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Abstra
tWe 
onsider the problem of data re
on
iliation, whi
h we model as two physi
ally sep-arated multi-sets of data that must be re
on
iled with minimum 
ommuni
ation. Underthis model, we show that the problem of re
on
iliation is equivalent to a variant of thegraph 
oloring problem and provide 
onsequent upper and lower bounds on the 
ommuni-
ation 
omplexity of re
on
iliation. More interestingly, we show by means of an expli
it
onstru
tion that the problem of re
on
iliation is equivalent to the problem of �nding gooderror-
orre
ting 
odes, provided the set of transformations has two general properties. Weshow analogous results for the problem of multi-set veri�
ation, in whi
h we wish to deter-mine whether two multi-sets are equal using minimum 
ommuni
ation.
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1 Introdu
tionThe problem of re
on
iling data is inherent to appli
ations that require 
onsisten
y amongdistributed information, in
luding diverse examples su
h as gossip proto
ols for distributingnetworked data [1, 2℄, resour
e dis
overy [3℄, syn
hronization of mobile data [4℄,and re
on
ili-ation of sequen
es of symbols from a given alphabet, su
h as nu
leotide sequen
es in DNA oramino a
ids sequen
es in proteins [5℄. In ea
h of these examples, the system needs to determinethe di�eren
es between data stored in physi
ally separate lo
ations, thereby re
on
iling it.From the perspe
tives of s
alability and performan
e, it is important that re
on
iliationso

ur with minimum 
ommuni
ation, measured both by the number of transmitted bits andby the number of rounds of 
ommuni
ation. When data are represented by sets, as 
an bereasonable modeled for the examples 
ited above, this problem is known as the set re
on
iliationproblem [6, 7℄. The data re
on
iliation problem is a natural generalization in whi
h data isrepresented by multi-sets rather than sets.This paper examines the data re
on
iliation problem within a generalized framework in whi
hdi�eren
es between multi-sets 
orrespond to evaluations of arbitrary \error" fun
tions. We limit
ommuni
ation between re
on
iling hosts to a single message.Under su
h 
onditions, we showthat the problem of data re
on
iliation is equivalent to a variation of the problem of graph
oloring: se
ond-order 
oloring or distan
e-2 
oloring. A se
ond-order 
oloring of a graphassigns 
olors to verti
es in su
h a way that any two nodes separated by a path of length atmost two are 
olored di�erently. Applying well known results from graph 
oloring, we thenprovide lower and upper bounds on the amount of information that must be sent between twohosts for this type of general re
on
iliation.In many pra
ti
al 
ases, it is not ne
essary to re
on
ile two multi-sets, but merely to determinewhether they are in fa
t the same. For example, two hosts might want to verify the 
orre
tnessof a previous re
on
iliation, or to 
he
k whether re
on
iliation is needed in the �rst pla
e. Su
ha determination 
an often be made with substantially less 
ommuni
ation than a full-s
alere
on
iliation. In this 
ontext, we 
onsider the problem of data veri�
ation: verifying that twomulti-sets are the same, subje
t to a given range of possible di�eren
es. Again we show thatdata veri�
ation is equivalent to graph 
oloring and error dete
tion. We also provide both lowerand upper bounds on the amount of information that must be ex
hanged for data veri�
ation.The main 
ontribution of this work is a 
onstru
tive 
onne
tion between generalized error-
orre
ting 
odes and data re
on
iliation on the one hand, and between generalized error-dete
ting 
odes and data veri�
ation on the other hand. In the 
ase of bije
tive and 
om-mutative errors, any data re
on
iliation s
heme generates at least one error-
orre
ting 
ode,and any error-
orre
ting 
ode 
an be transformed into a 
orresponding data re
on
iliations
heme. The same 
orresponden
e exists between data veri�
ation and error-dete
ting 
odes.
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Figure 1: The various 
onne
tions proven in this paper. Solid lines indi
ate an un
onstrainedredu
ibility between problems, and dotted lines indi
ate redu
ibility only under bije
tive and
ommutative errors.



