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tionIn 1948 Shannon [1℄ proved that error-free 
ommuni
ation is possible through a 
ommuni
a-tion 
hannel at rates up to its 
apa
ity. Unfortunately, Shannon's proof was non-
onstru
tiveand pra
ti
ally de
odable 
odes a
hieving su
h 
apa
ity remain elusive to this day. LowDensity Parity-Che
k 
odes, originally introdu
ed by Gallager [2℄, have re
ently regainedpopularity be
ause they have experimentally 
ome very 
lose to the Shannon limit (within0.045dB re
ently [3℄), promising that an eÆ
ient implementation might �nally provide opti-mal error-
orre
tion 
apabilities for various 
hannel models.Low Density Parity-Che
k (LDPC) 
odes are de
oded with an iterative de
oding algorithm,known as the sum-produ
t algorithm, that operates on a graph that represents the 
ode.The algorithm is a
tually fairly general, en
ompassing as spe
ial instan
es both the forward-ba
kward algorithm on a trellis, due to Bahl, Co
ke, Jelinek, and Raviv [4℄, and the de
odingalgorithm for the well-known Turbo 
odes [5, 6℄. In a modi�ed form as the min-sum algorithmit is also the 
lassi
al Viterbi algorithm for a trellis [7℄. This de
oding algorithm is naturallyparallelizable into a message-passing network of very simple pro
essors, allowing for eÆ
ientimplementation on a 
hip in many pra
ti
al s
enarios.In the 
ase where the underlying graph used to represent an error-
orre
ting 
ode is 
y
le-free, the sum-produ
t algorithm is known to 
onverge to an optimal 
odeword. However,little is known about the 
onvergen
e of the algorithm for graphs with 
y
les [8, 9℄; in some
ases the algorithm does not 
onverge. Re
ent work [10℄ shows that 
y
le-free graphs onlyadmit error-
orre
ting 
odes with a very low minimum distan
e, and 
onsequently poorasymptoti
 performan
e.Thus, graph 
y
les are a diÆ
ulty inherent in this de
oding s
heme. The fa
t that maxi-mum likelihood de
oding of a linear 
ode is an NP-hard problem [11℄ 
on�rms the intuitionthat de
oding on a graph with 
y
les is intrinsi
ally diÆ
ult. For this reason, we feel it isimportant to look at te
hniques for breaking 
y
les in su
h graphs.The 
on
ept of 
y
le-breaking is not new [8℄. The traditional te
hniques for doing thisinvolve removing edges until the graph is 
y
le free; however, removal of an edge alters theunderlying error-
orre
ting 
ode and results in a weak 
ode. An alternative te
hnique for1



breaking 
y
les involves repeatedly splitting nodes in a 
y
le into two dupli
ates forming anin�nite, 
y
le-free graph that 
an only be de
oded probabilisti
ally.We propose applying a novel method of 
y
le-breaking using turn prohibitions to mitigate thee�e
ts of 
y
les in the graph of an error-
orre
ting 
ode. The idea is to prohibit (or slow)information from traveling along 
ertain turns in the graph. For example, three verti
esv1; v2; and v3 
ould be designated as a prohibited turn so that information from v1 to v3would not be permitted to 
ow through v2.Su
h prohibitions 
an be applied naturally to the sum-produ
t algorithm. We may enfor
ethese prohibitions for spe
i�
 de
oding iterations, giving time-varying prohibitions, or withspe
i�
 dampening weights, giving spa
e-varying prohibitions. The union of these models,whi
h we 
all spa
e-time prohibitions, shows promise for both improved de
oding perfor-man
e and provable 
onvergen
e. Moreover, sin
e these prohibitions merely improve thede
oding pro
ess, without 
hanging the underlying 
ode, they 
an be applied to the bestLDPC 
odes as they are dis
overed.2 Ba
kgroundThe sum-produ
t de
oding algorithm operates on the Tanner graph [12℄ of a 
orrespond-ing error-
orre
ting 
ode. Tanner graphs are spe
i�
 instan
es of a more general graphintrodu
ed by Wiberg, Loeliger, and K�otter [7℄ for fa
toring 
omputations into minimal
onstituents. Formally, the Tanner graph of a 
ode is simply the in
iden
e graph of itsparity-
he
k matrix. This graph is bipartite; the nodes of one part, known as the symbolnodes, represent bits of the re
eived ve
tor and the nodes of the other part, known as 
he
knodes, impose 
he
k 
onstraints on the symbol as di
tated by the underlying error-
orre
ting
ode. Figure 1 shows the Tanner graph for the 
ode given by the following parity-
he
k ma-trix: H = 24 1 0 1 0 10 1 0 0 11 0 0 1 0 35 (1)Note that the Tanner graph of a 
ode is not sensitive to 
oordinate permutation, but issensitive to the 
hoi
e of parity-
he
k matrix. Thus, the Tanner graph for one parity-
he
kmatrix might have 
y
les whereas the Tanner graph for the same 
ode under a di�erentparity-
he
k matrix might not.2.1 The sum-produ
t algorithmGiven a Tanner graph G for a linear 
ode C, de
oding is typi
ally performed using thesum-produ
t algorithm, whi
h is a generalization of approximate belief propagation [13℄.2



