Data verification and reconciliation
with generalized error-control codes

Mark G. Karpovsky* Lev B. Levitin Ari Trachtenberg

Reliable Computing Lab
Boston University

Abstract

We consider the problem of data reconciliation, which we model as two physically sep-
arated multi-sets of data that must be reconciled with minimum communication. Under
this model, we show that the problem of reconciliation is equivalent to a variant of the
graph coloring problem and provide consequent upper and lower bounds on the communi-
cation complexity of reconciliation. More interestingly, we show by means of an explicit
construction that the problem of reconciliation is equivalent to the problem of finding good
error-correcting codes, provided the set of transformations has two general properties. We
show analogous results for the problem of multi-set verification, in which we wish to deter-
mine whether two multi-sets are equal using minimum communication.

*The work of this author was supported by the NSF under grant MIP9630096

1 Introduction

The problem of reconciling data is inherent to applications that require consistency among
distributed information, including diverse examples such as gossip protocols for distributing
networked data [1, 2], resource discovery [3], synchronization of mobile data [4],and reconcili-
ation of sequences of symbols from a given alphabet, such as nucleotide sequences in DNA or
amino acids sequences in proteins [5]. In each of these examples, the system needs to determine
the differences between data stored in physically separate locations, thereby reconciling it.

From the perspectives of scalability and performance, it is important that reconciliations
occur with minimum communication, measured both by the number of transmitted bits and
by the number of rounds of communication. When data are represented by sets, as can be
reasonable modeled for the examples cited above, this problem is known as the set reconciliation
problem [6, 7]. The data reconciliation problem is a natural generalization in which data is
represented by multi-sets rather than sets.

This paper examines the data reconciliation problem within a generalized framework in which
differences between multi-sets correspond to evaluations of arbitrary “error” functions. We limit
communication between reconciling hosts to a single message.Under such conditions, we show
that the problem of data reconciliation is equivalent to a variation of the problem of graph
coloring: second-order coloring or distance-2 coloring. A second-order coloring of a graph
assigns colors to vertices in such a way that any two nodes separated by a path of length at
most two are colored differently. Applying well known results from graph coloring, we then
provide lower and upper bounds on the amount of information that must be sent between two
hosts for this type of general reconciliation.

In many practical cases, it is not necessary to reconcile two multi-sets, but merely to determine
whether they are in fact the same. For example, two hosts might want to verify the correctness
of a previous reconciliation, or to check whether reconciliation is needed in the first place. Such
a determination can often be made with substantially less communication than a full-scale
reconciliation. In this context, we consider the problem of data verification: verifying that two
multi-sets are the same, subject to a given range of possible differences. Again we show that
data verification is equivalent to graph coloring and error detection. We also provide both lower
and upper bounds on the amount of information that must be exchanged for data verification.

The main contribution of this work is a counstructive connection between generalized error-
correcting codes and data reconciliation on the one hand, and between generalized error-
detecting codes and data verification on the other hand. In the case of bijective and com-
mutative errors, any data reconciliation scheme generates at least one error-correcting code,
and any error-correcting code can be transformed into a corresponding data reconciliation
scheme. The same correspondence exists between data verification and error-detecting codes.

data data
verification \ reconciliation‘\

< graph < second-order
R coloring R coloring
L] 1
\ 4 \ %

A Y . A Y

‘\ ‘l \N ‘l

" error 7 ... : " error 7e :
detection correction

Figure 1: The various connections proven in this paper. Solid lines indicate an unconstrained
reducibility between problems, and dotted lines indicate reducibility only under bijective and
commutative errors.

Collecting these two equivalences, we thus have that under bijective and commutative errors,
data comparison is equivalent to error-control.

However, the situation is quite different in the general case where errors are not bijective
and/or not commutative. Any data comparison scheme (i.e. verification or reconciliation) still
generates an error-control code. However, some error-control codes cannot be transformed into
a corresponding data comparison scheme. In particular, the redundancy of an error-control code
for such errors may be smaller than the number of different signals required for the corresponding
data comparison. Thus, in general, data comparison requires more communication than error
control, suggesting an intrinsic difference between the two problems. Figure 1 graphically
displays the connections we describe in this paper.

