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ABSTRACT

This paper discusses optimization of decision diagram
(DD) representations of switching functions by total au-
tocorrelation functions. We present an efficient algo-
rithm for construction of Linearly Transformed Binary
Decision Diagrams (LT-BDDs) based on linearization of
the corresponding Boolean functions by their logical to-
tal autocorrelation functions.

1 Introduction

Decision diagrams (DDs) are a data structure permit-
ting efficient representation of discrete functions defined
on groups of large orders [15]. Different DDs are defined
for representation of different classes of discrete func-
tions by using different decomposition rules to assign a
given function f to a DD, [15], [17], [19]. In this pa-
per, the considerations are restricted to two basic DDs
for functions on finite dyadic groups Cy = ({0,1},®),
where @ denotes the addition modulo 2, EXOR. Binary
DDs (BDDs) are the basic concept used to represent sin-
gle output switching functions [1]. A given function fis
assigned to a BDD through the recursive application of
the Shannon decomposition rule f = Z; fo ® 2; f1, where
fo and fy are co-factors of f for z; = 0, and z; = 1,
respectively. Multiple-output switching funections are
represented by Shared BDDs [11]. Multi-terminal bi-
nary DDs (MTBDDs) [2] are used to represent func-
tions in the space C(C%) of functions f : CF — C,
where C' is the field of complex numbers. MTBDDs
can represent systems of Boolean functions described
by the corresponding integer equivalent functions f(z)
[6]. However, extensions and generalizations of the con-
siderations presented to DDs for functions on arbitrary
not-necessarily Abelian groups are straightforward. The
multiple-valued logic functions are included as an exam-
ple of functions on p-adic groups C, into GF(p),pe N
(6].

DDs are derived by the reduction of decision trees
(DTs). The reduction is performed by sharing the iso-
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morphic subtrees and deleting the redundant informa-
tion from the DT. The reduction procedure is formalized
through the reduction rules [15] adapted to the range of
functions represented and the used decomposition rules.

In many applications, the efficiency of DD represen-
tations is determined by the size of the DD defined as
the number of nodes in the DD for a given f. The width
of the DD is defined as the maximal number of nodes
at a level, where a level consist of nodes to which the
same variable is assigned. The size and the width de-
termine the area of the DD, which is also an important
parameter in applications and comparisons of different
DDs [18].

Linearly transformed BDDs (LT-BDDs) are a general-
ization of BDDs derived by using the Shannon expansion
with respect to a linear combination of a subset of vari-
ables. Tt is obvious that the same generalization applies
to MTBDDs, since in BDDs and MTBDDs the same
underlying group of binary vectors is assumed as the
domain for the functions represented. Moreover, exten-
sions to Spectral transform DDs (STDDs), are straight-
forward.

The simplest example showing the efficiency of the
method for some classes of functions, is to compare
BDD and LT-BDD for the two-variable EXOR func-
tion f(zy,23) = z; & z5. Since the truth-vector of f
is F = [0110]7, BDD(f) consists of three non-terminal
nodes, two nodes to which 5 is assigned, and the root
node for z;. Thus, EXOR requires the complete BDD.
However, this function can be represented by a LT-BDD
with a single non-terminal node to which the linear com-
bination of variables 1 @ x5 is assigned. Construction
of LT-BDDs is an interesting and important task, since
LT-BDDs permit for some functions the exponential re-
duction of the size compared to the BDDs.

We note that a price for the reduced size of LT-BDDs
is

1. A hardware required to implement a linear trans-
formation of variables.

2. Difficulty to determine an optimal transformation
of variables.



A linear transformation over the variables can be rep-
resented by an (n x n) matrix, and the required space
can be neglected compared to the space recuired to store
2 BDD or a LT-BDD. However, the other requirement
can be considered as a bottleneck for applications of LT-
BDDs, although there are heuristic algorithms to deter-
mine a suitable linear combination of variables. The
algorithm proposed in [10] splits the set of variables
into subsets of adjacent variables and combines variables
within a subset. A similar algorithm implemented as a
windowing procedure is proposed in [3]. The algorithm
for construction of LT-BDDs presented in [5] is an ap-
plication of evolutionary computation techniques to this
problem. In [10], the algorithm presented in [9] is com-
bined with sifting method used in variable ordering in
DDs with special attention paid to the integration of
the method into the existing CAD systems. Algorithms
for efficient manipulations with TT-BDDs, prepared as
an extension of CUDD package [16] further support the
applications of LT-BDDs [4].

