
 

 

ABSTRACT 

In this paper a universal model for breaking cycles is 
described. A method applicable to nondirected graphs is 
first developed and subsequently applied to communication 
networks. Loops or cycles are particularly important in 
communication networks. Specifically, communication 
networks using wormhole routing techniques [1,2,3] and 
local area networks with backpressure flow control 
mechanisms [4, 5, 6] are particularly vulnerable to network 
states known as deadlock and livelock. An efficient 
approach to handle deadlocks and livelocks in such 
networks is based on preventing them by selecting routing 
policies that are deadlock and livelock free. Cycles in 
channel dependency graph [7] in such networks have been 
used as an indicator for vulnerability for deadlocks. 
Construction of the channel dependency graph is at best 
difficult for all but very small networks. Our model 
provides a simpler alternative. It operates in the network 
graph domain instead of the channel dependency graph. We 
present a simple routing strategy for deadlock and livelock 
free unicasting and multicasting by using minimal number 
of turn prohibitions to break all cycles in the network graph. 
Performance of the model is evaluated by simulation 
experiments for irregular communication networks using 
unicast and multicast wormhole routing. 

 
KEY WORDS:- Turn Model, Turn Prohibition, Wormhole 
Routing, Unicasting, Multicast Routing 

1. INTRODUCTION 

Existence of loops or cycles in nondirected graphs that 
represent network topologies could lead to problems in the 
underlying network. Interconnection networks have been 
relying on routing algorithms that restrict the use of channel 
resources by packets or worms in order to avoid deadlocks 
[3,7,8]. Deadlock is a network state in which packets or 
worms hold channel resources while waiting for other 
channel resources indefinitely. Duato [7] has shown that 
presence of cycles in the channel dependency graph (CDG) 
leads to deadlocks. Therefore, to prevent deadlocks all 
cycles in the CDG must be broken. Since CDG depends not 
only on the topology of the original network but also on 
selected routing protocol, CDG is a much more complex 
directed graph with considerably more vertices and edges 
than the original graph representing network’s topology. 
With the generalized turn model (GTM), all simple and 

compound cycles are broken in the original graph using 
turn prohibitions. In this paper we first introduce the GTM 
and then study its performance.  

Several routing methods currently exist for regular 
topologies, such as 2-D meshes, tori and hypercubes   [1, 2,  
9, 20, 21, 22]. For irregular topologies most of the existing 
routing strategies are based on spanning trees and 
(up/down) routing [11, 12].  According to this strategy, 
once a spanning tree is constructed, any two nodes can 
communicate with each other along the tree without any 
deadlocks. Main drawbacks of this approach are the long 
message paths and high load on the edges near the root 
node. This method can be improved by allowing shortcuts 
using edges not belonging to the spanning tree, but this 
could result in deadlocks due to the formation of cycles in 
the channel dependency graph [11].  

For irregular topologies it was shown in [15, 19] that 
reduction in the number of prohibited turns results in a 
decrease of average path lengths of messages and in a 
reduction of average delivery time accompanied by an 
increase in throughput.  

We note that a set of prohibited turns for deadlock 
prevention does not completely specify the routing strategy, 
i.e. several routing strategies can satisfy the same set of 
restrictions on turns in the network graph. In [14], a 
decentralized algorithm for constructing local routing tables 
based on the set Z(G). This algorithm minimizes average 
message path lengths and thus average delivery time. Our 
goal therefore is to select the shortest routing path a1, 
a2…am (a1=s, am=d) among all paths, satisfying the routing 
restrictions imposed by the set Z(G) for any source s and 
destination d. We assume that these computations are 
infrequent as they are performed only when network 
topology changes are detected which we assume do not 
occur often. 

