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AbstratWe onsider the problem of data reoniliation, whih we model as two physially sep-arated multi-sets of data that must be reoniled with minimum ommuniation. Underthis model, we show that the problem of reoniliation is equivalent to a variant of thegraph oloring problem and provide onsequent upper and lower bounds on the ommuni-ation omplexity of reoniliation. More interestingly, we show by means of an expliitonstrution that the problem of reoniliation is equivalent to the problem of �nding gooderror-orreting odes, provided the set of transformations has two general properties. Weshow analogous results for the problem of multi-set veri�ation, in whih we wish to deter-mine whether two multi-sets are equal using minimum ommuniation.
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1 IntrodutionThe problem of reoniling data is inherent to appliations that require onsisteny amongdistributed information, inluding diverse examples suh as gossip protools for distributingnetworked data [1, 2℄, resoure disovery [3℄, synhronization of mobile data [4℄,and reonili-ation of sequenes of symbols from a given alphabet, suh as nuleotide sequenes in DNA oramino aids sequenes in proteins [5℄. In eah of these examples, the system needs to determinethe di�erenes between data stored in physially separate loations, thereby reoniling it.From the perspetives of salability and performane, it is important that reoniliationsour with minimum ommuniation, measured both by the number of transmitted bits andby the number of rounds of ommuniation. When data are represented by sets, as an bereasonable modeled for the examples ited above, this problem is known as the set reoniliationproblem [6, 7℄. The data reoniliation problem is a natural generalization in whih data isrepresented by multi-sets rather than sets.This paper examines the data reoniliation problem within a generalized framework in whihdi�erenes between multi-sets orrespond to evaluations of arbitrary \error" funtions. We limitommuniation between reoniling hosts to a single message.Under suh onditions, we showthat the problem of data reoniliation is equivalent to a variation of the problem of grapholoring: seond-order oloring or distane-2 oloring. A seond-order oloring of a graphassigns olors to verties in suh a way that any two nodes separated by a path of length atmost two are olored di�erently. Applying well known results from graph oloring, we thenprovide lower and upper bounds on the amount of information that must be sent between twohosts for this type of general reoniliation.In many pratial ases, it is not neessary to reonile two multi-sets, but merely to determinewhether they are in fat the same. For example, two hosts might want to verify the orretnessof a previous reoniliation, or to hek whether reoniliation is needed in the �rst plae. Suha determination an often be made with substantially less ommuniation than a full-salereoniliation. In this ontext, we onsider the problem of data veri�ation: verifying that twomulti-sets are the same, subjet to a given range of possible di�erenes. Again we show thatdata veri�ation is equivalent to graph oloring and error detetion. We also provide both lowerand upper bounds on the amount of information that must be exhanged for data veri�ation.The main ontribution of this work is a onstrutive onnetion between generalized error-orreting odes and data reoniliation on the one hand, and between generalized error-deteting odes and data veri�ation on the other hand. In the ase of bijetive and om-mutative errors, any data reoniliation sheme generates at least one error-orreting ode,and any error-orreting ode an be transformed into a orresponding data reoniliationsheme. The same orrespondene exists between data veri�ation and error-deteting odes.
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Figure 1: The various onnetions proven in this paper. Solid lines indiate an unonstrainedreduibility between problems, and dotted lines indiate reduibility only under bijetive andommutative errors.



