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Abstract. A new technique for on-line checking of FPGA-based sequential devices
defined by their finite state machines (FSMs) is presented. The technique utilizes specific
properties of FSMs for achieving the totally self-checking goal with a low overhead. The
proposed technique does not require any redundant encoding of output words and uses a
one-rail design, thereby drastically decreasing the required overhead. The paper presents
results for benchmarks for the proposed architecture.

I. Introduction

Existing approaches for design of self-checking FSMs are based on either duplication, or
application to them of specific error detecting codes (Berger code, constant weight code, etc.). In most
cases, these approaches require a hardware overhead of more than 100 percent.

Major difficulties in designing of self-checking devices are related to the complexity of
decoding (i.e. verification that a given output is a codeword). Outputs of a self -checking circuit are
usually encoded by codewords of a code, which detects unidirectional errors [ 10]. For example, in
[10] it was shown that stuck-at fault, cross-point faults and shorts in MOS PLAs and ROMs result in
unidirectional errors at their outputs. Applications of the self-checking concept to Control Units and
microprocessors were presented in [ 13]. Several works deal with synthesis of totally self-checking
(TSC) Control Units [6, 11], design for testability of controllers [2] and self-checking control
networks [5]. Paper [9] presents several schemes for on-line checking of microprogram control units,
which are based on computing of a set of signatures and inserting of these signatures in a
microprogram code at specific locations. Papers [4] and [10] are also dedicated to the problem of
synthesis of self-checking microprogrammed control units. In [4] a design of a special monitor circuit
enabling to detect a specified fault set is proposed. In [ 10], duplication of a microprogram sequencer
was proposed to achieve the totally self-checking property.

Paper [3] describes a special technique for decomposing the initial FSM to achi eve both on-line
checking and on-line testing. The concurrent testing and checking allows decreasing the overhead in
comparison to traditional on-line checking approaches. The technique, which is presented in [ 8]
allows detection of input faults with the aid of unordered input vectors.
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Known approaches for synthesis of Mealy-type FSMs are based on Berger encoding of outputs
and m-out-of-n state assignment [5, 11]. For these architectures checkers detect presence of a fault by
examining whether an output vector belongs to the corresponding code.

To the best of our knowledge, authors of the above-mentioned works did not try to design on-
line checking controllers by utilizing specific FSM properties. We will focus on properties of the
FSM, which are typical for controllers, and also have a considerable impact on the resulting overhead.
One of such properties is that the number of possible FSM output codewords is much smaller than 2"
(where N- is a number of output line) while the set of p ossible codewords is known in advance.

This property was used in [6] for designing checkers. The authors show that the checker of an
FSM controller can be efficiently implemented in the form of “sum of minterms” (SOM) of output
functions of the controller. An unordered code for output vectors is used because for these codes any
unidirectional error cannot transform one codeword into another codeword. In [ 6], the Berger code
was used as an unordered code. Note that SOM -checker examines whether an output vector belongs to
the set of possible codewords, and not to the Berger code as in the case of standard design [1, 7].

An efficient unordered code was developed by Smith [ 12] specifically for the case when the
number of possible codewords is sufficiently smaller then 2. Taking into account that this property
is valid for FSM based controllers, the code proposed in [ 12] could be applied instead of the Berger
code for additional overhead reduction.

We will use Field Programmable Gate Arrays (FPGAs) as a basis for FSM controller’s
implementations. The approach described in [5] for synthesis of self-checking circuits by FPGAs is
based on dual-rail implementations of the hardware to be checked. Using this approach FPGA -based
FSM controller can be implemented as a combination of the dual-rail controller and the dual-rail
SOM-based checker (SOM-checker). In this case, output vectors of the FSM controller have to be
encoded by a code detecting all unidirectional errors (such as the Berger code). Needless to say, that
such an implementation is critical from the point of view of resulting overhead due to both the dual -
rail design and the Berger encoding.

In the present paper we propose a new architecture that does not require any encoding of outpu t
vectors and allows a single-rail design of FSMs.

This paper is organized as follows. Section 2 introduces basic definitions and a review of
related works. In Section 3 we describe the proposed architecture of the self -checking FSM controller.
Benchmarks results are presented in Section 4. Conclusions are presented in Section 5.

II1. Frameworks

In this section we remind basic definitions related to FSMs and fault models.

Table 1. Table of FSM
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In this table: a, and a, present state and next state correspondingly, X(a,, a,) - transition
function, i.e. a Boolean function which is equal to 1 when FSM makes the transition from state a,, to
state a,. Y(a,, ay) — micro-instruction, the list of output signals which are equal 1 on the transition of
the FSM from a,, to a,.

B. Definitions and Assumptions

We now recall some basic definitions from the theory of design of Totally Self Checking (TSC)
sequential circuits.