Colle
ting these two equivalen
es, we thus have that under bije
tive and 
ommutative errors,data 
omparison is equivalent to error-
ontrol.However, the situation is quite di�erent in the general 
ase where errors are not bije
tiveand/or not 
ommutative. Any data 
omparison s
heme (i.e. veri�
ation or re
on
iliation) stillgenerates an error-
ontrol 
ode. However, some error-
ontrol 
odes 
annot be transformed intoa 
orresponding data 
omparison s
heme. In parti
ular, the redundan
y of an error-
ontrol 
odefor su
h errors may be smaller than the number of di�erent signals required for the 
orrespondingdata 
omparison. Thus, in general, data 
omparison requires more 
ommuni
ation than error
ontrol, suggesting an intrinsi
 di�eren
e between the two problems. Figure 1 graphi
allydisplays the 
onne
tions we des
ribe in this paper.1.1 Related workThe problem of re
on
iliation has been studied extensively from many di�erent perspe
tives inthe literature. We 
an broadly 
hara
terize the di�erent te
hniques based on their model of thedi�eren
es between two re
on
iling hosts.One model involves syn
hronizing two dis
rete random variables with some known joint prob-ability distribution using a minimum 
ommuni
ation 
omplexity. Witsenhausen [8℄ followedby Alon and Orlitsky [9℄ show a 
onne
tion between su
h random variable re
on
iliation andgraph 
oloring, giving results analogous to those of Se
tion 3.1 and 4.1.Another model involves two hosts re
on
iling �les (or strings) that di�er by a bounded num-ber of insertions, deletions, or modi�
ations (
olle
tively: \edits"). The problem of eÆ
ientre
on
iliation under these 
ir
umstan
es, also known as the edit-distan
e problem [10℄, hasbeen extensively studied [11, 12℄ be
ause of its 
onne
tions to important �elds su
h as �lesyn
hronization and pattern re
ognition. Leven�ste��n [13℄ pioneered work in this area by devel-oping error-
orre
ting 
odes 
apable of 
orre
ting pre
isely these types of errors. Re
ently [14℄Leven�ste��n also examined the problem of re
onstru
ting a sequen
e from several 
opies distortedwith these types of errors.In 
ontrast, this paper examines a model that slightly di�erent from those mentioned above.In our model, data on two re
on
iling hosts is represented by multi-sets that di�er by a verygeneral 
lass of di�eren
es. Being stored as multi-sets, the data on the two hosts is inherentlyunindexed, meaning that only the 
ontent of the individual data items, and not their relativeposition, matters; however the other models presented 
an be en
ompassed by this model.2 Ba
kgroundDe�nition 1 A proper 
oloring of a graph G with set of verti
es V and edges E is an as-signment of 
olors to ea
h vertex in su
h a way that the verti
es of any edge e2E are 
oloreddi�erently.A proper 
oloring using at most k 
olors will be 
alled a k-
oloring of the graph. The 
hromati
number of a graph, denoted �(G), is the minimum integer k for whi
h there exists an k-
oloringof G.De�nition 2 A se
ond-order 
oloring of a graph is a a proper 
oloring of a graph with theextra property that no two neighbors of any vertex have the same 
olor.A se
ond-order 
oloring of G is also a proper 
oloring of the square of the graph, whi
h is the



graph G2 obtained from G by additionally 
onne
ting with an edge ea
h pair of verti
es thatare of distan
e two apart. The minimum number of 
olors needed to se
ond-order 
olor a graphis the se
ond order 
hromati
 number of the graph, denoted �2(G).Error dete
tion and 
orre
tion. Consider the module Znq 
onsisting of all n-dimensionalve
tors over the ring Zq. A q-ary 
ode of length n is simply a subset of the elements of thismodule.De�nition 3 An error set for Znq is a set E = fe0; e1; e2; : : : ejEjg whose elements are fun
tionsei : Znq �! Znq , one of whi
h is the identity fun
tion e0(x) = x. If the fun
tions ei 2E areall bije
tions and their inverses e�1i are also in E, then we shall 
all this set bije
tive. If thefun
tions 
ommute with ea
h other, so that ei(ej(x)) = ej(ei(x)) 8x2Znq ; 8ei; ej 2E, we shall
all this set 
ommutative.Example 1 (Classi
al errors) The 
lassi
al problem of error dete
tion and 
orre
tion involves dis-tortions of up to t q-ary symbols in a ve
tor of length n. The error fun
tions 
orresponding to allsu
h distortions of a ve
tor are given by translations in Znq . More formally, this error set is given byE t