1.1 Related work

The problem of reconciliation has been studied extensively from many different perspectives in
the literature. We can broadly characterize the different techniques based on their model of the
differences between two reconciling hosts.

One model involves synchronizing two discrete random variables with some known joint prob-
ability distribution using a minimum communication complexity. Witsenhausen [8] followed
by Alon and Orlitsky [9] show a connection between such random variable reconciliation and
graph coloring, giving results analogous to those of Section 3.1 and 4.1.

Another model involves two hosts reconciling files (or strings) that differ by a bounded num-
ber of insertions, deletions, or modifications (collectively: “edits”). The problem of efficient
reconciliation under these circumstances, also known as the edit-distance problem [10], has
been extensively studied [11, 12] because of its connections to important fields such as file
synchronization and pattern recognition. Levenstein [13] pioneered work in this area by devel-
oping error-correcting codes capable of correcting precisely these types of errors. Recently [14]
Levenstein also examined the problem of reconstructing a sequence from several copies distorted
with these types of errors.

In contrast, this paper examines a model that slightly different from those mentioned above.
In our model, data on two reconciling hosts is represented by multi-sets that differ by a very
general class of differences. Being stored as multi-sets, the data on the two hosts is inherently
unindexed, meaning that only the content of the individual data items, and not their relative
position, matters; however the other models presented can be encompassed by this model.

2 Background

Definition 1 A proper coloring of a graph G with set of vertices V and edges E is an as-
signment of colors to each vertex in such a way that the vertices of any edge e € E are colored
differently.

A proper coloring using at most k colors will be called a k-coloring of the graph. The chromatic
number of a graph, denoted x(G), is the minimum integer & for which there exists an k-coloring
of G.

Definition 2 A second-order coloring of a graph is a a proper coloring of a graph with the
extra property that no two neighbors of any verter have the same color.

A second-order coloring of GG is also a proper coloring of the square of the graph, which is the

graph G? obtained from G by additionally connecting with an edge each pair of vertices that
are of distance two apart. The minimum number of colors needed to second-order color a graph
is the second order chromatic number of the graph, denoted Xo(G).

Error detection and correction. Consider the module Zy consisting of all n-dimensional
vectors over the ring Z,. A g-ary code of length n is simply a subset of the elements of this
module.

Definition 3 An error set for Zg is a set £ = {eg, €1, €2, ... ejg|} whose elements are functions
e; : Ly — Ly, one of which is the identity function eo(z) = . If the functions e; € E are
all bijections and their inverses ei_1 are also in &, then we shall call this set bijective. If the
functions commute with each other, so that e;i(ej(z)) = ej(ei(x)) Vo € Zy,Vei, ej €E, we shall
call this set commutative.

Example 1 (Classical errors) The classical problem of error detection and correction involves dis-
tortions of up to ¢ g-ary symbols in a vector of length n. The error functions corresponding to all
such distortions of a vector are given by translations in Zg. More formally, this error set is given by

Elass = {ev(@) =z +v | veZand |lv] <t}

where ||v]| denotes the Hamming weight of a vector v, and + denotes component-wise addition

mod g. Clearly, the set £, is both commutative and bijective.

Definition 4 The E-vicinity for a given vector x € Zy and an error set & is denoted by E(x) and
defined to be E(z) = {e(x) | e€€} U {z€Zl | e(z) =z,e€&}. In general, the EF-vicinity,
denoted E¥(x), is defined to be

gwy= U Efw,

y € EF—1(x)

where EX(z) in this notation denotes the set &(x).

A code that detects an error set £ must be able to properly distinguish corruptions from
elements of the code.

Definition 5 A code C € Zy detects the error set & if
ci €€(cj) Ve #cjeC.
Definition 6 A code C € Zy corrects the error set & if

E(CZ’) ﬂE(C]‘) =0 Ve ;AC]‘EC.