In this paper, which is a continuation of the research
reported in [8], we discuss applications of total auto-
correlation functions to reduction of sizes of SBDDs.
We show that the method for linearization of switching
functions introduced in [7], and further discussed, elab-
orated, and extended to multiple-valued functions in 6]
provides for a deterministic algorithm to determine the
linear transformation of variables in LT-BDDs by the
total autocorrelation functions and the inertia groups of
the systems [6].

This paper is organized as follows. In Section 2, we
briefly review basic definitions of antocorrelation func-
tions and total autocorrelation functions. In Section
3, we review the method for linearization of systems
of Boolean functions based on autocorrelation functions
[6]. Section 4 is devoted to applications of this method
to construction of LT-BDDs. In Section 5, we present
some experimental results to verify the method for con-
structing LT-BDDs and LT-MTBDDs. In Section 6, we
provide some closing remarks showing further extensions
of the methods presented.

9 Autocorrelation Function

Autocorrelation is very useful in spectral methods for
analysis and synthesis of networks realizing logic func-
tions.

For a given n-variable switching function f, the auto-
correlation function By is defined as

2" =1

z=0

2.1 Total autocorrelation function

For a system of k switching functions (s o),
i=20,...,k—1, the total autocorrelation function is
defined as the sum of autocorrelation functions of each

function in the system. Thus,
k-1
Bs(r) =Y By (7).
=0

Note that for any 7 # 0, Bg(r) < By(0). The set
G1(f) of all values for 7 such that Bf(r) = By(0) =
Z:ul EL:? f®(z) is a group with respect to the
EXOR as the group operation which is denoted as the
inertia group of the system f.

A generalization of autocorrelation to systems of p-
valued m-variable functions is straightforward. For a
system of p-valued functions fla)i= I F O mipds, a) s
p=0enk 1, 2, € {0, 24P~ 1}, a system of charac-
teristic functions is defined as

i 13 W) =1,
£ ) :{ 0, §U>83 ?é:.

Then, the total autocorrelation function is defined as [6]

p—1 k-1

Bit)— T Y BOG)
r=0( i=0

The same definition applies to integer valued-
functions on p-adic groups, thus it can be used for
integer-valued equivalent functions for a system of
Boolean functions, since this is a particular example
for p = 2. Further generalizations to functions on ar-
bitrary finite Abelian groups are also straightforward,
see for example, [6]. In this case, the Winer-Khinchin
theoremn is formulated with respect to the Fourier trans-
forms defined in terms of group characters. It should
be noted that this theorem is correct for the autocorre-
lation functions of discrete functions and characteristic
functions associated to them, however, it does not apply
to the related total autocorrelation functions.

2.2 Autocorrelation through DDs by using the
Wiener-Khinchin Theorem
For applications of the autocorrelation functions con-
sidered in this paper, it is convenient to consider deter-
mination of the autocorrelation functions though MTB-
DDs. Then, the total autocorrelation function is deter-
mined by the addition of MTBDDs for the autocorrela-
tion functions for characteristic functions of the integer
equivalent function f(x) for the given multiple-output
function (F@, ..., f*=1), where f(z) = SeeeoA)
The Wiener-Khinchin theorem states a relation-
ship between the antocorrelation function and Walsh
(Fourier) coefficients (6]

B 27W (1),

where W denotes the Walsh transform operator. The
Walsh transform is defined by the Walsh matrix