lass = fev(x) = x+ v j v 2Znq and kvk � tg;where kvk denotes the Hamming weight of a ve
tor v, and + denotes 
omponent-wise additionmod q. Clearly, the set E t
lass is both 
ommutative and bije
tive.De�nition 4 The E-vi
inity for a given ve
tor x2Znq and an error set E is denoted by E(x) andde�ned to be E(x) = fe(x) j e2Eg [ fz 2Znq j e(z) = x; e2Eg. In general, the Ek-vi
inity,denoted Ek(x), is de�ned to be Ek(x) = [y2 Ek�1(x) E(y);where E1(x) in this notation denotes the set E(x).A 
ode that dete
ts an error set E must be able to properly distinguish 
orruptions fromelements of the 
ode.De�nition 5 A 
ode C 2Znq dete
ts the error set E if
i 62 E(
j) 8
i 6= 
j 2C:De�nition 6 A 
ode C 2Znq 
orre
ts the error set E ifE(
i) \ E(
j) = ; 8
i 6= 
j 2C:Set and multi-set re
on
iliation and veri�
ation. The traditional formalization of theset re
on
iliation problem is as follows [6, 7℄: given a pair of hosts A and B, ea
h with a set oflength-b bit-strings (denoted SA and SB respe
tively) and no a priori knowledge of the otherhost's set, how 
an ea
h host determine the mutual di�eren
e of the two sets with a minimalamount of 
ommuni
ation.In general, we may 
onsider data represented as multi-sets whose elements are 
hosen froma �nite, universal set U . A multi-set is de�ned to be a set whose element multipli
ities aresigni�
ant. Thus, every multi-set M whose elements are taken from U may be asso
iateduniquely with a 
hara
teristi
 ve
tor v(M) of length jU j whose i-th 
omponent is j if and onlyif the i-th element of U o

urs j times in M , for some 
anoni
al ordering of the elements of U .



We shall generally assume in this paper that the multipli
ity of any element is bounded byq�1 meaning that v(M)2ZjU jq . We further limit ourselves to the 
ase where only one of the twohosts needs to determine the multi-set held by the other host, based on information transmittedin one message.We thus formally de�ne a data re
on
iliation fun
tion, whi
h a
ts upon the 
hara
teristi
ve
tors vA and vB of two host multi-sets.De�nition 7 The fun
tion � : Znq �! � is a one-way data re
on
iliation fun
tion for an errorset E if there exists a re
overy fun
tion R : (�� Znq ) �! Znq re
on
iling multi-sets that di�erby one of the errors in E. More pre
isely, the re
overy fun
tion must have the property that8vA; vB � Znq ; e2E ; vA = e(vB) or e(vA) = vB =) R(�(vA); vB) = vA:The transmission size of su
h a re
on
iliation fun
tion is the the number of signals j�j thatneed to be transmitted for re
on
iliation.We are also interested in the problem of data veri�
ation, due to its 
onne
tions to setre
on
iliation and a variety of independent appli
ations su
h as o�-line testing [15℄ and signatureanalysis [16℄.In all these 
ases, two hosts seek to 
on�rm that they have the same multi-set,subje
t to a known list of possible error fun
tions.We de�ne veri�
ation fun
tions in terms of 
hara
teristi
 ve
tors.De�nition 8 A fun
tion � : Znq �! � is a one-way data veri�
ation fun
tion for an error setE if there exists a de
ision fun
tion D : (� � Znq ) �! f0; 1g with the property that8vA; vB � Znq ; e2E ;[vA = e(vB) or e(vA) = vB ℄ and D(�(vA); vB) = 1 () (vA = vB):The transmission size of su
h a veri�
ation fun
tion is the number of signals j�j that need tobe transmitted for veri�
ation.Example 2 The one-way set veri�
ation fun
tion for the error set given in Example 1 allows twohosts to verify that their sets are either equal or else di�er by at least t + 1 entries. When t = 2bthis is a test of pre
ise set equality.3 Data veri�
ation, 
oloring, and error-dete
tionThe data veri�
ation problem 
an be reformulated formally as follows. Consider two hosts Aand B with multi-setsMA andMB respe
tively. The goal of veri�
ation is to determine whetherMA = MB , subje
t to the sole a priori assumption that the multi-set MB is a distortion ofthe multi-set MA via some error in the set E (i.e. v(MA) = e(v(MB)) or e(v(MA)) = v(MB)for some e2E). Assuming A and B know nothing about ea
h other's multi-set beyond thisassumption, the data veri�
ation problem is to determine the minimum amount of informationA should send to B so that B 
an de
ide whether or not MA =MB.3.1 Graph 
oloringTo develop a 
onne
tion between data veri�
ation and graph 
oloring, 
onsider a natural graphstru
ture 
orresponding to a given error set E .
