
Spae-Time Turn Prohibitionsfor Low Density Parity-Chek CodesAri Trahtenberg Mark KarpovskyReliable Computing LaboratoryBoston University1 IntrodutionIn 1948 Shannon [1℄ proved that error-free ommuniation is possible through a ommunia-tion hannel at rates up to its apaity. Unfortunately, Shannon's proof was non-onstrutiveand pratially deodable odes ahieving suh apaity remain elusive to this day. LowDensity Parity-Chek odes, originally introdued by Gallager [2℄, have reently regainedpopularity beause they have experimentally ome very lose to the Shannon limit (within0.045dB reently [3℄), promising that an eÆient implementation might �nally provide opti-mal error-orretion apabilities for various hannel models.Low Density Parity-Chek (LDPC) odes are deoded with an iterative deoding algorithm,known as the sum-produt algorithm, that operates on a graph that represents the ode.The algorithm is atually fairly general, enompassing as speial instanes both the forward-bakward algorithm on a trellis, due to Bahl, Coke, Jelinek, and Raviv [4℄, and the deodingalgorithm for the well-known Turbo odes [5, 6℄. In a modi�ed form as the min-sum algorithmit is also the lassial Viterbi algorithm for a trellis [7℄. This deoding algorithm is naturallyparallelizable into a message-passing network of very simple proessors, allowing for eÆientimplementation on a hip in many pratial senarios.In the ase where the underlying graph used to represent an error-orreting ode is yle-free, the sum-produt algorithm is known to onverge to an optimal odeword. However,little is known about the onvergene of the algorithm for graphs with yles [8, 9℄; in someases the algorithm does not onverge. Reent work [10℄ shows that yle-free graphs onlyadmit error-orreting odes with a very low minimum distane, and onsequently poorasymptoti performane.Thus, graph yles are a diÆulty inherent in this deoding sheme. The fat that maxi-mum likelihood deoding of a linear ode is an NP-hard problem [11℄ on�rms the intuitionthat deoding on a graph with yles is intrinsially diÆult. For this reason, we feel it isimportant to look at tehniques for breaking yles in suh graphs.The onept of yle-breaking is not new [8℄. The traditional tehniques for doing thisinvolve removing edges until the graph is yle free; however, removal of an edge alters theunderlying error-orreting ode and results in a weak ode. An alternative tehnique for1



breaking yles involves repeatedly splitting nodes in a yle into two dupliates forming anin�nite, yle-free graph that an only be deoded probabilistially.We propose applying a novel method of yle-breaking using turn prohibitions to mitigate thee�ets of yles in the graph of an error-orreting ode. The idea is to prohibit (or slow)information from traveling along ertain turns in the graph. For example, three vertiesv1; v2; and v3 ould be designated as a prohibited turn so that information from v1 to v3would not be permitted to ow through v2.Suh prohibitions an be applied naturally to the sum-produt algorithm. We may enforethese prohibitions for spei� deoding iterations, giving time-varying prohibitions, or withspei� dampening weights, giving spae-varying prohibitions. The union of these models,whih we all spae-time prohibitions, shows promise for both improved deoding perfor-mane and provable onvergene. Moreover, sine these prohibitions merely improve thedeoding proess, without hanging the underlying ode, they an be applied to the bestLDPC odes as they are disovered.2 BakgroundThe sum-produt deoding algorithm operates on the Tanner graph [12℄ of a orrespond-ing error-orreting ode. Tanner graphs are spei� instanes of a more general graphintrodued by Wiberg, Loeliger, and K�otter [7℄ for fatoring omputations into minimalonstituents. Formally, the Tanner graph of a ode is simply the inidene graph of itsparity-hek matrix. This graph is bipartite; the nodes of one part, known as the symbolnodes, represent bits of the reeived vetor and the nodes of the other part, known as heknodes, impose hek onstraints on the symbol as ditated by the underlying error-orretingode. Figure 1 shows the Tanner graph for the ode given by the following parity-hek ma-trix: H = 24 1 0 1 0 10 1 0 0 11 0 0 1 0 35 (1)Note that the Tanner graph of a ode is not sensitive to oordinate permutation, but issensitive to the hoie of parity-hek matrix. Thus, the Tanner graph for one parity-hekmatrix might have yles whereas the Tanner graph for the same ode under a di�erentparity-hek matrix might not.2.1 The sum-produt algorithmGiven a Tanner graph G for a linear ode C, deoding is typially performed using thesum-produt algorithm, whih is a generalization of approximate belief propagation [13℄.2



