special link is

recursively run the algorithm within each component of @un

tivity. Unfortunately, such a scheme would indeed brealkktel) S . .
cycleswithin components of connectivity, but not necessaril§tep 6: Delete node: and the links incidentto it. If there is only

=S al)
cyclesacrosscomponents of connectivity. This fact is illustrated®"€ rémaining node i@’ then delete it and return the procedure.

in Fig. 8. Here the turri6, 7, 8) has been permitted (to guaran_Otherwise, invoke recursively the procedure for each carepd

tee connectivity) and the TP-algorithm has been run witaiche ©f Connectivity, thatis, performP(G,), TP(G2),. . . TP(Gx).
component connectivity. Cycles within the components have 1 N€ algorithm is started by invokinBP (), whereG corre-
indeed been broken, but cycles across components, suck as&pnds to the whole graph. Note thatinitially, no node iskedr
cycle(7,8,9,10,11,8,7,6,5,3,4,6,7,8), still exist. as spgmal_. An |Ilustrat|on of the results of the TP—aIganS _
Note that cycles across components of connectivity arige ofVen in Fig. 9. In this case, we suppose that node 7 is the first
due to the presence of cycles of nodes within componerit€/€cted node. After deleting node 7 and the links incidei t
Specifically, for each component, these cycles of nodes mif¥ 9raph is broken into two components of connectivity.he
start from the node connected to the special link (in Fighése INks (7,6) and(7,8) are selected as special links and node 8
are nodes$ ands). is selected as a special _node. Note tha}t r_10de 6 could alsc_> have
The solution to this problem consists of preventing cycles 88€nN selected as a special node, but this is unnecessayssinc
nodes that originate from a node connected to a specialliigk. COMPONents of connectivity require only — 1 special nodes,
remind now the property that that no cycles of nodes can orfg? explained earlier. , _
inate from the last node deleted by the TP-algorithm (see the/Ve now show that the first step of the algorithm guarantees
remark following Theorem 1). We are now going to take adfatat most1/3 of the turns are prohibited.
vantage of this property and make sure that, for each cormpone

marked as a special node.

“)
(©)
®
“)

() ()
=AD" —(—u @ H—O
Fig. 7. An implementation where all the cycles are broker,comnectivity is Fig. 9. The full TP-algorithm. The special node and speaiisl are marked in

lost bold. Connectivity is preserved, and all the cycles are émok

() 1 1
——C (O—W ()—(5

10 1

2 4 6 /7\ 8 1

O/ NG U NG 4 6 @

1 ~ 10~ 1

Fig. 8. An implementation where connectivity is preservbdt not all the

cycles are broken
Y Fig. 10. Applying the generalized TP-algorithm to a weightggaph. The

number adjacent to each link represents the weight of the lin

Theorem 5 The full version of the TP-algorithm prohibits at

most 1/3 of the turns. different characteristics such as data rates or physicathe.
_ .. Consequently, different turns have varying importance e w
Proof: At each step, the algorithm selects the node of minimal |, 5rder to take on this issue, we propose the following frame

degree in the component of connectivity, excluding the Bpecqrk We suppose that each lirfl, b) has a weightw,,, and
node. If there exist several nodes of minimal degree, then tB = wy. We assume that the weights of links are ad-

. a
algorithm selects first a node that is not a neighbor of theiape jitive. We can then define the weight of a tufm b, c) as

node. . Wabe = Wap + Wre. Thus, More important turns are represented
Suppose that the selected nodg,is of degreel;. The num- y higher weights.

ber of prohibited turns around is at most/; (d; —1)/2 (maybe “\e now introduce a “generalized” TP-algorithm that aims at
less if there are special links). We now distinguish betw®en - minimizing the sum of the weights of prohibited turns. Fdsth
cases. purpose, only the first step of the algorithm needs to be neatlifi
First, suppose that; is not a neighbor of the special nodepenote byi¥; the sum of the weights of the links incident to
Then, all the neighbors of; have a degree greater or equal thaHOdEni, e W, = Eqi_l w;;. Then, instead of selecting a