In both regular and irregular topologies, routing algorithms 
prevent deadlocks or cycles from being formed by 
restricting the use of network resources. In 2D meshes, 
simple cycles are broken by using for example xy routing 
by permitting turns coming in from positive or negative x 
direction, out onto positive or negative y directions, and 
forbidding all other 90 degree turns [8,9]. In irregular 
topologies, cycles and deadlocks are prevented by 
restricting the use of edges that are not on a spanning tree  
[10-13] by a technique called up/down. In this technique 
vertices are labeled in a partial order determined by a 
selected spanning tree and edges are classified into up or 
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down directed tree edges and up or down directed cross 
edges types for those edges that are not on the spanning 
tree. The technique prevents cycles by preventing a down 
edge followed by an up edge, known as Down-Up turn. In 
this technique permitted turns are those corresponding to 
“zero or more up edges followed by zero or more down 
edges”. With this approach fraction of turns (pairs of 
incoming and outgoing channels for routers) to be 
prohibited at the routers depends on the selected spanning 
tree and in the worst case (see below) can be close to 1.  

With GTM the number of prohibited turns is minimized 
while breaking all cycles in the network graph. In doing so, 
GTM guarantees that no more than 1/3 of all possible turns 
will be prohibited. This upper bound is attained only in 
topologies with complete graphs, Kn [14]. Furthermore, the 
set of prohibited turns is irreducible in the sense that 
deletion of any one of the turns from this set will introduce 
a cycle in the graph.  

Construction of the set of prohibited turns constitutes the 
first of the two stages of the routing process. At this stage 
we are trying to construct a minimal set of prohibited turns 
since small reduction in a number of prohibited turns may 
result in a drastic decrease in the average delivery time for 
messages in the network  [15, 16]. At the second stage 
distance based routing tables are constructed that conform 
to turn prohibitions selected during the first stage.  Routing 
tables constructed this way provide optimal or near optimal, 
i.e. shortest path between any source and destination in the 
graph. Each node in the network has its own routing table 
that excludes the turns that are prohibited at this node [16]. 
Significant gains have been observed in our experiments 
based on two virtual channel adaptive routing [17].  In the 
rest of the paper we cover theoretical aspects of the GTM in 
Section 2. In Section 3 we illustrate the performance of the 
algorithm for interconnection networks with deterministic 
wormhole routing for unicast messages in irregular 
networks. In Section 4 multicast routing is studied in 
irregular networks. 

2. DEFINITIONS AND MATHEMATICAL 
MODEL 

We assume that G is a connected multigraph of N vertices 
and E edges where, we denote the graph as G(V,C), a 
channel as ci = (vj,vk), and the set of edges or channels as 
C={c1,c2,…,cE}. Similarly the set of vertices is denoted by 
V={v1,v2,…,vN}.  The notation ci = (vj,vk) denotes an 
undirected edge ci between vertices vj and vk.  Edges and 
vertices are either ordinary or special. When a vertex vi is 
deleted from the graph G, the vertex vi and all edges 
incident on it are also deleted from the graph. This may 
result in a disconnected graph with components G1,G2,…,Gl 

such that G – vi = ∪ j Gj. 

Definition 1.  When a vertex vi is deleted from a graph G 
resulting in components G1,G2,…,Gl, then one of the edges 
connecting vi to component Gj , j=2,3,…,l in the original 
graph G is defined as a special edge. 

Definition 2. Assume a vertex vi is deleted from a graph G 
that results in components G1 and Gi for i=2,3,…,l. If there 
exists a closed walk vi,x1,x2,…,xm,vi, such that x1,x2,…,xm ∈  
Gi-1  then a vertex in Gi connected to vi in the original graph 
G with a special edge is defined as a special vertex.  

Thus for a vertex to be special it must be connected to the 
vertex that is just being deleted by a special edge in the 
original graph. As will be seen soon, special vertices are 
privileged vertices that fewer turn restrictions are imposed 
on them. Vertices that are not special are ordinary vertices.  