Set and multi-set reconciliation and verification. The traditional formalization of the
set reconciliation problem is as follows [6, 7]: given a pair of hosts A and B, each with a set of
length-b bit-strings (denoted S4 and Sp respectively) and no a priori knowledge of the other
host’s set, how can each host determine the mutual difference of the two sets with a minimal
amount of communication.

In general, we may consider data represented as multi-sets whose elements are chosen from
a finite, universal set U. A multi-set is defined to be a set whose element multiplicities are
significant. Thus, every multi-set M whose elements are taken from U may be associated
uniquely with a characteristic vector v(M) of length |U| whose i-th component is j if and only
if the i-th element of U occurs j times in M, for some canonical ordering of the elements of U.

We shall generally assume in this paper that the multiplicity of any element is bounded by
¢—1 meaning that v(M) € ZLU‘. We further limit ourselves to the case where only one of the two
hosts needs to determine the multi-set held by the other host, based on information transmitted
in one message.

We thus formally define a data reconciliation function, which acts upon the characteristic
vectors v4 and vg of two host multi-sets.

Definition 7 The function o : Z; — X is a one-way data reconciliation function for an error
set & if there exists a recovery function R: (¥ x Zy) — Zq reconciling multi-sets that differ
by one of the errors in £. More precisely, the recovery function must have the property that

Yva,vp C Zy,e €€, va =e(vp) or e(vy) =vp = R(o(va),vp) =v4.

The transmission size of such a reconciliation function is the the number of signals |X| that
need to be transmitted for reconciliation.

We are also interested in the problem of data verification, due to its connections to set
reconciliation and a variety of independent applications such as off-line testing [15] and signature
analysis [16].In all these cases, two hosts seek to confirm that they have the same multi-set,
subject to a known list of possible error functions.

We define verification functions in terms of characteristic vectors.

Definition 8 A function a: Zjj — ¥ is a one-way data verification function for an error set
& if there exists a decision function D : (X x Zy) — {0,1} with the property that

Vva,vp C Zy, e€E,
[va =e(vp) or e(va)=wvp] and D(a(va),vg) =1 <<= (va =uvp).

The transmission size of such a verification function is the number of signals |X| that need to
be transmitted for verification.

Example 2 The one-way set verification function for the error set given in Example 1 allows two
hosts to verify that their sets are either equal or else differ by at least t + 1 entries. When t = 2°
this is a test of precise set equality.

3 Data verification, coloring, and error-detection

The data verification problem can be reformulated formally as follows. Consider two hosts A
and B with multi-sets M4 and Mp respectively. The goal of verification is to determine whether
My = Mp, subject to the sole a priori assumption that the multi-set Mp is a distortion of
the multi-set M4 via some error in the set £ (i.e. v(My) = e(v(Mp)) or e(v(My)) = v(Mp)
for some e€&). Assuming A and B know nothing about each other’s multi-set beyond this
assumption, the data verification problem is to determine the minimum amount of information
A should send to B so that B can decide whether or not M4 = Mp.

3.1 Graph coloring

To develop a connection between data verification and graph coloring, consider a natural graph
structure corresponding to a given error set £.

000

I

001 010 100

011 101 110

111

Figure 2: The characteristic graph of the error set of odd-weight translations (left) and even-
weight translations (right) of length three binary vectors. The left graph can be two-colored, but
the rightmost graph requires at least four colors. A sample coloring is depicted, with different
outline regions denoting different colors.

Definition 9 The characteristic graph of an error set £ is the undirected graph Gg¢ = (V, E)
whose vertices are characteristic vectors of multi-sets M C Zg. Any two vertices vi,v2 €V are
connected by an edge in this graph iff there exists a non-identity error e € € such that e(vy) = vy
or v = e(vg).