Figure 1: The Tanner graph for a 
ode determined by the parity 
he
k matrix (1).Thus, in ea
h iteration, ea
h symbol node sends to its neighboring 
he
k nodes a probabilityasso
iated with its belief that the 
orresponding transmitted bit was a 0, and likewise ea
h
he
k node sends its own belief (based on its own neighboring symbols) ba
k to the symbol.Ideally, this iterative s
heme 
onverges to reveal the transmitted ve
tor.More formally, 
onsider sending the 
odeword 
 over a noisy 
hannel, resulting in the re
eivedve
tor z = 
 + e. Adopting the notation in [9, 14℄, we asso
iate quantities qam;n with theprobability that symbol n of z is a, given information from 
he
ks other than m; likewisewe asso
iate ram;n with the probability that 
he
k m is satis�ed if symbol n of z is set to a.The 
hara
teristi
s of the 
ommuni
ation 
hannel are instantiated through the variable fan ,whi
h is set to the likelihood that zn = a.The algorithm is initialized by setting qam;n = fan for all m;n. Thereafter, q and r quantitiesare updated in some order a

ording to the rulesqam;n = �m;n fan Yall 
he
ks j 6= mneighboring symboln raj;n (2)(3)ram;n = fan Xall ve
tors x satisfy-ing 
he
k m Yall sites j 6= n neigh-boring m qxjm;j (4)where �m;n is a normalization 
oeÆ
ient 
hosen to make q0m;n + q1m;n = 1. The iteration
ontinues until one of three 
onditions is met:� the values q and r 
onverge� a maximum number of iterations (typi
ally between 200 and 1000) is rea
hed
3



� the de
oding d given by:dn = argmaxa fan Yall 
he
ks j neighbor-ing symbol n raj;nsatis�es all the parity-
he
ks of the 
ode2.2 Low Density Parity-Che
k CodesThe running time of sum-produ
t algorithm is 
learly exponential in the maximum degree ofa 
he
k node in the underlying graph. Thus, for pra
ti
al de
oding this maximum degree hasto be kept fairly low. One of the surprising qualities of Gallager's LDPC 
odes [2, 15℄ is thatthese 
odes both a�ord pra
ti
al de
oding and also support very powerful error 
orre
tion.Formally, Gallager LDPC 
odes are de�ned by a very sparse, random parity-
he
k matrix.Given a transmitted blo
k length N and a sour
e blo
k length K, this (N �K)�N matrixis 
onstru
ted to have t ones in ea
h 
olumn and as 
lose to tN=(N �K) ones in ea
h rowas possible. Ma
Kay and Neal [9, 16℄ applied several heuristi
s to avoid parti
ularly badrandom 
hoi
es for these matri
es. They showed that su
h LDPC 
odes, in
luding their ownvariants 
alled MN-
odes, are 
learly 
ompetitive with the latest Turbo 
ode realizationsand 
ome very 
lose to Shannon's 
apa
ity.2.3 Turn prohibitionsLet G = (E; V ) be an undire
ted graph with verti
es V and edges E. A 
y
le C of length Lin this graph is a path whose initial and �nal verti
es are the same. A turn (a; b; 
) is a tripleof verti
es in V along some path; it is said to break the 
y
le C if a, b, and 
 are 
onse
utiveverti
es in C.We denote by Z(G) the minimal set of turns breaking all 
y
les in G (in
luding those 
y
leswhere the same node or edge appears several times) while preserving 
onne
tivity. Thus, forevery 
y
le in G there is a 
orresponding turn in Z(G); moreover, any two nodes v and ware on some path that does not 
ontain any turns in Z(G). We shall say that Z(G) is anirredu
ible turn prohibition set for G if no proper subset of Z(G) breaks all 
y
les in G.The problem of 
onstru
ting minimal turn prohibition sets is important for developingdeadlo
k-free routing proto
ols in 
omputer 
ommuni
ation networks [17℄. One approa
hfor solving this problem is known as the \up and down" approa
h [18℄. In this 
ase, we �rst
onstru
t a rooted spanning tree, whi
h imposes a partial order on the graph (i.e. a < bif a is a parent of b in the tree). Then, turn (a; b; 
) is prohibited if a < b < 
. With thisapproa
h, the fra
tion of prohibited turns for a given graph depends on the 
hosen spanning4