Definition 3. A turn is a 3-tuple of vertices (a, b, c) where 
a, b, c ∈  V and (a, b), (b, c) ∈  C are edges incident on the 
middle vertex b. 

For our analysis we consider symmetric graphs where (a,b), 
(b,c) ∈  C. Furthermore, we assume that if a turn (a,b,c) is 
prohibited then so is the turn (c,b,a). Because of this 
symmetry, when enumerating them, turns (a,b,c) and (c,b,a) 
would be counted as one. For a vertex vi of degree di, 
number of symmetric turns involving vi is given by  

Ti = di(di-1)/2.  

Similarly for graph G, total number of symmetric turns is 

  T = ∑Ti = ½ ∑ di(di-1) 

where the summation is over all vertices. 

To study the effectiveness of GTM for graph G, we 
compute the ratio z(G) = |Z(G)| / |T(G)| as the number of 
prohibited turns to the total number of turns. We use the 
following recursive algorithm to construct a set of 
prohibited turns Z(G) in an arbitrary graph G.  For 
explanation of the TP(G) algorithm please refer to the 
pseudo code listing below. 

TP procedure has been described in [14]. This is a recursive 
procedure, at each step one node is selected by a special 
rule and all turns, including this node, are either prohibited, 
or permitted. Some nodes are labeled special, and cannot be 
selected. After deleting a node and all adjacent links, TP 
algorithm is recursively used for each of components of 
original graph. 

Following theorems can be proven for the TP and for the 
set Z of prohibited turns generated by the TP algorithm 
[14]. 

Theorem 1. Any cycle in the original graph G has at least 
one turn included in Z. 



 

 

Theorem 2. Graph remains connected after turn prohibition 
using TP, i.e. for any two vertices there exists a path 
connecting them that does not contain prohibited turns. 

Theorem 3. The set of prohibited turns Z generated by TP 
is irreducible for any topology. 

Theorem 4. TP procedure prohibits at most 1/3 of all turns 
in the graph. 

Theorem 5. If a graph G has N vertices, M edges and T(G) 
turns then fraction of turns that are prohibited z(G) is lower 
bounded by z(G) ≥  ( N - M + 1) / T. 

Theorem 1 guarantees that all cycles will be broken and 
Theorem 2 assures that this is done without loss of 
connectivity of the graph. With Theorem 3 we are assured 
that the set Z of prohibited turns contains no redundant 
elements. An irreducible set Z implies that if any one of the 
turns in the set is deleted a cycle will be introduced into the 
graph. Theorem 4 provides an upper bound on the fraction 
of turns that are prohibited in any graph and the last 
theorem provides a lower bound on number of prohibited 
turns. We note that the complexity of the TP algorithm is of 
the order of O(N2d), where N is the number of vertices in G 
and d is the maximal degree of the vertices. It is also worth 
mention that the TP algorithm does not guarantee that set Z 
of prohibited turns is unique or minimal.  

Example of using TP algorithm is shown on Fig.1. Nodes 
are selected according to their numbers.  In this graph nodes 
labeled 1, 2, 6, 7, 8, 9, and 10 are all equally likely to be 
chosen as the first vertex. Here we have chosen 1 which 
when deleted creates two components, G1 and G2. Vertices 
{8, 9, 10, 11} belong to G2 since it has fewer edges 
connecting to node 1. Edge (1, 11) is labeled as special and 
shown with heavy line. After node 1 is deleted TP is now 
invoked with G1 that has vertices {2, 3, 4, 5, 6, 7}. In this 
set only node 2 is of minimal degree that is subsequently 
selected and all turns about it are forbidden. Similarly node 
3, 4, and 5 are chosen and turns about them are forbidden as 
shown. We note that TP algorithm did not prohibit all turns 
about node 1 since doing that would have violated Theorem 
2.  After TP is applied to G1 as shown, node 11 is labeled as 
special. All nodes are of minimal degree three but the 
algorithm would not select node 11 since it is a special 
node. Then node 8 is selected followed by nodes 9 and 10. 
In this example fraction of prohibited turns is z = 12/49 
which is less than 1/3. 

