On a Covering Radius of (n,k) Codes

M. Karpovsky Member IEEE

Computer Science Department State University of New York Binghamton, NY 13901

Abstract

Let t(V) be the covering radius of a code V, $V_{n,k}$ be the set of all linear binary (n,k) codes and

$$t(n,k) = \min_{V \in V} t(V).$$

Denote L(n,k) the minimal number of arithmetical operations for computing t(V) for any $\forall \epsilon V_{n,k}$.

•

In this paper we present Upper bounds for functions t(n,k) and L(n,k).

On a Covering Radius of (n,k)-Codes

M. Karpovsky, Member IEEE
Computer Science Department
State University of New York
Binghamton, N. Y. 13901

Let t(V) be the covering radius of a code V, Vn, k be the set of all linear binary (n,k) codes and $t(n,k) = \min_{V \in V} t(V)$.

The lower bound for t(n,k) follows from the sphere-packing condition

$$\begin{array}{ccc}
t(n,k) \\
\Sigma \\
i=0
\end{array} \quad \stackrel{n}{(i)} \geq 2^{n-k} \quad .$$
(1)

We note that

$$t(n,0)=n$$
, $t(n,n)=0$, $t(n,1) = {n \choose 2}$, (2)

$$t(n,k) = 1 \text{ iff } n - \lceil \log_2 n \rceil \le k \le n-1,$$
 (3)

 $t(2^{m}-1, 2^{m}-m-1) = 1$, and using uniformly packed codes $t(r(2^{m}-1), r(2^{m}-1) - 2m) = 2$, (4)

t
$$(r(2^m+1), r(2^m+1) - 2m) = 2, t((2^m-1)(2^{2m}-1), (2^m-1)(2^{2m}-1) - 3m) = 2(m \ge 1), (5)$$

$$t(2^{m}-2, 2^{m}-m-2)=2.$$
 (6)

We note also that

$$t(n,k) \le t(n+1, k) \le t(n,k) + 1.$$
 (7)

Let us present now some upper bounds for t(n,k).

Theorem 1,
$$t(n+2^m-1, k+2^m-m-1) \le t(n,k) +1.$$
 (8)

Theorem 2, Let k(n,d) is the maximal k such that there exists an (n,k) code with the distance d. Then

$$t(n,k(n,d)) \leq d-1. \tag{9}$$

Theorem 3, Let V be an (n,k) code with a distance $d \le 3$ and the covering radius t(V) = t(n,k). Then

$$t (n+2,k) \le t(n,k) +1.$$
 (10)

Theorem 4, If $k \ge \sum_{i=1}^{q} 2^{m_i} - \sum_{i=1}^{q} m_i - q$ where m_i are i=1

integers (i=1,...,q), then

$$t(n,k) \le L_{0.5} (n-k - \sum_{i=1}^{q} m_i) +q.$$
 (11)

Corollary 1

(i)
$$t(n,k) \le \lfloor 0.5 (n-k) \rfloor$$
; (12)

(ii) If
$$k \ge 2^m - m - 1$$
, then $t(n,k) \le 0.5(n-k-m) + 1$; (13)

(iii) If
$$k \ge q(2^m-m-1)$$
, then t $(n,k) \le \lfloor 0.5(n-k-qm) \rfloor + q$. (14)

Example 1. Taking q=2, m=5 we have from (13) and (1) t (62,52) = 2.

Values of t(n,k) for $n\le 32$, $k\le 26$ have been computed. Denote L(n,k) the minimal number of arithmetical operations for the computation of t(V) for any $V\in V_{n,k}$.

Theorem 5, For
$$n\to\infty$$

$$L (n,k) \lesssim 2^{n-k} (n-k) \log_2 (n-k-H^{-1} (\frac{n-k}{n})), \qquad (15)$$

where $H^{-1}(\alpha)$ is the inverse for $H(\alpha) = -\alpha \log_2 \alpha - (1-\alpha) \log_2 (1-\alpha)$.

Other estimations on the complexity of computation for a covering radius of (n,k) codes are given in [1].

References

M. Karpovsky, "Weight Distribution of Translates, Covering Radius and Perfect Codes Correcting Errors of the Given Weights", IEEE Trans. Inf. Theory, July, 1981.