Colleting these two equivalenes, we thus have that under bijetive and ommutative errors,data omparison is equivalent to error-ontrol.However, the situation is quite di�erent in the general ase where errors are not bijetiveand/or not ommutative. Any data omparison sheme (i.e. veri�ation or reoniliation) stillgenerates an error-ontrol ode. However, some error-ontrol odes annot be transformed intoa orresponding data omparison sheme. In partiular, the redundany of an error-ontrol odefor suh errors may be smaller than the number of di�erent signals required for the orrespondingdata omparison. Thus, in general, data omparison requires more ommuniation than errorontrol, suggesting an intrinsi di�erene between the two problems. Figure 1 graphiallydisplays the onnetions we desribe in this paper.1.1 Related workThe problem of reoniliation has been studied extensively from many di�erent perspetives inthe literature. We an broadly haraterize the di�erent tehniques based on their model of thedi�erenes between two reoniling hosts.One model involves synhronizing two disrete random variables with some known joint prob-ability distribution using a minimum ommuniation omplexity. Witsenhausen [8℄ followedby Alon and Orlitsky [9℄ show a onnetion between suh random variable reoniliation andgraph oloring, giving results analogous to those of Setion 3.1 and 4.1.Another model involves two hosts reoniling �les (or strings) that di�er by a bounded num-ber of insertions, deletions, or modi�ations (olletively: \edits"). The problem of eÆientreoniliation under these irumstanes, also known as the edit-distane problem [10℄, hasbeen extensively studied [11, 12℄ beause of its onnetions to important �elds suh as �lesynhronization and pattern reognition. Leven�ste��n [13℄ pioneered work in this area by devel-oping error-orreting odes apable of orreting preisely these types of errors. Reently [14℄Leven�ste��n also examined the problem of reonstruting a sequene from several opies distortedwith these types of errors.In ontrast, this paper examines a model that slightly di�erent from those mentioned above.In our model, data on two reoniling hosts is represented by multi-sets that di�er by a verygeneral lass of di�erenes. Being stored as multi-sets, the data on the two hosts is inherentlyunindexed, meaning that only the ontent of the individual data items, and not their relativeposition, matters; however the other models presented an be enompassed by this model.2 BakgroundDe�nition 1 A proper oloring of a graph G with set of verties V and edges E is an as-signment of olors to eah vertex in suh a way that the verties of any edge e2E are oloreddi�erently.A proper oloring using at most k olors will be alled a k-oloring of the graph. The hromatinumber of a graph, denoted �(G), is the minimum integer k for whih there exists an k-oloringof G.De�nition 2 A seond-order oloring of a graph is a a proper oloring of a graph with theextra property that no two neighbors of any vertex have the same olor.A seond-order oloring of G is also a proper oloring of the square of the graph, whih is the



graph G2 obtained from G by additionally onneting with an edge eah pair of verties thatare of distane two apart. The minimum number of olors needed to seond-order olor a graphis the seond order hromati number of the graph, denoted �2(G).Error detetion and orretion. Consider the module Znq onsisting of all n-dimensionalvetors over the ring Zq. A q-ary ode of length n is simply a subset of the elements of thismodule.De�nition 3 An error set for Znq is a set E = fe0; e1; e2; : : : ejEjg whose elements are funtionsei : Znq �! Znq , one of whih is the identity funtion e0(x) = x. If the funtions ei 2E areall bijetions and their inverses e�1i are also in E, then we shall all this set bijetive. If thefuntions ommute with eah other, so that ei(ej(x)) = ej(ei(x)) 8x2Znq ; 8ei; ej 2E, we shallall this set ommutative.Example 1 (Classial errors) The lassial problem of error detetion and orretion involves dis-tortions of up to t q-ary symbols in a vetor of length n. The error funtions orresponding to allsuh distortions of a vetor are given by translations in Znq . More formally, this error set is given byE tlass = fev(x) = x+ v j v 2Znq and kvk � tg;where kvk denotes the Hamming weight of a vetor v, and + denotes omponent-wise additionmod q. Clearly, the set E tlass is both ommutative and bijetive.De�nition 4 The E-viinity for a given vetor x2Znq and an error set E is denoted by E(x) andde�ned to be E(x) = fe(x) j e2Eg [ fz 2Znq j e(z) = x; e2Eg. In general, the Ek-viinity,denoted Ek(x), is de�ned to be Ek(x) = [y2 Ek�1(x) E(y);where E1(x) in this notation denotes the set E(x).A ode that detets an error set E must be able to properly distinguish orruptions fromelements of the ode.De�nition 5 A ode C 2Znq detets the error set E ifi 62 E(j) 8i 6= j 2C:De�nition 6 A ode C 2Znq orrets the error set E ifE(i) \ E(j) = ; 8i 6= j 2C:Set and multi-set reoniliation and veri�ation. The traditional formalization of theset reoniliation problem is as follows [6, 7℄: given a pair of hosts A and B, eah with a set oflength-b bit-strings (denoted SA and SB respetively) and no a priori knowledge of the otherhost's set, how an eah host determine the mutual di�erene of the two sets with a minimalamount of ommuniation.In general, we may onsider data represented as multi-sets whose elements are hosen froma �nite, universal set U . A multi-set is de�ned to be a set whose element multipliities aresigni�ant. Thus, every multi-set M whose elements are taken from U may be assoiateduniquely with a harateristi vetor v(M) of length jU j whose i-th omponent is j if and onlyif the i-th element of U ours j times in M , for some anonial ordering of the elements of U .