 

Fig. 1  An Example Graph Showing a Special Edge 
and a Special Vertex 

Although in many cases the TP procedure yields a minimal 
number of prohibited turns this cannot always be 
guaranteed. For example if the sequence of selections made 
by the TP procedure for the graph in Fig. 1 is (7, 6, 4, 5, 3, 
2, 1, 8, 9, 10, 11) the number of prohibited turns becomes 
11 instead of 12. The lower bound on the fraction of 
prohibited turns for Fig. 1 is 9. 

3. PERFORMANCE OF GTM FOR 
UNICAST ROUTING 

In this section we study the performance of GTM by 
comparing it with the up/down approach for randomly 
generated connected irregular graphs. To illustrate the 
efficiency of GTM we show in Fig. 2 percentages of 
prohibited turns generated for GTM and up/down 
approaches for graphs with 256 vertices. For each average 
degree, one thousand random graphs are generated and the 
average of the fraction of prohibited turns calculated and 
plotted as shown. It can be seen from Fig. 2 that moving 
from the up/down curve to the TP algorithm curve results in 
a 15% to 50% reduction of the fraction of prohibited turns.  

 

Fig. 2 Fraction of Prohibited Turns in Up/Down and 
TP Algorithms 

In Fig. 3 we show simulation results comparing the average 
network latency versus message generation rates for TP and 
up/down approaches. For both algorithms we simulated for 
randomly generated connected graphs with 256 nodes of 
degree 4. For each graph we first found the Breadth First 
spanning tree for the graph and labeled it according to 
up/down algorithm. Subsequently set of turn prohibitions 
implied by the labeling for the spanning tree is constructed. 
For each graph, 10,000 worms were generated and 
forwarded using the appropriate routing tables. Then the 
average latency is computed for each message generation 
rate. Similar to [23], we assume that when the header flit of 
a worm reaches its destination, the worm is consumed in 
finite time.  Results of these experiments shown in Fig. 3 
demonstrate the superiority of the GTM algorithm over the 
up/down approach.  



 

 

 

Fig. 3 Average Latencies Compared for Up/Down and 
TP Algorithms. 

4. USING OF GTM FOR MULTICAST 
ROUTING  

In this section we extend the TP based routing to 
multicasting. There have been several different approaches 
to multicasting including trip-based approach [25], U-Mesh 
algorithm by McKinley et al [26] and modified U-Mesh 
algorithm [27] in which chain ordering has been 
considered. These algorithms do not require modifying 
routers but suffer from repeated re-starts, which are time 
consuming. In our approach we assume that routers have 
the capability of selectively replicating worms on several of 
its output ports if necessary. We do not consider this to be a 
significant impediment due to the fact that such features 
could very easily be accommodated by virtue of the larger 
in-system programmable FPGA chip technologies. Routers 
with this capability would modify the multi destination 
header of an incoming worm in such a way that subsets of 
the destination would be present on outgoing worms on 
different ports. Our approach to multicasting is based on 
constructing and using minimum multicast trees. A 
multicast tree is a spanning tree that covers the source node 
and all destination nodes and possibly some other nodes in 
the network graph. Intervening nodes that are not in the 
destination set but are part of the multicast tree simply 
forward the incoming worm after replication if necessary.  
We have used three different approaches in implementing 
the multicast routing. The simplest approach utilizes only 
the local information, which we call the Zero-Algorithm. 
Here the multicast tree is constructed by combining the 
unicast paths for the message. Nodes at which branching is 
encountered would replicate the message and forward it 
onto multiple output ports as necessary.  For next multicast 
algorithm, called One-Algorithm, source node constructs 
the multicast tree based on knowledge of not only local 
information but also information about its immediate 

neighbors. In this approach the node looks ahead by 1-hop 
and determines the minimal tree based on this information. 
Finally in the Infinity-Algorithm node does exhaustive 
search of the best possible tree with global knowledge of all 
nodes in the network.  
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Fig. 4 Graph with 14 nodes of degree 4 showing 
prohibited turns generated by TP. All turns around 

node 0 are prohibited. 