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Figure 2: The 
hara
teristi
 graph of the error set of odd-weight translations (left) and even-weight translations (right) of length three binary ve
tors. The left graph 
an be two-
olored, butthe rightmost graph requires at least four 
olors. A sample 
oloring is depi
ted, with di�erentoutline regions denoting di�erent 
olors.De�nition 9 The 
hara
teristi
 graph of an error set E is the undire
ted graph GE = (V;E)whose verti
es are 
hara
teristi
 ve
tors of multi-sets M � Znq . Any two verti
es v1; v2 2V are
onne
ted by an edge in this graph i� there exists a non-identity error e2E su
h that e(v1) = v2or v1 = e(v2).Theorem 1 Any proper 
oloring of GE generates a one-way data veri�
ation fun
tion �(�) forthe error set E . Conversely, any veri�
ation fun
tion �(�) yields a proper 
oloring of GE . Theminimum transmission size required for any su
h veri�
ation is pre
isely the 
hromati
 number�(GE).The following example demonstrates a 
ase where veri�
ation is parti
ularly simple.Example 3 Consider an error set 
onsisting of all odd-weight translations errors in Zn2 . The
hara
teristi
 graph of this error set is given in Figure 2 for parameter values q = 2 and n = 3 (i.e.binary ve
tors of length 3). Clearly this graph 
an be two-
olored, indi
ating that set veri�
ation
an be done with the transmission of one bit. However, if we simply 
hange the error set to 
onsistof all even-weight translations, we need two bits of transmission. In general, odd-weight translationerrors will require only 1 bit for veri�
ation, whereas even-weight translation will require n� 1 bits.Corollary 1 The minimum transmission sizeWV for a one-way data veri�
ation fun
tion overan error set E satis�es the inequalitiesWV � maxv2Znq jE(v)j � 2jEj: (1)Though a non-optimal proper 
oloring satisfying the upper bound in (1) 
an be generated inlinear time, pra
ti
al use of su
h te
hniques is severely limited by the fa
t that the size of the
hara
teristi
 graph grows exponentially in the size of underlying multi-sets being veri�ed. Forexample, verifying over a universal set of 32-bit integers would require 
oloring a graph with2232 verti
es. For 
ertain 
lasses of errors, a more pra
ti
al approa
h is based on error-dete
ting
odes.3.2 Error dete
tionRe
all that a level set of a fun
tion is a set of points at whi
h the fun
tion returns the samevalue.