n;, and the fragtion of prohibited turns is smaller or equahthg,qqe of minimal degree, the generalized algorithm will sete
1/3, exactly as in the proof of theorem 2. _ noden; for which W; is minimal (excluding the special node, if
Next, suppose that the selected naglés a neighbor of the there is such one). For instance, in Fig. 10, node 7 With= 1
special n,ode. Let's denote the degree of the special node byis first selected. Next, either node 2 or node 5 are seleate si
If d; < d’, then, again, it follows immediately that at most 1/3y, — i, = 2. The procedure then continues until all the nodes
of the turns are prohibited. Now, suppose tiiat> d'. Clearly, 5re considered and deleted.
noden; has at least; — d' neighbors that are not connected 0 ysing an approach similar to the proofs of Theorem 2 and 5,
the special node. The degree of these neighbors must biystrig can pe shown that the overall weight of the turns prohibing
greater tham;, otherwise one of them would have been selectgge generalized TP-algorithm is at most 1/2 of the total Wi
instead ofn;. The otherd’ — 1 neighbor have a degree largehe turns in the network. This bound is valid for any graplotep
or equal tod;. The last neighbor is the special node, of d&sgy and any distribution of weights. An illustration of therg
greed’. Overall, the total number of permitted turns is at leagkgjized TP-algorithm for a weighted graph is given in Fig. 1
(d; — d)di + (d' — 1)(dy — 1) + (d' — 1) = di(d; — 1), which is
twice as large as the number of prohibited turns. Thus, at m@s Discussion

1/3 of the turns are prohibited. i Computational Complexity:The worst-case computational

complexity of the TP-algorithm is polynomial iV, more pre-

Example 2:Assume the same setting as in Example 1. It Bisely O(N?d), whered represents the maximal degree of any
easy to check that the final set of prohibited turns obtained Bode in the network. This complexity is certainly reasoeabb
TP-algorithm is the same as with the “intelligent” node lidme long as the network topology does not change too often.
of Fig. 4. Thus, the end-to-end delay bound for each flow will A derivation of this complexity is as follows. At each step
beD = 2(N —1)a/C. g of the algorithm, one node is deleted from further consitiena
Thus, the algorithm consists of at magtsteps. At each of these
steps the following computations are performed:
1. A node of minimal degree is selected, an operation of com-
plexity O(N).

So far, we have only considered networks where all the links The components of connectivity are determined. Using a
have the same weight (value). In reality, different linkwvdna spanning tree construction algorithm, the complexity &f tp-

C. Generalization for Links of Non-Uniform Weights

eration isO(Nd). # nodes| TP-alg | up/down| sp. tree
3. On the order ofO(d?) turns are considered for permis- 16 0.23 0.27 0.72
sion/prohibition. 32 0.23 0.27 0.73
Therefore, the computational complexity of each step(i&/d), 64 0.22 0.26 0.73
and the overall complexity of the algorithm@ N2d). 128 0.21 0.26 0.73
Irreducibility: The TP-algorithm, as described in the previous 255 0.21 0.25 0.73

section, does not guarantee irreducibility, which meaasaHi- TABLE |
nal set Of prohlblted turn§ may IDCIUde one or more redu,n(_jar?;tRACTION OF TURNS PROHIBITED BY EACH SCHEME AS A FUNCTION OF
turns. In other words, it is possible that one of the prokibit
turns could in fact have been permitted without creating@ny
cle.

A version of the TP-algorithm guaranteeing irreducibiiigy

described in [27]. The basic idea is to mark a node as spe&at of prohibited links/turns. Routing matrices are thetede
only if it is absolutely needed. In general, the performasice@ mined using the generalized version of the Bellman-Ford-alg

TP-algorithm guaranteeing irreducibility is only mardigdet- rithm. All the results presented correspond to averagesikfi@
ter than the one that was described therein. graphs with identical parameters.

Note that even when irreducibility is guaranteed, the TP-
algorithm may not necessarily lead to a minimum solutioat tha. Fraction of Prohibited Turns
is, a solution with the smallest possible number of prohbibit) _ .
turns. This is because the first step of the algorithm permits'Ve first compute the fraction of turns prohibited by each
to select arbitrarily one among several nodes which satisfy scheme, as a function of the total number of nodes. This met-
same constraints. The selection of different nodes at acpart "iC 9ives @ good indication on the amount of unused network
lar stage may lead to different final sets of prohibited twrith resources. Idgally, the fraction of prohibited turns sddwg as
different number of elements. small as possible.)
Decentralized Implementatiorithe current implementation 1 n€ performances of the three schemes are compared in Ta-
of TP-algorithm requires knowledge of the full network tbpo ble I. We remark that the TP-algorithm prohibits abc_>ut 10% to
ogy, unlike the spanning tree and up/down spanning tree af2% fewer tums than the up/down scheme. The simple span-
gorithms. Nevertheless, the TP-algorithm can still be gaplNiNg tree algorithms performs significantly worse than the t

mented in a decentralized fashion as a link-state algoriken Other algorithms. Interestingly, the results seem to beerain-
OSPF [19]. sensitive to the total number of nodes in the network.