We shall generally assume in this paper that the multipliity of any element is bounded byq�1 meaning that v(M)2ZjU jq . We further limit ourselves to the ase where only one of the twohosts needs to determine the multi-set held by the other host, based on information transmittedin one message.We thus formally de�ne a data reoniliation funtion, whih ats upon the harateristivetors vA and vB of two host multi-sets.De�nition 7 The funtion � : Znq �! � is a one-way data reoniliation funtion for an errorset E if there exists a reovery funtion R : (�� Znq ) �! Znq reoniling multi-sets that di�erby one of the errors in E. More preisely, the reovery funtion must have the property that8vA; vB � Znq ; e2E ; vA = e(vB) or e(vA) = vB =) R(�(vA); vB) = vA:The transmission size of suh a reoniliation funtion is the the number of signals j�j thatneed to be transmitted for reoniliation.We are also interested in the problem of data veri�ation, due to its onnetions to setreoniliation and a variety of independent appliations suh as o�-line testing [15℄ and signatureanalysis [16℄.In all these ases, two hosts seek to on�rm that they have the same multi-set,subjet to a known list of possible error funtions.We de�ne veri�ation funtions in terms of harateristi vetors.De�nition 8 A funtion � : Znq �! � is a one-way data veri�ation funtion for an error setE if there exists a deision funtion D : (� � Znq ) �! f0; 1g with the property that8vA; vB � Znq ; e2E ;[vA = e(vB) or e(vA) = vB ℄ and D(�(vA); vB) = 1 () (vA = vB):The transmission size of suh a veri�ation funtion is the number of signals j�j that need tobe transmitted for veri�ation.Example 2 The one-way set veri�ation funtion for the error set given in Example 1 allows twohosts to verify that their sets are either equal or else di�er by at least t + 1 entries. When t = 2bthis is a test of preise set equality.3 Data veri�ation, oloring, and error-detetionThe data veri�ation problem an be reformulated formally as follows. Consider two hosts Aand B with multi-setsMA andMB respetively. The goal of veri�ation is to determine whetherMA = MB , subjet to the sole a priori assumption that the multi-set MB is a distortion ofthe multi-set MA via some error in the set E (i.e. v(MA) = e(v(MB)) or e(v(MA)) = v(MB)for some e2E). Assuming A and B know nothing about eah other's multi-set beyond thisassumption, the data veri�ation problem is to determine the minimum amount of informationA should send to B so that B an deide whether or not MA =MB.3.1 Graph oloringTo develop a onnetion between data veri�ation and graph oloring, onsider a natural graphstruture orresponding to a given error set E .