W(n) = QWQ),

1=1



where ® denotes the Kronecker product, and W(1) =
1 1
k]
The Walsh spectrum for [ is determined by perform-
ing at each node of the MTBDD(f) the calculations de-
termined by W(1). For simplicity, we say the nodes
in MTBDD(f) are processed by W(1). In this way,
MTBDD(f) is converted into the MTBDD(S;), where
Sy denotes the Walsh spectrum for f. We perform
the multiplication of Sy by itself by using the standard
procedure for multiplication of functions represented by
DDs [15]. Then, the MTBDD(By) is determined by per-
forming the calculations determined by W(1) at each
node of the resulting MTBDD(Sy) followed by the nor-
malization with 27, since the Walsh matrix is self-inverse
up to the constant 2". Fig. 1 illustrate this procedure.

is the basic Walsh matrix.
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Figure 1: Wiener-Khinchin theorem.

3 Linearization of Switching Functions

Linear transformation of variables 1s a classical method
for optimization of different representations of switch-
ing functions [6], (7], [14]. In spectral techniques, this
method is studied in the context of spectral invariant op-
erations and as a mean to reduce the number of non-zero

coefficients in spectral expressions for discrete functions
[6]. In [6], [12], and [13], the extensions to multiple-
valued logic functions are discussed.

The linearization of switching functions (LSF) is de-
fined as the assignment of a function fo(2) = flo™1x)
to a given switching function f, where o is a linear oper-
ator conveniently represented by an (nxn) non-singular
matrix over GF(2). It is assumed that fo is simpler or
more convenient for a realization or calculation purpose
than f with respect to some criteria of optimality. In
[7], a method for solution of LSF-problem is presented.
In this method, o is determined such that minimizes the
number of two-input circuits for realization of f,. The
criterion to select o is determined from the val ues of the
total autocorrelation function By(7).

The values 7 = 7,,,,, # 0 where Bp(7) takes the max-
imum value determine the inertia group Gy for f [6].
Any basis of Gt provides a solution of the LSF-problem
for f. The binary representations for Tmaz determine
some elements of a basis for Gy for f in the following
way. Other elements can be taken arbitrarily providing
the linear independence of elements in the basis. These
elements are often taken as the corresponding rows
of the trivial basis described by rows of the identity
matrices. Vectors from the basis are written as columns
of a matrix o, whose inverse over GF(2) determine a
linear transform of variables for f which is a solution
of LSF-problem. This method can be implemented by
using the following algorithm [6].

Algorithm for LSF through By

1. Given an n-variable k-output function f =

(fI:"':fk)'

2. Represent f by the integer-valued equivalent func-
tion f(z) = Zf___l Rk
3. Calculate the total autocorrelation function By and

determine G(f), where G is the inertia group for

4. Determine a basis for G;(f) and write it as columns
of an (n x n) matrix o.

cn

Calculate for o, the inverse over BE2) 5

6. Perform the mapping z : z — o'z, and determine
fo(2). End of Algorithm.

Example 1 Table 1 shows a system of two four-
variable Boolean functions f©) and fO), and the to-
tal autocorrelation function B of this system. The
mazimum velue of B(r) = B(0) = 16 for the in-
puts 5 = (0101), 10 = (1010), and 15 = (1111).
Thus, the inertia group for this system is G; =



{(0000), (0101), (1010), (1111)}. As a basis for G we
take (0101) and (1010), and determine

e
Ouslicile
Lt s
B0l 0

Then,
E0 10
e ] e
s B S
D0 10

The matriz T determines a reordering of the truth-
vector F of a four-variable function f as

F = [£(0), f(10), f(5), f(15), f(4), f(14), f(1), F(11),
F8), £(2), £(13), £(7), [(12), £(6), f(9), F )"
Table 1 shows functions fc(,U} and fél} produced by this

reordering from f(O and f. Thus, these functions
satisfy the relation

fol@) = flo™ @),
where @ denotes the multiplication over GF(2). There-

fore, we determine the intermediate values 2y, 22, 23, 24
in Fig. 2 from o =T, as

71 = IT19Dx3,
Zyg = LoDy
28— T
e iy
From there,
fw) = z1Vz=(x15x14) V(22 B 23)
j‘(” = 2129 = (21 ® 24)(z2 @ x3),

where \V denotes logical OR. [t should be noted that both
@ and f) do not essentially depend on z3 and zy.