Theorem 2 Any one-way data veri�
ation fun
tion �(�) for an error set E generates 
odes inZnq whi
h dete
t E. Conversely, any error-dete
ting 
ode C � Znq is the level set of a one-waydata veri�
ation fun
tion. Therefore, ea
h mono
hromati
 set of verti
es in a proper 
oloringof GE is also an error-dete
ting 
ode for E.The following two 
orollaries of Theorem 2 sharpen the 
onne
tion between veri�
ation anderror-dete
tion.Corollary 2 Any one-way data veri�
ation fun
tion �(�) over Znq with transmission size �
orresponds to an error-dete
ting 
ode with at least qn� 
odewords.Corollary 3 For any error set E with 
hara
teristi
 graph GE there exists an error-dete
ting
ode C with number of 
odewordsjC j � qn�(GE) � qnmaxv2Znq jE(v)j � qn2jEj :We note that Corollary 3 generalizes the well-known Gilbert-Varshamov bound to our general
lass of errors.The 
onne
tion between veri�
ation and error dete
tion established by Theorem 2 is unidire
-tional: given a veri�
ation fun
tion one immediately obtains at least one error-dete
ting 
ode;however, an error-dete
ting 
ode does not, in general, generate a veri�
ation fun
tion, unlessthe error set E is both bije
tive and 
ommutative.Theorem 3 Any non-extendible1 
ode C � Znq that dete
ts a bije
tive and 
ommutative errorset E also generates a one-way data veri�
ation fun
tion �(�) with transmission size at mostmax
2 C jE(
)j.Theorem 3 shows that data veri�
ation and error dete
tion are equivalent for bije
tive and
ommutative error sets E . However, in general this is not the 
ase, as the following 
ounterex-ample demonstrates.Counterexample 1 Consider the length 3, binary, linear 
ode 
onsisting of four ve
tors: C =f000; 010; 101; 111g. This 
ode dete
ts the error set E 
onsisting of:� an identity error e0(x) = x.� a translation error e1(x) = x� 100, where � denotes binary XOR.� two permutation errors e2(x1x2x3) = x2x3x1 and e3(x1x2x3) = x3x1x2The 
hara
teristi
 graph of E is depi
ted in Figure 3. This error set is bije
tive, but not 
ommutative.The veri�
ation fun
tion 
onstru
ted in Theorem 3 takes on two values: �(
i) = e0 and �(e1(
i)) =e1 for 
i 2 C . Veri�
ation will thus fail on ve
tors vA = 001 and vB = 100, whi
h di�er by errore3, be
ause it will de
ide that they are equal (i.e. �(vA) = �(vB) = e1). Furthermore, the graphin Figure 3 has 
hromati
 number 3, meaning that no one-way data veri�
ation fun
tion will mat
hthe 1-bit of redundan
y needed by the error-dete
ting 
ode C .1A 
ode is extendible if 
odewords 
an be added to it without a�e
ting its error-dete
ting/
orre
ting 
apability.
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010110 Figure 3: The 
hara
teristi
 graph for the error set in Counterexample 1. Solid 
ir
les denote
odewords of the 
orresponding error-dete
ting 
ode.4 Data re
on
iliation, 
oloring, and error-
orre
tionThe problem of data re
on
iliation is to determine the minimum amount of information hostA should send to host B so that B 
an determine the multi-set MA held by A. As before, theonly a priori assumption is that the set MB held by B is a distortion of MA via some error ine2E .4.1 Graph 
oloringTheorem 4 Any se
ond-order 
oloring of GE generates a one-way data re
on
iliation fun
tion�(�) for the error set E. Conversely, any su
h re
on
iliation fun
tion �(�) yields a se
ond-order 
oloring of GE . The minimum transmission size required for re
on
iliation is pre
iselythe se
ond-order 