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Figure 2: The harateristi graph of the error set of odd-weight translations (left) and even-weight translations (right) of length three binary vetors. The left graph an be two-olored, butthe rightmost graph requires at least four olors. A sample oloring is depited, with di�erentoutline regions denoting di�erent olors.De�nition 9 The harateristi graph of an error set E is the undireted graph GE = (V;E)whose verties are harateristi vetors of multi-sets M � Znq . Any two verties v1; v2 2V areonneted by an edge in this graph i� there exists a non-identity error e2E suh that e(v1) = v2or v1 = e(v2).Theorem 1 Any proper oloring of GE generates a one-way data veri�ation funtion �(�) forthe error set E . Conversely, any veri�ation funtion �(�) yields a proper oloring of GE . Theminimum transmission size required for any suh veri�ation is preisely the hromati number�(GE).The following example demonstrates a ase where veri�ation is partiularly simple.Example 3 Consider an error set onsisting of all odd-weight translations errors in Zn2 . Theharateristi graph of this error set is given in Figure 2 for parameter values q = 2 and n = 3 (i.e.binary vetors of length 3). Clearly this graph an be two-olored, indiating that set veri�ationan be done with the transmission of one bit. However, if we simply hange the error set to onsistof all even-weight translations, we need two bits of transmission. In general, odd-weight translationerrors will require only 1 bit for veri�ation, whereas even-weight translation will require n� 1 bits.Corollary 1 The minimum transmission sizeWV for a one-way data veri�ation funtion overan error set E satis�es the inequalitiesWV � maxv2Znq jE(v)j � 2jEj: (1)Though a non-optimal proper oloring satisfying the upper bound in (1) an be generated inlinear time, pratial use of suh tehniques is severely limited by the fat that the size of theharateristi graph grows exponentially in the size of underlying multi-sets being veri�ed. Forexample, verifying over a universal set of 32-bit integers would require oloring a graph with2232 verties. For ertain lasses of errors, a more pratial approah is based on error-detetingodes.3.2 Error detetionReall that a level set of a funtion is a set of points at whih the funtion returns the samevalue.



Theorem 2 Any one-way data veri�ation funtion �(�) for an error set E generates odes inZnq whih detet E. Conversely, any error-deteting ode C � Znq is the level set of a one-waydata veri�ation funtion. Therefore, eah monohromati set of verties in a proper oloringof GE is also an error-deteting ode for E.The following two orollaries of Theorem 2 sharpen the onnetion between veri�ation anderror-detetion.Corollary 2 Any one-way data veri�ation funtion �(�) over Znq with transmission size �orresponds to an error-deteting ode with at least qn� odewords.Corollary 3 For any error set E with harateristi graph GE there exists an error-detetingode C with number of odewordsjC j � qn�(GE) � qnmaxv2Znq jE(v)j � qn2jEj :We note that Corollary 3 generalizes the well-known Gilbert-Varshamov bound to our generallass of errors.The onnetion between veri�ation and error detetion established by Theorem 2 is unidire-tional: given a veri�ation funtion one immediately obtains at least one error-deteting ode;however, an error-deteting ode does not, in general, generate a veri�ation funtion, unlessthe error set E is both bijetive and ommutative.Theorem 3 Any non-extendible1 ode C � Znq that detets a bijetive and ommutative errorset E also generates a one-way data veri�ation funtion �(�) with transmission size at mostmax2 C jE()j.Theorem 3 shows that data veri�ation and error detetion are equivalent for bijetive andommutative error sets E . However, in general this is not the ase, as the following ounterex-ample demonstrates.Counterexample 1 Consider the length 3, binary, linear ode onsisting of four vetors: C =f000; 010; 101; 111g. This ode detets the error set E onsisting of:� an identity error e0(x) = x.� a translation error e1(x) = x� 100, where � denotes binary XOR.� two permutation errors e2(x1x2x3) = x2x3x1 and e3(x1x2x3) = x3x1x2The harateristi graph of E is depited in Figure 3. This error set is bijetive, but not ommutative.The veri�ation funtion onstruted in Theorem 3 takes on two values: �(i) = e0 and �(e1(i)) =e1 for i 2 C . Veri�ation will thus fail on vetors vA = 001 and vB = 100, whih di�er by errore3, beause it will deide that they are equal (i.e. �(vA) = �(vB) = e1). Furthermore, the graphin Figure 3 has hromati number 3, meaning that no one-way data veri�ation funtion will maththe 1-bit of redundany needed by the error-deteting ode C .1A ode is extendible if odewords an be added to it without a�eting its error-deteting/orreting apability.