Figure 1: The Tanner graph for a ode determined by the parity hek matrix (1).Thus, in eah iteration, eah symbol node sends to its neighboring hek nodes a probabilityassoiated with its belief that the orresponding transmitted bit was a 0, and likewise eahhek node sends its own belief (based on its own neighboring symbols) bak to the symbol.Ideally, this iterative sheme onverges to reveal the transmitted vetor.More formally, onsider sending the odeword  over a noisy hannel, resulting in the reeivedvetor z =  + e. Adopting the notation in [9, 14℄, we assoiate quantities qam;n with theprobability that symbol n of z is a, given information from heks other than m; likewisewe assoiate ram;n with the probability that hek m is satis�ed if symbol n of z is set to a.The harateristis of the ommuniation hannel are instantiated through the variable fan ,whih is set to the likelihood that zn = a.The algorithm is initialized by setting qam;n = fan for all m;n. Thereafter, q and r quantitiesare updated in some order aording to the rulesqam;n = �m;n fan Yall heks j 6= mneighboring symboln raj;n (2)(3)ram;n = fan Xall vetors x satisfy-ing hek m Yall sites j 6= n neigh-boring m qxjm;j (4)where �m;n is a normalization oeÆient hosen to make q0m;n + q1m;n = 1. The iterationontinues until one of three onditions is met:� the values q and r onverge� a maximum number of iterations (typially between 200 and 1000) is reahed
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� the deoding d given by:dn = argmaxa fan Yall heks j neighbor-ing symbol n raj;nsatis�es all the parity-heks of the ode2.2 Low Density Parity-Chek CodesThe running time of sum-produt algorithm is learly exponential in the maximum degree ofa hek node in the underlying graph. Thus, for pratial deoding this maximum degree hasto be kept fairly low. One of the surprising qualities of Gallager's LDPC odes [2, 15℄ is thatthese odes both a�ord pratial deoding and also support very powerful error orretion.Formally, Gallager LDPC odes are de�ned by a very sparse, random parity-hek matrix.Given a transmitted blok length N and a soure blok length K, this (N �K)�N matrixis onstruted to have t ones in eah olumn and as lose to tN=(N �K) ones in eah rowas possible. MaKay and Neal [9, 16℄ applied several heuristis to avoid partiularly badrandom hoies for these matries. They showed that suh LDPC odes, inluding their ownvariants alled MN-odes, are learly ompetitive with the latest Turbo ode realizationsand ome very lose to Shannon's apaity.2.3 Turn prohibitionsLet G = (E; V ) be an undireted graph with verties V and edges E. A yle C of length Lin this graph is a path whose initial and �nal verties are the same. A turn (a; b; ) is a tripleof verties in V along some path; it is said to break the yle C if a, b, and  are onseutiveverties in C.We denote by Z(G) the minimal set of turns breaking all yles in G (inluding those yleswhere the same node or edge appears several times) while preserving onnetivity. Thus, forevery yle in G there is a orresponding turn in Z(G); moreover, any two nodes v and ware on some path that does not ontain any turns in Z(G). We shall say that Z(G) is anirreduible turn prohibition set for G if no proper subset of Z(G) breaks all yles in G.The problem of onstruting minimal turn prohibition sets is important for developingdeadlok-free routing protools in omputer ommuniation networks [17℄. One approahfor solving this problem is known as the \up and down" approah [18℄. In this ase, we �rstonstrut a rooted spanning tree, whih imposes a partial order on the graph (i.e. a < bif a is a parent of b in the tree). Then, turn (a; b; ) is prohibited if a < b < . With thisapproah, the fration of prohibited turns for a given graph depends on the hosen spanning4



tree and may be lose to 1. It was shown in [17℄ that, for any graph G it is possible toonstrut an irreduible turn prohibition set Z(G) with the property thatjEj � jV j+ 1 � jZ(G)j � 16Xi=1 jV jdi(d� 1); (5)where di is the number of neighbors of vertex vi 2 V . The amount of time and memoryneeded for onstruting Z(G) meeting (5) is at most O(jV j2).In the ase of the Tanner graph of a length N LDPC ode with hek degree t and site degreetNN�K , equation (5) beomes(t� 1)N + 1 � jZ(G)j � 12N min�13(t(t� 1) + tR( tR � 1)); t(t� 1)� ;where R = 1� KN . For example, for t = 3 and R = 0:5 we have that2N + 1 � jZ(G)j � 3N:Thus, by prohibiting a number of turns that is linear in the length of the ode, one an breakall yles in an arbitrary LDPC ode and fore belief propagation to onverge quikly.3 Spae-time turn prohibitionsAs mentioned in the introdution, little is known about the onvergene of the sum-produtalgorithm over a graph with yles. Figure 2 shows one example of a Tanner graph for asimple repetition ode for whih the sum-produt algorithm does not onverge. Traditionalmeans of breaking yles in a graph (i.e. forming a minimum spanning tree) either reduethe pratiality of deoding or else result in a trivial ode.