hromati
 number �2(GE).Corollary 4 The minimum transmission size WR for a one-way data re
on
iliation fun
tionover an error set E satis�es the inequalitiesmaxv2Znq jE(v)j � WR � maxv2Znq jE2(v)j: (2)We note that lower bound for data re
on
iliation is identi
al to the upper bound for dataveri�
ation, suggesting that for some error sets the hardest data veri�
ation problems are theeasiest data re
on
iliation problems.4.2 Error 
orre
tionTheorem 5 Any one-way data re
on
iliation fun
tion �(�) for an error set E generates 
odesin Znq whi
h 
orre
t E . Ea
h mono
hromati
 set of verti
es in a se
ond-order 
oloring of GE isa 
ode that 
orre
ts E.Corollary 5 Any one-way data re
on
iliation fun
tion �(�) over Znq with transmission size �
orresponds to an error-
orre
ting 
ode with at least qn� 
odewords.Corollary 6 For any error set E with 
hara
teristi
 graph GE there exists an error-
orre
ting
ode C with number of 
odewordsqnmaxv2Znq jE2(v)j � qn�2(GE) � jC j � qnmaxv2Znq jE(v)j :



By Theorem 2, any 
ode that dete
ts error set E is a mono
hromati
 set of verti
es in a proper
oloring of GE . In 
ontrast with this, not every 
ode that 
orre
ts E is a mono
hromati
 set ina se
ond-order 
oloring of GE .Theorem 6 Any non-extendible 
ode C � Znq that 
orre
ts a bije
tive and 
ommutative errorset E generates a one-way data re
on
iliation fun
tion �(�) with transmission size at mostmax
2 C jE2(
)j.The proof for Theorem 6 provides the following proto
ol for performing a re
on
iliation usinga given 
ode.Proto
ol 1 (Data re
on
iliation using a 
ode C )Given hosts A and B with 
hara
teristi
 ve
tors vA and vB respe
tively, B 
an be re
on
iledwith A as follows:1. A sends to B the value �(vA) = eA where eA(
A) = vA for some 
odeword 
A 2 C .2. B 
al
ulates e�1A (vB).3. B �nds the unique e2E with the property that e�1A (vB) = e(
) for some 
2 C4. B determines A's 
hara
teristi
 ve
tor as vA = e�1(vB).In the 
ase of 
lassi
al errors, one 
an understand Theorem 6 in terms of the 
overing radiusof a 
ode [17℄, de�ned to be the minimum value � for whi
h balls of radius � will 
ompletely
over Znq .Corollary 7 For every non-extendible 
ode C of length n, 
overing radius �, and minimumdistan
e 2t + 1, there 
orresponds a one-way data re
on
iliation and veri�
ation fun
tion forE t
lass (from Example 1) with transmission size�Xi=0 �ni�(q � 1)i:Theorems 5 and 6 are 
onstru
tive in that they provide pre
ise instru
tions for how to 
on-stru
t a re
on
iliation fun
tion from a 
ode and vi
e versa. The next example illustrates thesetheorems.Example 4 (Polynomial Interpolation) Consider the proto
ol given in [7℄ for traditional set re
on-
iliation. This proto
ol asso
iates with ea
h set S � Zb2 a 
hara
teristi
 polynomial�S(x) = Ys2 S(x� s):In order to re
on
ile, host A sends to the other host m evaluations �SA(si) at pres
ribed pointssi 2Zb2; the value m is an assumed bound on the size of the mutual di�eren
e between the sets ofboth hosts. By 
omparing �SA to �SB , host B is able to determine the mutual di�eren
e of thetwo sets.Applying Theorem 6 we see that given sample points si, one 
ode 
orresponding to this re
on
il-iation is given by C = fv(S)2Z2b2 j �S(si) = 0 8sig:In other words, C is the 
y
li
 
ode 
orresponding to the ideal generated by Qsi(x � si). Whensi are the appropriate powers of a primitive n-th root of unity, this is pre
isely the well-knownBose-Chaudhuri-Ho
hquenghem (BCH) 
ode.