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By Theorem 2, any ode that detets error set E is a monohromati set of verties in a properoloring of GE . In ontrast with this, not every ode that orrets E is a monohromati set ina seond-order oloring of GE .Theorem 6 Any non-extendible ode C � Znq that orrets a bijetive and ommutative errorset E generates a one-way data reoniliation funtion �(�) with transmission size at mostmax2 C jE2()j.The proof for Theorem 6 provides the following protool for performing a reoniliation usinga given ode.Protool 1 (Data reoniliation using a ode C )Given hosts A and B with harateristi vetors vA and vB respetively, B an be reoniledwith A as follows:1. A sends to B the value �(vA) = eA where eA(A) = vA for some odeword A 2 C .2. B alulates e�1A (vB).3. B �nds the unique e2E with the property that e�1A (vB) = e() for some 2 C4. B determines A's harateristi vetor as vA = e�1(vB).In the ase of lassial errors, one an understand Theorem 6 in terms of the overing radiusof a ode [17℄, de�ned to be the minimum value � for whih balls of radius � will ompletelyover Znq .Corollary 7 For every non-extendible ode C of length n, overing radius �, and minimumdistane 2t + 1, there orresponds a one-way data reoniliation and veri�ation funtion forE tlass (from Example 1) with transmission size�Xi=0 �ni�(q � 1)i:Theorems 5 and 6 are onstrutive in that they provide preise instrutions for how to on-strut a reoniliation funtion from a ode and vie versa. The next example illustrates thesetheorems.Example 4 (Polynomial Interpolation) Consider the protool given in [7℄ for traditional set reon-iliation. This protool assoiates with eah set S � Zb2 a harateristi polynomial�S(x) = Ys2 S(x� s):In order to reonile, host A sends to the other host m evaluations �SA(si) at presribed pointssi 2Zb2; the value m is an assumed bound on the size of the mutual di�erene between the sets ofboth hosts. By omparing �SA to �SB , host B is able to determine the mutual di�erene of thetwo sets.Applying Theorem 6 we see that given sample points si, one ode orresponding to this reonil-iation is given by C = fv(S)2Z2b2 j �S(si) = 0 8sig:In other words, C is the yli ode orresponding to the ideal generated by Qsi(x � si). Whensi are the appropriate powers of a primitive n-th root of unity, this is preisely the well-knownBose-Chaudhuri-Hohquenghem (BCH) ode.



4.3 Non-ommutative and non-bijetive errorsTheorems 3 and 6 only provide a redution from data omparison to error-ontrol odes whenthe error set is both bijetive and ommutative. However, several useful error sets, suh as per-mutations, image transformations, and insertions are either non-ommutative or non-bijetive.Counterexample 2 (Uni-diretional errors) Consider the ase where one host is a server to whihentries are added at various times, and another host is a lient trying to stay up to date with theserver. Reoniling suh data an be modeled with the use of unidiretional errors, in whih theonly permitted orruptions involve hanging 0's in a soure vetor to 1's in a target vetor or vieversa. This error set is learly non-bijetive. For the ase n = 4 and q = 2, the linear odeC = f0000; 0011; 1100; 1111g orrets one unidiretional error using 2 bits of redundany. On theother hand, the harateristi graph for these errors an only be seond-order olored with 8 olors,meaning that reoniliation requires at least 3 bits of ommuniation.5 AppliationsVarious natural appliations exist for the general lass of errors modeled in this work. Problemssuh as set reoniliation, �le synhronization, page-error orretion, and lient-server updates,eah involve reoniliation over a di�erent error set. We desribe one of these problems.5.1 Page errorsConsider the model of page errors, in whih ase errors are assumed to our only in the sameregion. This ould happen, for example, in the ase of omparing outputs of two proessors. Ifeah proessor outputs data in a ertain region of the ambient spae, then a proessor failureon one proessor would result in set