Routing: A set of prohibited turns constructed by the TP-
algorithm does not completely specify the routing stratigge B- Throughput
several valid routes may exist between any source/deistinat \We now consider the throughput achieved by the three differ-
pair (the connectivity property guarantees that at leastroote ent schemes. This metric is computed as follows. We assume
exists). A reasonable goal is thus to develop a decentebdike that a flow is established between each pair of nodes in the net
gorithm that can determine the shortest path between amgesowvork, in both directions. Each flow is routed along the stsirte
and destination, while forwarding packets only over petexit path over the turn-prohibited graph (if multiple paths ofnsa
turns. length are available, then one of them is arbitrarily seléxt

It turns out that the traditional Bellman-Ford routing algoNext, we determine thiottleneck linkwhich is the link shared
rithm can be generalized in order to perform this task [2Tie T by the maximum number of flows. The throughput is then de-
memory required by this algorithm is on the ordeXtfNd), at fined as the capacity of the bottleneck link divided by the Aum
each node, since a different vector of distances to therdestiper of flows sharing it. In other words, the throughput is the
tions needs to be maintained for each of thiaput links. We maximum possible rate at which each flow can transmit without
note that the problem of finding a good routing algorithm is-sesaturating the network.
arate from the problem of constructing a set of prohibitedsi Notice that our definition of throughput is not the only pessi
which means that the same routing algorithm can be used wWiflg one. In particular, flows that do not traverse the bogtbén
up/down routing restrictions. link could in fact transmit at a higher rate. We may then resor
to a max-min criterion [2], or any other similar criteria,deter-
mine the appropriate transmission rate for each flow. Howeve

In this section, we present the results of simulations campave expect the relative performance of the schemes to remain
ing the performance of the spanning tree, up/down routind, aabout the same.
turn-prohibition algorithms. Table Il compares the throughput achieved by the three algo-

Our simulator is based on randomly generated, connect@tims. We present results that are normalized by the throug
graphs. Every node in these graphs has the same degreepueobtained with the TP-algorithm. We remark that the per-
d = 4, but the total number of nodes varies. The links hafermance of both the up/down and spanning tree algorithms de
identical weights. grades, as a function of the total number of nodes, compared t

Once a random graph is generated, each of three cydlee TP-algorithm. The probable reason for this behavidnas t
breaking algorithms are run on top it in order to determinespanning trees become deeper with the increase in the number

THE TOTAL NUMBER OF NODES ALL THE NODES ARE OF DEGREE FOUR

V. SIMULATION RESULTS

#nodes| TP-alg | up/down| sp. tree 1

16 1 0.95 0.31 AN

0.9+ \ J
32 1 0.92 0.28 \
64 1 0.88 0.23 0.8 |
128 1 0.82 0.19 o7l |
255 1 0.74 0.16

0.6, B & |

TABLE Il

THROUGHPUT OF EACH SCHEME THE VALUES ARE NORMALIZED BY THE 0.51 : N up/down .

Fraction of flows with delay bound greater than X

THROUGHPUT OBTAINED WITH THETP-ALGORITHM. 0.4l \\ 4
0.3f 1
nodes| shortest-path| TP-algorithm o2k / |
16 1 0.85 P
32 1 0.62 0.1r |
64 1 0.45 0 w w w w
178 1 032 0 200 400 (ime unit Se;oo 800 1000
255 1 0.21
Fig. 11. Delay bound: turn-prohibition versus up/down.
TABLE Il
COMPARISON BETWEEN THE THROUGHPUT OF THE P-ALGORITHM AND
THE, SO-CALLED, SHORTEST PATH SCHEME THAT ACHIEVES THE exceeding a threshold aftime units, for networks 064 nodes
MAXIMUM THEORETICAL THROUGHPUT. (a time unit corresponds to the quantityC). The results are

consistent with those of the previous section, where thelTP a
gorithm is shown to outperform the up/down algorithm. For

, instance, the probability that a delay bound exceeds 600 tim
of nodes, and therefore links close to the root get more arveé mgits is 18% for up-down, but only 10% for TP.