tree and may be 
lose to 1. It was shown in [17℄ that, for any graph G it is possible to
onstru
t an irredu
ible turn prohibition set Z(G) with the property thatjEj � jV j+ 1 � jZ(G)j � 16Xi=1 jV jdi(d� 1); (5)where di is the number of neighbors of vertex vi 2 V . The amount of time and memoryneeded for 
onstru
ting Z(G) meeting (5) is at most O(jV j2).In the 
ase of the Tanner graph of a length N LDPC 
ode with 
he
k degree t and site degreetNN�K , equation (5) be
omes(t� 1)N + 1 � jZ(G)j � 12N min�13(t(t� 1) + tR( tR � 1)); t(t� 1)� ;where R = 1� KN . For example, for t = 3 and R = 0:5 we have that2N + 1 � jZ(G)j � 3N:Thus, by prohibiting a number of turns that is linear in the length of the 
ode, one 
an breakall 
y
les in an arbitrary LDPC 
ode and for
e belief propagation to 
onverge qui
kly.3 Spa
e-time turn prohibitionsAs mentioned in the introdu
tion, little is known about the 
onvergen
e of the sum-produ
talgorithm over a graph with 
y
les. Figure 2 shows one example of a Tanner graph for asimple repetition 
ode for whi
h the sum-produ
t algorithm does not 
onverge. Traditionalmeans of breaking 
y
les in a graph (i.e. forming a minimum spanning tree) either redu
ethe pra
ti
ality of de
oding or else result in a trivial 
ode.
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Figure 2: Messages transmitted in the sum-produ
t de
oding of the Tanner graph of arepetition 
ode. In this 
ase, a ve
tor [0,1℄ has been re
eived over a Binary Symmetri
Channel with 
rossover-probability 0.05. The algorithm does not 
onverge, unable to de
idewhi
h ve
tor was a
tually transmitted. 5
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Figure 3: Sum-produ
t de
oding of the Tanner graph of a repetition 
ode, where one turnhas been prohibited. In this 
ase, a ve
tor [0,1℄ has been re
eived over a Binary Symmetri
Channel with 
rossover-probability 0.05. The prohibition of a turn for
es the algorithm to
onverge to some de
oding.Turn prohibition provides a 
onvenient method of breaking 
y
les without 
hanging theunderlying error-
orre
ting 
ode and, at the same time, improving the 
onvergen
e of thede
oding algorithm. Fast 
onvergen
e is parti
ularly important for LDPC 
odes be
ausethe best 
odes have lengths up to tens of millions [3℄ of symbols, meaning that unne
essaryiterations signi�
antly a�e
t the de
oding 
omplexity.Using the turn prohibition model, we prohibit information from 
owing along pros
ribedturns by restri
ting the update equations (2) and (4) as follows:qam;n = �m;nfan Yall 
he
ks j 6= m neighboring sym-bol n; (m;n; j) is not a prohibitedturn raj;n
ram;n = fan Xall ve
tors x satisfy-ing 
he
k m Yall sites j 6= n neighboringm; (m;n; j) is not a prohib-ited turn qxjm;j

Figure 3 shows that prohibiting one turn from the Tanner graph in 2 
an 
ause the sum-produ
t algorithm to 
onverge where, otherwise, it would not.It appears that the proof in [12, 8℄ that the sum-produ
t algorithm 
onverges on a 
y
le-free graphs transfers straightforwardly to turn-prohibited graphs. However, unlike 
y
le-freegraphs, turn-prohibited graphs do not ne
essarily yield optimal de
odings. In fa
t, 
y
les doplay an important role in de
oding performan
e. For this reason, it is desirable to enfor
e turnprohibitions only for 
ertain iterations, in a time-varying manner. We 
all su
h enfor
ementtime turn prohibitions.Figure 4 shows experimental results for a very short Gallager LDPC of length 200. Note thatturn prohibition dramati
ally improves the average number of iterations in the sum-produ
t6
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(b)Figure 4: Performan
e of length=20, rate=3/4 Gallager LDPC's on a binary symmetri