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Figure 2: Messages transmitted in the sum-produt deoding of the Tanner graph of arepetition ode. In this ase, a vetor [0,1℄ has been reeived over a Binary SymmetriChannel with rossover-probability 0.05. The algorithm does not onverge, unable to deidewhih vetor was atually transmitted. 5
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Figure 3: Sum-produt deoding of the Tanner graph of a repetition ode, where one turnhas been prohibited. In this ase, a vetor [0,1℄ has been reeived over a Binary SymmetriChannel with rossover-probability 0.05. The prohibition of a turn fores the algorithm toonverge to some deoding.Turn prohibition provides a onvenient method of breaking yles without hanging theunderlying error-orreting ode and, at the same time, improving the onvergene of thedeoding algorithm. Fast onvergene is partiularly important for LDPC odes beausethe best odes have lengths up to tens of millions [3℄ of symbols, meaning that unneessaryiterations signi�antly a�et the deoding omplexity.Using the turn prohibition model, we prohibit information from owing along prosribedturns by restriting the update equations (2) and (4) as follows:qam;n = �m;nfan Yall heks j 6= m neighboring sym-bol n; (m;n; j) is not a prohibitedturn raj;n
ram;n = fan Xall vetors x satisfy-ing hek m Yall sites j 6= n neighboringm; (m;n; j) is not a prohib-ited turn qxjm;j

Figure 3 shows that prohibiting one turn from the Tanner graph in 2 an ause the sum-produt algorithm to onverge where, otherwise, it would not.It appears that the proof in [12, 8℄ that the sum-produt algorithm onverges on a yle-free graphs transfers straightforwardly to turn-prohibited graphs. However, unlike yle-freegraphs, turn-prohibited graphs do not neessarily yield optimal deodings. In fat, yles doplay an important role in deoding performane. For this reason, it is desirable to enfore turnprohibitions only for ertain iterations, in a time-varying manner. We all suh enforementtime turn prohibitions.Figure 4 shows experimental results for a very short Gallager LDPC of length 200. Note thatturn prohibition dramatially improves the average number of iterations in the sum-produt6



BER over BSC for length 200 LDPCs
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(b)Figure 4: Performane of length=20, rate=3/4 Gallager LDPC's on a binary symmetrihannel using three di�erent variations of the sum-produt algorithm: [Standard℄ - the stan-dard algorithm uto� after 201 iterations; [Turn prohibition℄ - the standard algorithm withturn prohibitions added after 20 iterations; [Cuto�℄ - the standard algorithm uto� after 32iterations (i.e. the maximum number of iterations used by the algorithm with turn prohibi-tions). All algorithms were run on the exatly the same input data.algorithm without signi�antly a�eting the probability of error; in fat, the sum-produtalgorithm with turn prohibitions never takes more than 134 iterations to deode an error.Using turn prohibition even results in a smaller average number of iterations than stoppingdeoding after 134 iterations, without ompromising the bit error rate.3.1 Spae prohibitionsIt is lear that turn prohibitions serve as a damping mehanism preventing informationfrom feeding bak on itself in a graph yle. At the same time, yles are intrinsi to gooddeoding performane. For this reason, we onsider spae turn prohibitions, where insteadof forbidding a turn outright we simply add a dampening oeÆient to spei� turns thatfores onvergene of information that is yling.Thus, for example, every turn (m;n; j) around a site m now ontributes �raj;n�m;n;j to anyoverall produt, rather than just raj;n, where m;n;j is the oeÆient orresponding to the turn(m;n; j). The value m;n;j = 1 orresponds to a ompletely permitted turn and the valuem;n;j = 0 orresponds to a ompletely prohibited turn; values in between 0 and 1 orrespond