Let us consider the connected network of 14 nodes shown in 
Fig. 4. After TP operation prohibited turns are shown as 
arcs connecting two edges that represent the turn. For 
example we used full circle around node 0 to indicate that 
all turns around this node are forbidden. Similarly turn (8, 2, 
11) along with others as marked are prohibited. In this 
network node 6 is multicasting a message to nodes D = {1, 
2, 3, 12, 13}. 

With the Zero-Algorithm source node replicates message 
and routes one message to its output port leading to node 7 
and the other one to its output port leading to node 2. At this 
point multicast message leading to node 7 has only one 
destination address in it, whereas the message leading to 
node 2 has four destination addresses in it. Node 2 
subsequently replicates the incoming message into two and 
forwards one to node 1 and the other to node 11 and so on. 
This algorithm yields a tree length of 8 hops. 

One-Algorithm behaves identical until node 11 is reached 
where worm is not replicated. Incoming worm is sent out 
to node 12 with two destination addresses in the header, 
12 and 3. One-Algorithm is best understood with the aid 
of the covering matrix shown in Table. 1. In this matrix, 
top row enumerates the nodes in the destination set, and 
the leftmost vertical column lists the next nodes of the 
source. Referring to Fig. 5 we see that these are nodes 2, 
7, 8, and 9 as listed in the table. Matrix elements are 
distances from neighbors of the source node. For example 
we see that no destination node is reachable from node 9 
and all entries in the matrix are therefore X which stands 
for infinite distance. A distance value of 0 indicates that 



 

 

next node is also the destination. In this matrix the goal is 
to cover all destinations with fewest number of output 
ports, or equivalently next nodes. This algorithm shrinks 
the tree size by one to yield a tree with 7 edges.  
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Fig. 5 Three Multicast Algorithms Showing Three 
Tree Lengths. 
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Table 1. Covering Matrix for One-Algorithm 

Finally the global, Infinity-Algorithm improves the results 
of the One-Algorithm further by one edge for the given 
graph yielding a tree length of 6 edges as shown in Fig. 5.  

In previous paper we have described the results of high-
level experiments, comparing the size of the constructed 
transmission tree for different approaches [17]. In 
particular, we have seen the up/down and TP-approaches 
resulted in similar tree lengths. 

 

Fig. 6 Zero-Algorithm Based Multicast Experimental 
Results. 

 

Fig. 7 One-Algorithm Based Multicast Experimental 
Results. 

 

Fig. 8 Infinity-Algorithm Based Multicast 
Experimental Results. 



 

 

Our low level multicast experimental results are shown 
next. We have studied multicasting based on up/down and 
the TP algorithm as discussed above for destination sets 
of size 2, 3, and 4 for randomly generated graphs of 64 
nodes. When selecting members of the destination set 
uniform distribution was used. We run our experiments 
for 100 different random graphs and averaged the results 
for the latencies observed. We considered the latency to 
be the time difference between when the last flit of the 
worm is received by the last recipient and the time the 
original worm was created. For each graph we transmitted 
10,000 messages before starting to collect the statistics as 
in all of our experiments. In Fig.6 our results are for Zero-
Algorithm based trees. In this set of experiments no 
significant performance gain was observed between the 
up/down and the TP algorithms. In Fig. 7 we show the 
results of One-Algorithm with similar results. Next, in 
Fig. 8 latency times for multicasting based on the Infinity-
Algorithm is shown for 2, 5 and 10 destinations. It is 
evident that TP algorithm outperformed the up/down 
approach.  
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