hannel using three di�erent variations of the sum-produ
t algorithm: [Standard℄ - the stan-dard algorithm 
uto� after 201 iterations; [Turn prohibition℄ - the standard algorithm withturn prohibitions added after 20 iterations; [Cuto�℄ - the standard algorithm 
uto� after 32iterations (i.e. the maximum number of iterations used by the algorithm with turn prohibi-tions). All algorithms were run on the exa
tly the same input data.algorithm without signi�
antly a�e
ting the probability of error; in fa
t, the sum-produ
talgorithm with turn prohibitions never takes more than 134 iterations to de
ode an error.Using turn prohibition even results in a smaller average number of iterations than stoppingde
oding after 134 iterations, without 
ompromising the bit error rate.3.1 Spa
e prohibitionsIt is 
lear that turn prohibitions serve as a damping me
hanism preventing informationfrom feeding ba
k on itself in a graph 
y
le. At the same time, 
y
les are intrinsi
 to goodde
oding performan
e. For this reason, we 
onsider spa
e turn prohibitions, where insteadof forbidding a turn outright we simply add a dampening 
oeÆ
ient to spe
i�
 turns thatfor
es 
onvergen
e of information that is 
y
ling.Thus, for example, every turn (m;n; j) around a site m now 
ontributes �raj;n�
m;n;j to anyoverall produ
t, rather than just raj;n, where 
m;n;j is the 
oeÆ
ient 
orresponding to the turn(m;n; j). The value 
m;n;j = 1 
orresponds to a 
ompletely permitted turn and the value
m;n;j = 0 
orresponds to a 
ompletely prohibited turn; values in between 0 and 1 
orrespond
7



Figure 5: An example of performan
e improvement using a simple blo
k 
ode with 6 symbols(i.e. the 
ir
les) and 4 parity-
he
ks (i.e. the shaded 
ir
les) over a Binary Symmetri
Channel with 
rossover probability 0.1. Shaded turns 
orrespond to turn prohibitions with
oeÆ
ient 0:5 whereas unshaded turns have 
oeÆ
ient 1:0.to progressive damping of the turn. The update equations (2) and (4) thus be
ome:qam;n = �m;nfan Yall 
he
ks j 6= mneighboring symboln �raj;n�
m;n;j (6)(7)ram;n = fan Xall ve
tors x satisfy-ing 
he
k m Yall sites j 6= n neigh-boring m �qxjm;j�
m;n;j (8)
Thus, we 
an �rst determine a minimal set of turn prohibitions for 
y
les in a graph andthen adjust the weights of these prohibitions for optimal performan
e over a spe
i�
 
hannel.One reasonable weight model involves assigning to ea
h vertex a weight related to the lengthof the shortest 
y
le in
luding that vertex. Figure 5 shows improvements gleaned usingspa
e turn prohibitions with 
oeÆ
ients 0:5 and 1 alone. Spe
i�
ally for this 
ode, standardsum-produ
t de
oding requires an average of 2:755 iterations (ranging from 1 for the besttrial to 62 for the worst trial); de
oding with generalized turn prohibitions, on the otherhand, requires an average of 1:642 iterations (ranging from 1 to 11). Moreover, in thissmall example, de
oding with generalized turn prohibitions results in 56 fewer bit errorsover 100; 000 simulated transmissions.In e�e
t, we 
an improve the performan
e of some 
odes with appropriate use of damping.8



This would suggest that it is possible to tune performan
e of a general LDPC 
ode to aspe
i�
 
hannel with the appropriate spa
e-time turn prohibitions.4 Con
lusionWe have 
onsidered a novel method of breaking 
y
les in the Tanner graph of Low DensityParity-Che
k 
odes. By prohibiting spe
i�
 turns in su
h a graph, one 
an for
e the 
on-vergen
e of the belief-propagation algorithm, typi
ally making it mu
h faster than withoutturn prohibition. These turn prohibitions 
an be s
heduled either in a time-varying fashion,in whi
h turns are prohibited only for 
ertain iterations of the de
oding algorithm, or in aspa
e-varying fashion, in whi
h 
hanges along spe
i�
 turns are steadily dampened, or bothfashions. Experimental eviden
e suggests that that error-
orre
ting performan
e and the
onvergen
e rate of the de
oding algorithm 
an be improved through the 
areful sele
tion ofspa
e-time turn prohibitions.Referen
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