4.3 Non-
ommutative and non-bije
tive errorsTheorems 3 and 6 only provide a redu
tion from data 
omparison to error-
ontrol 
odes whenthe error set is both bije
tive and 
ommutative. However, several useful error sets, su
h as per-mutations, image transformations, and insertions are either non-
ommutative or non-bije
tive.Counterexample 2 (Uni-dire
tional errors) Consider the 
ase where one host is a server to whi
hentries are added at various times, and another host is a 
lient trying to stay up to date with theserver. Re
on
iling su
h data 
an be modeled with the use of unidire
tional errors, in whi
h theonly permitted 
orruptions involve 
hanging 0's in a sour
e ve
tor to 1's in a target ve
tor or vi
eversa. This error set is 
learly non-bije
tive. For the 
ase n = 4 and q = 2, the linear 
odeC = f0000; 0011; 1100; 1111g 
orre
ts one unidire
tional error using 2 bits of redundan
y. On theother hand, the 
hara
teristi
 graph for these errors 
an only be se
ond-order 
olored with 8 
olors,meaning that re
on
iliation requires at least 3 bits of 
ommuni
ation.5 Appli
ationsVarious natural appli
ations exist for the general 
lass of errors modeled in this work. Problemssu
h as set re
on
iliation, �le syn
hronization, page-error 
orre
tion, and 
lient-server updates,ea
h involve re
on
iliation over a di�erent error set. We des
ribe one of these problems.5.1 Page errorsConsider the model of page errors, in whi
h 
ase errors are assumed to o

ur only in the sameregion. This 
ould happen, for example, in the 
ase of 
omparing outputs of two pro
essors. Ifea
h pro
essor outputs data in a 
ertain region of the ambient spa
e, then a pro
essor failureon one pro
essor would result in set di�eren
es in only the 
orresponding region [18℄.Consider, for sake of example, that two hosts ea
h have subsets of Z16, with page regionsde�ned every four elements; thus the �rst page 
ontains elements f1; 2; 3; 4g, the next page
ontains f5; 6; 7; 8g, et
. The error set Epage for this model thus 
ontains all fun
tions that
orrupt a single page. For example, a 
orruption of the �rst page by a toggling the existen
eof set elements 1 and 3 is given bye3(x) = x� 0000000000000101where x is the 
hara
teristi
 ve
tor of the 
orrupted set. Sin
e jE(x)j = 61 in this 
ase,Corollary 1 implies that one-way set veri�
ation requires at most 6 bits of 
ommuni
ation.One-way set re
on
iliation, on the other hand, requires 6 � WR(Epage) � log(jE2(X)j) =log(1411) < 11 bits of 
ommuni
ation. Using Reed-Solomon 
odes of length 4, we 
an attainWV (Epage) � 4 bits and WR(Epage) � 8 bits of 
ommuni
ation.In general, if sets are 
hosen as subsets of Zb2 and ea
h page 
ontains p elements any t of whi
hmight be 
orrupted, then the amount of 
ommuni
ation needed for re
on
iliation when t2b ! 0and pb ! 0 is given by log2WR(Epage) � log2 " 2tXi=0(2p � 1)i�2bpi �# � 2tb (3)bits, whereas a 
lassi
al fun
tion 
orre
ting any pt errors would require roughly ptb bits of
ommuni
ation. The bound in Equation 3 
orresponds to the bound in [19℄ based on usingReed-Solomon 
odes for re
on
iliation of these types of errors.



6 Con
lusionsIn this work we have studied the problem of re
on
iling remote data with a minimum amountof 
ommuni
ation. We have demonstrated 
onne
tions between data re
on
iliation, error-
orre
ting 
odes, and graph 
oloring over a general error set. In parti
ular, we have des
ribed inSe
tion 4 how to transform an arbitrary 
ode that 
orre
ts a general 
lass of 
ommutative andbije
tive errors into an algorithm for data re
on
iliation, and vi
e versa; similarly in Se
tion 3we have shown how su
h an error-dete
ting 
ode 
an be used to perform data veri�
ation.These transformations are parti
ularly useful be
ause a wide variety of 
odes have already beenpresented in the literature for a number of di�erent error sets.Using the 
onne
tions dis
overed in this paper, we have also presented the following boundson the number of signals that need to be transmitted for data veri�
ation (WV (E)) and datare
on
iliation (WR(E)) for an arbitrary set of 
orruptions E that form a 
hara
teristi
 graphGE : �(GE ) �WV (E) � maxx jE(x)j (4)maxx jE(x)j � �2(GE) =WR(E) � maxx jE2(x)j: (5)Both upper bounds (4) and (5) are 
onstru
tive in that we have des
ribed an expli
it meansof attaining them for a given error set. As mentioned in Se
tion 1.1, the lower bounds havealready appeared in various forms in the literature.Finally, we have presented a number of examples throughout the work and in Se
tion 5,thereby demonstrating the appli
ability of this work to su
h diverse areas as testing, �le syn-
hronization, and 
lient-server network updates.A
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