congested.
We next compare the throughput achieved by the TP- V1. CONCLUDING REMARKS

algorithm with the maximum theoretical throughput in a net- In thi h dd d and d ;
work. The maximum throughput is achieved when no nelt— n t|st|?]aper, ;\;e a\;ea Ir_esse t\?vn kprolposle tacor::;;)e € so-
work resources are prohibited. In this case, we can empl on 1o he problem ot applying NEWork calculus 1o Net&r

a “shortest-path” scheme, where every flow takes the short® arbitrary topology. We introduced the turn-prohibitigrP)
' gorithm that breaks all the cycles in any given networld an

ible path f t destination. Note treat £/9°"
Fh?iigk?pﬁ?acr:%rce?jn\yvi?ﬁ lf[LCee sﬁ(?r?gst-zzjtﬂasg?emg reepims@mh'b'ts the use of at most 1/3 of the turns. We showed that
an upper bound on the best possible achievable throughpu hﬁ TP-algorithm can be generallzed to netvyorks with weight
any feed-forward routing network. Of course, a shortesit-p inks. Moreover, the computational complexity of the algon

scheme can not be implemented in practice as network s@abiWas shown to be pnly q.uadranc in the number of nodes. .Us'
is not guaranteed. Ing analysis and simulations, we showed that the TP-alguorit

Table 1l presents interesting results. We observe that wi chieve higher performance, in terms of throughput andydela

.) . n other algorithms used for breaking cycles, such agte-s
up to 64 nodes, the throughput achieved by the TP aIgorltI%nmg tree and the up/down routing algorithms. We note, thoug

is within a factor of about two of the maximum theoretical . . .
throughput. This result indicates that the restriction effiwork a.that thi dlﬁerepce_FetWtetEn ths -It:/l\:/’ andt;pz;r;nln%tre?deﬂgm|t|
calculus to feed-forward routing network may not be too gign |§trr]nuc c|)”nore_ S|g|n|t!can | anbe F%nth ? ¢ ant up k;wgago-
cant for small to mid-size networks, in terms of networkingit rtnms. Lur simuiations a'so reveaied that, for networkisiot-
tion erate size, the network utilization achieved by the TP-tigm

' is reasonably close to the maximum theoretical networkzatil
C. Delay Bounds tion. Specifically, our simulations showed that_, .for _neﬂmoof.

.) up to 50 nodes of degree four, the network utilization otgdin

Finally, we compare the performance of the TP-algorithm aRgltny the TP-algorithm is at least half the highest possilgé n

the up/down routing algorithm with respect to delay bouMiis. york utilization. We expect the difference to be even smalle
assume the same setting as in Example 1 of section 1lI-B, g4 nodes of larger degrees. Thus, in many practical cakes, t
cept that we now consider random graphs. The end-to-end gestriction of network calculus to feed-forward routingwierks
lay boundD for a flow is computed as follows. Suppose that gyay not represent a significant limitation, making this feam
flow traversedy links and the number of flows on each link isygrk particularly appealing for implementation in praefiQoS
my, wherel <k < K. Then, an expression for the end-to-engchitectures, such as DiffServ [3].
delay bound is given b = Y°;*, m0/C. Thus, the end-to- we conclude this paper by noting that the TP-algorithm rep-
end delay bound is proportional to the quan@f:1 my, the resents a universal method for breaking cycles, and, as sach
sum of the number of flows on each link that a flow traverses.potentially improve the performance of many other netwagki

In Fig. 11, we depict the fraction of flows with delay bounépplications. In particular, it brings the potential ofrsficantly

improving the performance of local area networks, such gaGi

bit Ethernet, where packet-forwarding loops and deadloeksl
to be prevented [12], [23]. These networks currently impain

the simple spanning-tree algorithm [19]. It can also be wisef

for preventing the appearance of deadlocks in wormhole rolf!
ing networks, such as networks of workstations (NOWSs) [28].
These examples illustrate the general problematic nafurg-o [26]

cles in networks, and the promise of turn-prohibition toyide

a unifying solution methodology.

ACKNOWLEDGEMENTS

[28]
The assistance of Shameek Gupta in running the numerical

experiments is gratefully acknowledged.

(1]

[2]
3]

(8]
[9]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]
[20]

[21]

[22]

[23]

REFERENCES

M. Andrews, “Instability of FIFO in Session-Oriented Nerks,” in the
proceedings 0SODA 2000pp. 440-447, San Francisco, January 2000.
D. Bertsekas and R. Gallagédata NetworksPrentice-Hall, 1992.

S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and Wi§¥, “An
Architecture for Differentiated Services,” IETF Request Comments:
2475, December 1998.

R. Boorstyn, A. Burchard, J. Liebeherr, and C. OottanmakdStatistical
Service Assurances for Traffic Scheduling Algorithm&EE JSAC Vol.
18, No. 12, pp. 2651-2664, December 2000.

C.S. Chang, “Stability, Queue Length and Delay of Detieistic and
Stochastic Queueing Network$EEE Trans. on Automatic ControV/ol.
39, No. 5, pp. 913-931, May 1994.