Example 2 Table 2 shows the outputs of a two bit
adder (c1,31,50) and the total autocorrelation function
of this adder Bagaz(7), T € {0,...,2" — 1}. The maz-
imum of Baaas 8 for 1 = 5 = (0101) and 72 = 10 =
(1010). We write the matriz o whose first two columns
are equal to the first two columns in the identity ma-
triz of order four, and the other two columns are binary
representations for 71 and To. Thus,

aJ =

o B e B e
OO
_ o = O

1
0
0
0

This is a self inverse matriz over GF(2), and thus,
o~! = ¢. This matriz determines the linear transform
of variables (x1,Z0,y1,%0) — (21 @ ¥1,%0 @ Yo,¥1,Yo)-
Table 2 shows the outputs (cf ,s],st) of add2 trans-
formed by using the matriz o~

Table 1: System of Boolean functions.

T1Zox3zs | fO f(l) B fgu) c(xl)

0 0000 0 0116 0 0

1 0001 1 0.8 0 0

2 0010 1 08 0 0

3 0011 1 1 8 0 0

4 0100 1 D58 1 0

5 0101 0 0116 1 0

6 0110 1 1 8 1 0

77 0111 e {0k el 1 0

8 1000 1 0:| 8 1 0

9 1001 1 1|8 1 0

10 1010 0 0116 1 0
15 1011 1 Dl 8 1 0
12 1100 1 1 8 1 1
13 1101 1 0f 8 1 1
14 1110 1 @28 1 1
15 1111 0 0116 1 1

Table 2: The two-bit adder, outputs before and after the
linearization and the total autocorrelation function B,g40.

L1201 Y0 | €15150 | & 53 8¢ | Badaa(T)
0. 0000 000 000 16
i 0001 001 010 0
2 0010 010 100 0
3. 0011 011 110 0
4, 0100 001 001 0
5. 0101 010 001 8
6. 0110 011 101 0
Tz 0111 100 101 4
8. 1000 010 010 0
9, 1001 011 100 0
10. 1010 100 010 8
1] 1011 101 100 0
12. 1100 011 011 0
13. 1101 100 . 011 4
14. 1110 101 011 0
Ll?' 1111 110 011 4




4 Linearization of Boolean Functions and LT-
BDDs

The linearization method for Boolean functions pre-
sented in Section 3 provides the efficient algorithm for
linear transformation of BDDs and Shared BDDs for
systems of Boolean functions [15]. This statement will
be explained and illustrated by the following example
taken from [8].

Example 3 Fig. 2 shows SBDD for the system of

Boolean functions ) (z) and O (z) defined in Table 1.
This SBDD represents the gwen system in the form of
EIPTESSIONS

f(UJ = Ti1Z2T3%4 B 17223 B T1 203 @ T ;’.7;25354 &
Dr1ToT3xy © T1Z2T3T4 B T1T9T3 @ 1 LT3,

Jael = T1T02324 @ T12023T4 & 1727374 @
DT1T2T3Ty.

As is shoun in Ezample 1, after linearization, this
system 1s converted into the system féo)(z} and fél}(z).
in terms of new variables zi, © = 1,2,3,4 expressed as
linear combination of original variables T, t=1,2,3,4.
It follows that the given system can be represented by
the SBDD derived by decomposition in terms of a linear
combination of varigbles. Fig. 8 shows SBDD for the
given system derived by the linearization method. This
LT-SBDD represents the given system in the following
form

O = (x1@$3)@($1®$3J(I2®$4):
O = (z1 @ x3) (22 @ z4).

Figure 2: STBDD for the system of functions.