Theorem 1 Any proper coloring of Gg generates a one-way data verification function a(-) for
the error set £. Conversely, any verification function a(-) yields a proper coloring of Gg. The
minimum transmission size required for any such verification is precisely the chromatic number

x(Ge)-

The following example demonstrates a case where verification is particularly simple.

Example 3 Consider an error set consisting of all odd-weight translations errors in Zy. The
characteristic graph of this error set is given in Figure 2 for parameter values ¢ =2 and n =3 (i.e.
binary vectors of length 3). Clearly this graph can be two-colored, indicating that set verification
can be done with the transmission of one bit. However, if we simply change the error set to consist
of all even-weight translations, we need two bits of transmission. In general, odd-weight translation
errors will require only 1 bit for verification, whereas even-weight translation will require n — 1 bits.

Corollary 1 The minimum transmission size Wy for a one-way data verification function over
an error set € satisfies the inequalities

Wy < max |E(0)] < 2€]. (1)
v €LY

Though a non-optimal proper coloring satisfying the upper bound in (1) can be generated in
linear time, practical use of such techniques is severely limited by the fact that the size of the
characteristic graph grows exponentially in the size of underlying multi-sets being verified. For
example, verifying over a universal set of 32-bit integers would require coloring a graph with
22% vertices. For certain classes of errors, a more practical approach is based on error-detecting
codes.

3.2 Error detection

Recall that a level set of a function is a set of points at which the function returns the same
value.

Theorem 2 Any one-way data verification function a(-) for an error set £ generates codes in
Ly which detect €. Conversely, any error-detecting code C C Zy is the level set of a one-way
data verification function. Therefore, each monochromatic set of vertices in a proper coloring
of Gg 1is also an error-detecting code for €.

The following two corollaries of Theorem 2 sharpen the connection between verification and
error-detection.

Corollary 2 Any one-way data verification function a(-) over Lq with transmission size T

corresponds to an error-detecting code with at least g codewords.

Corollary 3 For any error set £ with characteristic graph Gg there exists an error-detecting
code C with number of codewords

n n n

q q q

C| > > > .
B2 4G Z maxyeq B0 © 2B

We note that Corollary 3 generalizes the well-known Gilbert-Varshamov bound to our general
class of errors.

The connection between verification and error detection established by Theorem 2 is unidirec-
tional: given a verification function one immediately obtains at least one error-detecting code;
however, an error-detecting code does not, in general, generate a verification function, unless
the error set £ is both bijective and commutative.

Theorem 3 Any non-extendible! code C C Lq that detects a bijective and commutative error
set € also generates a one-way data verification function «(-) with transmission size at most

max, ¢ ¢ |€(c)]-

Theorem 3 shows that data verification and error detection are equivalent for bijective and
commutative error sets £. However, in general this is not the case, as the following counterex-
ample demonstrates.

Counterexample 1 Consider the length 3, binary, linear code consisting of four vectors: C =
{000,010, 101,111}. This code detects the error set £ consisting of:

e an identity error eg(z) = .

e a translation error e1(z) = z & 100, where @ denotes binary XOR.

e two permutation errors es(x129x3) = xox3r1 and e3(r1x223) = T3T122

The characteristic graph of £ is depicted in Figure 3. This error set is bijective, but not commutative.

The verification function constructed in Theorem 3 takes on two values: «(c¢;) = e and a(e1(¢;)) =
ey for ¢; € C. Verification will thus fail on vectors v4 = 001 and vp = 100, which differ by error
es, because it will decide that they are equal (i.e. a(v4) = a(vp) = e1). Furthermore, the graph
in Figure 3 has chromatic number 3, meaning that no one-way data verification function will match
the 1-bit of redundancy needed by the error-detecting code C.

' A code is extendible if codewords can be added to it without affecting its error-detecting/correcting capability.

Figure 3: The characteristic graph for the error set in Counterexample 1. Solid circles denote
codewords of the corresponding error-detecting code.