C.S. Chang, Performance Guarantees in Communication Networks
Springer Verlag, 2000.

A. Charny and J.-Y. Le Boudec, “Delay Bounds in a NetworkwAggre-
gate Scheduling,” in the proceedings@OFIS pp. 1-13, Berlin, October
2000.

T. Cormen, C. Leiserson, and R. Rivesftroduction to Algorithms,
McGraw-Hill, 1990.

R. Cruz, “A Calculus for Network Delay, Part |: Network éfhents in
Isolation,” IEEE Trans. on Information Theoryol. 37, No. 1, pp. 114-
131, January 1991.

R. Cruz, “A Calculus for Network Delay, Part Il: NetwoAnalysis,”IEEE
Trans. on Information Theoryol. 37, No. 1, pp. 132-141, January 1991.
C. Glass and L. Ni, “The Turn Model for Adaptive Routifiglournal of
ACM, Vol. 5, pp. 874-902, 1994.

M. Karol, S. Golestani, and D. Lee, “Prevention of Deauls and Live-
locks in Lossless, Backpressured Packet Networks,” in tbegedings of
INFOCOM 2000 pp. 1333-1342, Tel Aviv, Israel.

E. Knightly and N. Shroff, “Admission Control for Statical QoS: Theory
and Practice,JEEE NetworkMol. 13, No. 2, pp. 20-29, March-April 1999.
P. Kumar, “A Tutorial on Some New Methods for Performaritvaluation
of Queueing Networks,JEEE JSACvol. 13, no. 6, pp. 970-980, August
1995.

W. Leland, M. Taqqu, W. Willinger and D. Wilson, “On theel&Similar
Nature of Ethernet Traffic (Extended VersionFEE/ACM Trans. on Net-
working, Vol. 2, No. 1, pp. 1-15, 1994.

J.-Y. Le Boudec and P. Thirahletwork Calculus: A Theory of Determin-
istic Queueing Systems for the Interr@pringer-Verlag Lecture Notes on
Computer Science #2050, available on-line at http://icewepfl.ch.

A. Parekh and R. Gallager, “A Generalized ProcessoriS@p@pproach to
Flow Control in Integrated Services Networks: The Multiplede Case,”
IEEE/ACM ToN Vol. 2, No. 2, pp. 137-150, April 1994.

V. Paxson and S. Floyd, “Wide Area Traffic: The FailureRafisson Mod-
eling,” IEEE/ACM Trans. on Networking/ol. 3, No. 3, pp. 226-244, June
1995.

R. Perlman]nterconnections Second Edition: Bridges, Routers, $wic
and Internetworking Protoco]sAddison Wesley, 2000.

S. Shenker, C. Partridge, and R. Guerin, “SpecificattbrGuaranteed
Quality of Service,"IETF Request for Comments: 221%eptember 1997.
M. Shoreder et al. ,“Autonet: A High-Speed, Self-Configg Local Area
Network Using Point-to-Point LinksfEEE JSACVol. 9, No. 8, pp. 1318-
1335, October 1991.

D. StarobinskiQuality of Service in High Speed Networks with Multiple
Time-Scale TrafficPh.D. Dissertation, Technion - Israel Institute of Tech-
nology, Haifa, Israel, 1999.

D. Starobinski and M. Karpovsky, “Turn Prohibitiondsd Packet
Forwarding in Gigabit Ethernets,” in the proceeding of tBégabit

[24

[27]

Networking Workshop (GBN 20Q1Anchorage, Alaska, April 2001.
http://www.comsoc.org/tcgn/conference/gbn2001/

D. Starobinski and M. Sidi, “Stochastically BoundedrBtiness for Com-
munication Networks,1EEE Trans. on Info. Theoryol. 46, No. 1, pp.
206-212, January 2000.

D. Starobinski and M. Sidi, “Modeling and Analysis of\er-Tail Distri-
butions via Classical Teletraffic Method€jueueing Systems (QUESTA),
Vol. 36, Nos. 1-3, pp. 243-267, November 2000.

O. Yaron and M. Sidi, “Performance and Stability of Conmmication Net-
works via Robust Exponential BoundsEEE/ACM ToN \ol. 1, No. 3,
pp. 372-385, June 1993.

L. Zakrevski, Fault-Tolerant Wormhole Message Routing in Com-
puter/Communication Network&®h.D. Dissertation, Boston University,
2001.

L. Zakrevski, M. Mustafa, and M. Karpovsky, “Turn Proftion Based
Routing in Irregular Computer Networks,” in the proceedirgf 7th Int.
Conf. On Parallel and Distributed Computer Systems (PDGS92