Figure 3: Shared LT-BDD for the system of functions de-
rived by the linearization method.

The following example illustrates application of the
LSF-method to representations of adders.

Example 4 Fig. / shows the SBDD for the two-bit
adder. Fig. 5 shows the corresponding LT-SBDD de-
termined by using the matriz o1 in Ezample 2. If the
outputs of the adder are considered as binary represen.-
tations of the corresponding integers, then, they can be
represented by the vector

F=1[0,1,23,1,2,3,4,2,3,4,5,3,4,5, 6]7.

The reordering by using the matriz o—1 converts this
vector into the vector

Fo=10,2,4,6,1,1,5,5,2,4,2 4, 3id8 a1

Fig. 6 and Fig. 7 show the MTBDD and LT-MTBDD
for the two-bit adder, derived from F and F,. respec-
tively.

The following procedure for determination of a linear
transformation of variables in LT-BDD for a given
function f can be formulated.

Procedure for generation of LT-BDD

1. Given an n-variable k-output switching function

i S S

2. Represent f by the integer-valued equivalent func-
tion f(z).

3. Perform the linearization procedure and assign to
f(z) a function £,(z), where z = & Oz



Figure 6: MTBDD for the two-bit adder.

Figure 5: Shared LT-BDD for the two-bit adder derived Figure 7: LT-MTBDD for the two-bit adder derived by the
by the linearization method. linearization method.



Table 3: Sizes of SBDDs and LT-BDDs for adders.

f SBDD LT-SBDD
ntn | cn [ size | ntn | en | size
add2 3] 2 17 8 2 10
add3 42 2 44 13 2 15
add4 | 101 2213103 18 2 20
add5 | 224 2| 226 23 2 25
[ add6 | 475 21477 28 2 30

Table 4: Sizes of MTBDDs and LT-MTRBDDs for adders.

Ef SBDD LT-SBDD

ntn cn size ntn cn size
add2 R T e P 15
addS | 41 15 B6L 24| 15| 39
add4 | 113 | 31| 144 64| 31 95
add5 | 289 | 63| 352|160 | 63| 2923
add6 | 705 | 129 | 832 | 384 | 127 | 511
| add7 | 1665 | 255 | 1920 | 896 | 255 | 1151

4. Determine SBDD for fo(2).

5. Relabel edges in SBDD(f,(z)) by replacing each z;
with the corresponding linear combination of initial
variables x;.

End of Procedure.

Compared to the present methods for linear transfor-
mation of DDs, the advantage of the proposed algorithm
is that the linearization method based on total autocor-
relation functions provides for a deterministic algorithm,
in the sense that all steps of the algorithm are uniquely
determined. At the same time, the method can be used
for systems of Boolean functions. '

5 Experimental Results

We have applied the LSF based on the autocrrelation
functions to the representation of n-bit adders. Ta-
ble 3 shows the sizes of SBDDs and LT-SBDDs for n-
bit adders for different values of n. Tabled shows the
sizes of MTBDDs and LT-MTBDDs for n-hit adders.
In these tables, we show the number of non-terminal
nodes (ntn), constant nodes (cn), and the total of nodes
(size) of the considered DDs. Tt follows from this table,
that even from 6-bit adders the transition from SBDD to
LT-SBDD results in about 93% reduction in the size of
the correcponding diagram, and these savings are grow-
ing with the increasing complexity (number of bits in
operands) of adders.

6 Closing Remarks

We have shown that the method for linearizaton of
Boolean functions presented in this paper provides for

a simple and efficient algorithin for determination of a
nearly optimal linear transformation of variables in de-
sign of Linearly Transformed BDDs and SBDDs.

The proposed algorithim for constructing a quasiopti-
mal linear transform of variables has simple a software
implementations. The algorithm is deterministic in the
sense that there are no heuristic involved at any step of
the algorithm.

The computational complexity of this approach does
not exceed O(n2™), where n is the number of variables.
The approach permits uniform consideration of single
and multiple-output functions.
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