4 Data reconciliation, coloring, and error-correction

The problem of data reconciliation is to determine the minimum amount of information host
A should send to host B so that B can determine the multi-set M4 held by A. As before, the
only a priori assumption is that the set Mp held by B is a distortion of M 4 via some error in
eel.

4.1 Graph coloring

Theorem 4 Any second-order coloring of G¢ generates a one-way data reconciliation function
o(-) for the error set €. Conversely, any such reconciliation function o(-) yields a second-
order coloring of Gg. The minimum transmission size required for reconciliation is precisely
the second-order chromatic number x2(Ge).

Corollary 4 The minimum transmission size Wg for a one-way data reconciliation function
over an error set £ satisfies the inequalities

Uné%lé’(v)l < Wr < max [£%(v)] (2)

We note that lower bound for data reconciliation is identical to the upper bound for data
verification, suggesting that for some error sets the hardest data verification problems are the
easiest data reconciliation problems.

4.2 FError correction

Theorem 5 Any one-way data reconciliation function o(-) for an error set £ generates codes
in Lq which correct €. Each monochromatic set of vertices in a second-order coloring of Ge is
a code that corrects £.

Corollary 5 Any one-way data reconciliation function o(-) over Ly with transmission size T

. . n
corresponds to an error-correcting code with at least q7 codewords.

Corollary 6 For any error set £ with characteristic graph Gg there exists an error-correcting
code C with number of codewords

q q q
< < |C|] < .
o, e 1820 < %@ < 9T max e g O

n n n

By Theorem 2, any code that detects error set £ is a monochromatic set of vertices in a proper
coloring of G¢. In contrast with this, not every code that corrects £ is a monochromatic set in
a second-order coloring of G¢.

Theorem 6 Any non-extendible code C C Zy that corrects a bijective and commutative error
set € generates a one-way data reconciliation function o(-) with transmission size at most
max, ¢ ¢ [€(c)|.

The proof for Theorem 6 provides the following protocol for performing a reconciliation using
a given code.

Protocol 1 (Data reconciliation using a code C)

Given hosts A and B with characteristic vectors va and vp respectively, B can be reconciled
with A as follows:

1. A sends to B the value o(vq) = eq where eq(ca) = va for some codeword c4 € C.
2. B calculates e (vg).
3. B finds the unique e € € with the property that e (vi) = e(c) for some c€ C

4. B determines A’s characteristic vector as va = e '(vg).

In the case of classical errors, one can understand Theorem 6 in terms of the covering radius
of a code [17], defined to be the minimum value p for which balls of radius p will completely
cover Zg.

Corollary 7 For every non-extendible code C of length n, covering radius p, and minimum
distance 2t + 1, there corresponds a one-way data reconciliation and verification function for
&L (from Ezample 1) with transmission size

class
Ep: (?) (¢ - 1)".

1=0

Theorems 5 and 6 are constructive in that they provide precise instructions for how to con-
struct a reconciliation function from a code and wvice versa. The next example illustrates these
theorems.

Example 4 (Polynomial Interpolation) Consider the protocol given in [7] for traditional set recon-
ciliation. This protocol associates with each set S C Zg a characteristic polynomial

xs(@) =] (@ =s).
sesS
In order to reconcile, host A sends to the other host m evaluations xg,(s;) at prescribed points
s; € Zb; the value m is an assumed bound on the size of the mutual difference between the sets of
both hosts. By comparing xs, to xs,, host B is able to determine the mutual difference of the
two sets.

Applying Theorem 6 we see that given sample points s;, one code corresponding to this reconcil-
iation is given by
b
C={v(S)€Z3 | xs(si) =0 Vs;}.

In other words, C is the cyclic code corresponding to the ideal generated by HSi (x — s;). When
s; are the appropriate powers of a primitive n-th root of unity, this is precisely the well-known
Bose-Chaudhuri-Hochquenghem (BCH) code.

4.3 Non-commutative and non-bijective errors

Theorems 3 and 6 only provide a reduction from data comparison to error-control codes when
the error set is both bijective and commutative. However, several useful error sets, such as per-
mutations, image transformations, and insertions are either non-commutative or non-bijective.