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Figure 5: An example of performane improvement using a simple blok ode with 6 symbols(i.e. the irles) and 4 parity-heks (i.e. the shaded irles) over a Binary SymmetriChannel with rossover probability 0.1. Shaded turns orrespond to turn prohibitions withoeÆient 0:5 whereas unshaded turns have oeÆient 1:0.to progressive damping of the turn. The update equations (2) and (4) thus beome:qam;n = �m;nfan Yall heks j 6= mneighboring symboln �raj;n�m;n;j (6)(7)ram;n = fan Xall vetors x satisfy-ing hek m Yall sites j 6= n neigh-boring m �qxjm;j�m;n;j (8)
Thus, we an �rst determine a minimal set of turn prohibitions for yles in a graph andthen adjust the weights of these prohibitions for optimal performane over a spei� hannel.One reasonable weight model involves assigning to eah vertex a weight related to the lengthof the shortest yle inluding that vertex. Figure 5 shows improvements gleaned usingspae turn prohibitions with oeÆients 0:5 and 1 alone. Spei�ally for this ode, standardsum-produt deoding requires an average of 2:755 iterations (ranging from 1 for the besttrial to 62 for the worst trial); deoding with generalized turn prohibitions, on the otherhand, requires an average of 1:642 iterations (ranging from 1 to 11). Moreover, in thissmall example, deoding with generalized turn prohibitions results in 56 fewer bit errorsover 100; 000 simulated transmissions.In e�et, we an improve the performane of some odes with appropriate use of damping.8



This would suggest that it is possible to tune performane of a general LDPC ode to aspei� hannel with the appropriate spae-time turn prohibitions.4 ConlusionWe have onsidered a novel method of breaking yles in the Tanner graph of Low DensityParity-Chek odes. By prohibiting spei� turns in suh a graph, one an fore the on-vergene of the belief-propagation algorithm, typially making it muh faster than withoutturn prohibition. These turn prohibitions an be sheduled either in a time-varying fashion,in whih turns are prohibited only for ertain iterations of the deoding algorithm, or in aspae-varying fashion, in whih hanges along spei� turns are steadily dampened, or bothfashions. Experimental evidene suggests that that error-orreting performane and theonvergene rate of the deoding algorithm an be improved through the areful seletion ofspae-time turn prohibitions.Referenes[1℄ C.E. Shannon, \A mathematial theory of ommuniation," Bell Syst. Teh. J., vol.27, pp. 379{423, 623{656, 1948.[2℄ R.G. Gallager, \Low-density parity-hek odes," IRE Trans. Inform. Theory, vol. 8,pp. 21{28, jan 1962.[3℄ S.-Y. Chung, Jr. G. D. Forney, T. J. Rihardson, and R. Urbanke, \On the designof low-density parity-hek odes within 0.0045 db from the shannon limit," IEEECommun. Letters, vol. 5, pp. 58{60, February 2001.[4℄ L.R. Bahl, J. Coke, F. Jelinek, and J. Raviv, \Optimal deoding of linear odes forminimizing symbol error rate," IEEE Transations on Information Theory, vol. 20, pp.284{287, 1974.[5℄ A. Glavieux C. Berrou and P. Thitimajshima, \Near shannon limit error-orretingoding and deoding: turbo odes," Pro. IEEE Int. Conf. on Communiations, pp.1064{1070, 1993.[6℄ C. Berrou and A. Glavieux, \Near optimum error orreting oding and deoding:Turbo-odes," IEEE Trans. Inform. Theory, vol. 20, pp. 1261{1271, 1996.[7℄ H.-A. Loeliger N. Wiberg and R. K�otter, \Codes and iterative deoding on generalgraphs," Euro. Trans. Teleommun., vol. 6, pp. 513{526, 1995.9
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