di�erenes in only the orresponding region [18℄.Consider, for sake of example, that two hosts eah have subsets of Z16, with page regionsde�ned every four elements; thus the �rst page ontains elements f1; 2; 3; 4g, the next pageontains f5; 6; 7; 8g, et. The error set Epage for this model thus ontains all funtions thatorrupt a single page. For example, a orruption of the �rst page by a toggling the existeneof set elements 1 and 3 is given bye3(x) = x� 0000000000000101where x is the harateristi vetor of the orrupted set. Sine jE(x)j = 61 in this ase,Corollary 1 implies that one-way set veri�ation requires at most 6 bits of ommuniation.One-way set reoniliation, on the other hand, requires 6 � WR(Epage) � log(jE2(X)j) =log(1411) < 11 bits of ommuniation. Using Reed-Solomon odes of length 4, we an attainWV (Epage) � 4 bits and WR(Epage) � 8 bits of ommuniation.In general, if sets are hosen as subsets of Zb2 and eah page ontains p elements any t of whihmight be orrupted, then the amount of ommuniation needed for reoniliation when t2b ! 0and pb ! 0 is given by log2WR(Epage) � log2 " 2tXi=0(2p � 1)i�2bpi �# � 2tb (3)bits, whereas a lassial funtion orreting any pt errors would require roughly ptb bits ofommuniation. The bound in Equation 3 orresponds to the bound in [19℄ based on usingReed-Solomon odes for reoniliation of these types of errors.



6 ConlusionsIn this work we have studied the problem of reoniling remote data with a minimum amountof ommuniation. We have demonstrated onnetions between data reoniliation, error-orreting odes, and graph oloring over a general error set. In partiular, we have desribed inSetion 4 how to transform an arbitrary ode that orrets a general lass of ommutative andbijetive errors into an algorithm for data reoniliation, and vie versa; similarly in Setion 3we have shown how suh an error-deteting ode an be used to perform data veri�ation.These transformations are partiularly useful beause a wide variety of odes have already beenpresented in the literature for a number of di�erent error sets.Using the onnetions disovered in this paper, we have also presented the following boundson the number of signals that need to be transmitted for data veri�ation (WV (E)) and datareoniliation (WR(E)) for an arbitrary set of orruptions E that form a harateristi graphGE : �(GE ) �WV (E) � maxx jE(x)j (4)maxx jE(x)j � �2(GE) =WR(E) � maxx jE2(x)j: (5)Both upper bounds (4) and (5) are onstrutive in that we have desribed an expliit meansof attaining them for a given error set. As mentioned in Setion 1.1, the lower bounds havealready appeared in various forms in the literature.Finally, we have presented a number of examples throughout the work and in Setion 5,thereby demonstrating the appliability of this work to suh diverse areas as testing, �le syn-hronization, and lient-server network updates.AknowledgmentsThe authors wish to thank Alon Orlitsky, Krishnamurthy Viswanathan, and Junan Zhang fortheir interest and thoughtful disussions. One of the authors would also like to thank YaronMinsky for stimulating disussions and Alexander Vardy for enouragement.Referenes[1℄ R. van Renesse, Y. Minsky, and M. Hayden, \A gossip-style failure detetion servie,"in Middleware '98: IFIP International Conferene on Distributed Systems Platforms andOpen Distributed Proessing, Nigel Davies, Kerry Raymond, and Johen Seitz, Eds. 1998,pp. 55{70, Springer Verlag.[2℄ M. Hayden and K. Birman, \Probabilisti broadast," Teh. Rep., Cornell University,1996.[3℄ M. Harhol-Balter, T. Leighton, and D. Lewin, \Resoure disovery in distributed net-works," in 18th Annual ACM-SIGACT/SIGOPS Symposium on Priniples of DistributedComputing, Atlanta, GA, May 1999.[4℄ A. Trahtenberg and D. Starobinski, \Towards global synhronization," Large Sale Net-works workshop, Marh 2001, http://ana.ls.mit.edu/ sollins/LSN-Workshop/papers/.[5℄ R. Durbin, S. Eddy, A. Krogh, and G. Mith�eson, Biologial sequene analysis, Cambridgeuniversity press, 1998.
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