Counterexample 2 (Uni-directional errors) Consider the case where one host is a server to which
entries are added at various times, and another host is a client trying to stay up to date with the
server. Reconciling such data can be modeled with the use of unidirectional errors, in which the
only permitted corruptions involve changing O’s in a source vector to 1's in a target vector or vice
versa. This error set is clearly non-bijective. For the case n = 4 and ¢ = 2, the linear code
C = {0000,0011,1100,1111} corrects one unidirectional error using 2 bits of redundancy. On the
other hand, the characteristic graph for these errors can only be second-order colored with 8 colors,
meaning that reconciliation requires at least 3 bits of communication.

5 Applications

Various natural applications exist for the general class of errors modeled in this work. Problems
such as set reconciliation, file synchronization, page-error correction, and client-server updates,
each involve reconciliation over a different error set. We describe one of these problems.

5.1 Page errors

Consider the model of page errors, in which case errors are assumed to occur only in the same
region. This could happen, for example, in the case of comparing outputs of two processors. If
each processor outputs data in a certain region of the ambient space, then a processor failure
on one processor would result in set differences in only the corresponding region [18].

Consider, for sake of example, that two hosts each have subsets of Z;, with page regions
defined every four elements; thus the first page contains elements {1,2,3,4}, the next page
contains {5,6,7,8}, etc. The error set Epage for this model thus contains all functions that
corrupt a single page. For example, a corruption of the first page by a toggling the existence
of set elements 1 and 3 is given by

e3(z) = = @ 0000000000000101

where z is the characteristic vector of the corrupted set. Since |E(x)| = 61 in this case,
Corollary 1 implies that one-way set verification requires at most 6 bits of communication.
One-way set reconciliation, on the other hand, requires 6 < Wg(Epage) < log(|E%(X)]) =
log(1411) < 11 bits of communication. Using Reed-Solomon codes of length 4, we can attain
Wy (Epage) < 4 bits and Wr(Epage) < 8 bits of communication.

In general, if sets are chosen as subsets of Z} and each page contains p elements any ¢ of which
might be corrupted, then the amount of communication needed for reconciliation when 2—t,, —0
and & — 0 is given by

2t ' 2
logy Wr(Epage) < log, [Z@” - 1) (g’)] ~ 2tb (3)

1=0

bits, whereas a classical function correcting any pt errors would require roughly ptb bits of
communication. The bound in Equation 3 corresponds to the bound in [19] based on using
Reed-Solomon codes for reconciliation of these types of errors.

6 Conclusions

In this work we have studied the problem of reconciling remote data with a minimum amount
of communication. We have demonstrated connections between data reconciliation, error-
correcting codes, and graph coloring over a general error set. In particular, we have described in
Section 4 how to transform an arbitrary code that corrects a general class of commutative and
bijective errors into an algorithm for data reconciliation, and wvice versa; similarly in Section 3
we have shown how such an error-detecting code can be used to perform data verification.
These transformations are particularly useful because a wide variety of codes have already been
presented in the literature for a number of different error sets.

Using the connections discovered in this paper, we have also presented the following bounds
on the number of signals that need to be transmitted for data verification (Wy (€)) and data

reconciliation (Wg(€)) for an arbitrary set of corruptions £ that form a characteristic graph
Ge:

x(Ge) <Wy(€) < max |€(z)] (4)
max [£(z)] < Xg(Ge) = Wr(€) < mgx|52($)|- (5)

Both upper bounds (4) and (5) are constructive in that we have described an explicit means
of attaining them for a given error set. As mentioned in Section 1.1, the lower bounds have
already appeared in various forms in the literature.

Finally, we have presented a number of examples throughout the work and in Section 5,
thereby demounstrating the applicability of this work to such diverse areas as testing, file syn-
chronization, and client-server network updates.

Acknowledgments

The authors wish to thank Alon Orlitsky, Krishnamurthy Viswanathan, and Junan Zhang for
their interest and thoughtful discussions. One of the authors would also like to thank Yaron
Minsky for stimulating discussions and Alexander Vardy for encouragement.

References

[1] R. van Renesse, Y. Minsky, and M. Hayden, “A gossip-style failure detection service,”
in Middleware ’98: IFIP International Conference on Distributed Systems Platforms and
Open Distributed Processing, Nigel Davies, Kerry Raymond, and Jochen Seitz, Eds. 1998,
pp- 55-70, Springer Verlag.

[2] M. Hayden and K. Birman, “Probabilistic broadcast,” Tech. Rep., Cornell University,
1996.

[3] M. Harchol-Balter, T. Leighton, and D. Lewin, “Resource discovery in distributed net-
works,” in 18th Annual ACM-SIGACT/SIGOPS Symposium on Principles of Distributed
Computing, Atlanta, GA, May 1999.

[4] A. Trachtenberg and D. Starobinski, “Towards global synchronization,” Large Scale Net-
works workshop, March 2001, http://ana.lcs.mit.edu/ sollins/LSN-Workshop/papers/.

[5] R. Durbin, S. Eddy, A. Krogh, and G. Mitchéson, Biological sequence analysis, Cambridge
university press, 1998.

[6]

[7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Yaron Minsky, Ari Trachtenberg, and Richard Zippel, “Set reconciliation with nearly
optimal communication complexity,” Tech. Rep. TR2000-1796,TR2000-1813, Cornell Uni-
versity, 2000.

Yaron Minsky, Ari Trachtenberg, and Richard Zippel, “Set reconciliation with nearly
optimal communication complexity,” in International Symposium on Information Theory,
2001, to appear.

H.S. Witsenhausen, “The zero-error side information problem and chromatic numbers,”
IEEE Trans. on Information Theory, vol. 22, no. b, September 1976.

N. Alon and A. Orlitsky, “Source coding and graphs entropies,” IEEE Transactions on
Information Theory, vol. 42, no. 5, pp. 1329-1339, September 1996.

Alon Orlitsky, “Interactive communication: Balanced distributions, correlated files, and
average-case complexity.,” in Proceedings of the 32nd Annual Symposium on Foundations
of Computer Science, 1991, pp. 228-238.

G. Cormode, M. Paterson, S.C. Sahinhalp, and U. Vishkin, “Communication complexity
of document exchange,” ACM-SIAM Symposium on Discrete Algorithms, January 2000.

T. Schwarz, R.W. Bowdidge, and W.A. Burkhard, “Low cost comparisons of file copies,”
Proceedings of the International Conference on Distributed Computing Systems, pp. 196—
202, 1990.

V.1. Levenstein, “Binary codes capable of correcting spurious insertions and deletions of
ones,” Problems of Information Transmission, vol. 1, no. 1, pp. 8-17, 1965.

V.I. Levenstein, “Efficient reconstruction of sequences,” IEEE Trans. on Inf. Theory, vol.
47, pp. 2-22, January 2001.

D.P. Siewiorek and R.S. Swarz, Reliable Computer Systems: Design and Fuvaluation, Dig-
ital Press, 1992.

M. G. Karpovsky and P. Nagvajara, “Design of self-diagnostic boards by signature analy-
sis,” IEEE Trans. on Industrial Electronics, pp. 241-246, May 1989.

G.Cohen, I[.Honkala, S.Litsyn, and A.Lobstein, Covering Codes, Elsevier, 1997.

M. G. Karpovsky, T. Roziner, and C. Moraga, “Error detection in multiprocessor systems
and array processors,” IEEE Trans. on Computers, vol. 44, no. 3, pp. 383-394, March
1995.

K.A.S. Abdel-Ghaffar and A.E. Abbadi, “An optimal strategy for comparing file copies,”
IEEE Transactions on Parallel and Distributed Systems, vol. 5, no. 1, pp. 87-93, January
1994.