A finite state machine FSM is self-testing if, for every fault in a fault’s set, there is such an
input/state pair in the circuit that a non-code output is produced. A state machine is fault-secure if, for
every fault from a faults set, the machine never produces an incorrect code output for a code input. A
state machine is totally self-checking if it is both self-checking and fault-secure. [5].

C. Fault Model

As it has been mentioned, the basis of target implementation of the FSM controller is LUT -
based FPGA comprising Configurable Logic Blocks (CLBs). The fault model used in this paper is
general model of single cell faults. We assume that at most one CLB can produce a faulty output. The
circuit primary inputs are considered to be fault-free.

III. Match Detector based architecture of a selfchecking controller

We propose a new architecture for the FSM controller that does not require any encoding of
output vectors and consequently allows reduction of the required overheads. We call this architecture
a Match Detector (MD) architecture since it is based on using a Match Detector within the checker. A
checker that includes the Match Detector will be called MD-checker.

A schematic diagram of the MD-architecture is shown in Figure 2. The proposed architecture
consists of two portions: a self-checking FSM and MD-checker. In turn, each of these portions
contains two main blocks: an “evolution” block and an “execution” block [7]. Besides the FSM
contains a Product Terms Compressor (PTC). The function of the PTC is to form /-out-of-M code of
the output codeword (M — number of the micro-instructions).

The evolution block of the FSM (EvFSM) implements all of product terms while the execution
block of the FSM (ExFSM) implements outputs and next state functions of the controller. The
evolution block of the checker (EvCh) implements product terms corresponding to the output
codeword of the controller while the execution block of the checker (ExCh) collect all these product
terms for realization of the error function.

The main idea of the proposed approach is based on the property that both a vector that enters
into EXFSM and a vector that enters into ExCh are equal to the /-out-of-M code of the corresponding
output codeword. These vectors have to be equal in the case of proper functioning of the controller
and are different in the case of a fault. Comparison of these two vectors by the Match Detec tor (MD)
enables achieving the TSC property of the controller.

A. Self-checking FSM
Inputs of the evolution block of the FSM (EvFSM) comprise working inputs X of the FSM and
output memory signals 7={,...,z,}. Outputs of the EvVFSM correspond to product terms

P={p,....,p, }- The Product Terms Compressor (PTC) transforms the vector of product terms into “ /-
out-of-M” code J(Y).



The EvFSM is implemented as a tree, wherein each of the nodes is either a pre -designed
Configurable Logic Block (CLB), or a fan-out. Each CLB is designed for implementation of either a
sum of two product terms of g variables, or an AND-function of 2g variables. We use the Xilinx-4000
series FPGAs [13] for implementation of the proposed self-checking scheme. In this case the number
of inputs of the CLB is equal to 8, which means g = 4.

PTC consists of CLBs each programmed for implementation of one of two functions: “ OR” and
“I-out-of-2g”. If two product terms p; and p;, relating to the same output vector, are orthogonal (p; &
p; = 0) they will be combined by the “/-out-of-2g” CLB. Otherwise these terms will be combined by
the “OR” CLB.

The execution block of the FSM (ExFSM) implements OR -assembling of PTC outputs. Outputs
of ExXFSM are output signals Y of the FSM and input memory signals p={4,,....d,}. The memory

.....

signals are coded by codewords of the *“ /-out-of-R” code.

B. MD-checker

The MD-checker consists of the evolution block (EvCh), the execution block (ExCh) and the
Math Detector (MD) between them. EvCh implements all minterms, while ExCh assembles these
minterms to implement the checker’s function.

The EvCh is built as a self-checking tree with “AND” nodes for implementation of “long”
product terms and “fork” nodes actually implemented by regular fan -outs. The ExCh comprises either
“Il-out-of-2g”, or “(2g -1)-out-of-2g” cells (CLBs) combining all minterms, coming from the EvCh.

It is proposed to use the following pre-designed A-Cells and O-cells for implementation of the
above-mentioned nodes of the checker.

A-Cell implements nodes of the “AND” type. It has two inputs, four functional inputs for
implementation of minterms, and two cascade outputs.

O-Cell implements nodes of either “g-out-of-2g” or “(2g -1)-out-of-2g” types. These cells have
8 inputs and 1 output.

EvCh is a self-checking two-rail tree
comprising a number of A-Cells. This tree is
constructed in such a way that in the case of
proper functioning of both the controller and
the checker one and only one dual-rail
output (S, V;) will have value (1,0). All the
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Fig 2. The MD-architecture of the totally self-checking controller



ExCh comprises two components consisting of O-Cells. All S-outputs of EvCh serve as inputs
of the first component of the ExCh. This component is implemented as a converging “ /-out-of-M”
multilevel tree. All V-outputs of the EvCh are inputs to the second component of the ExCh, which is
implemented as a converging “(M-1)-out-of-M” multilevel tree.

The Match Detector compares outputs of the PTC and outputs of the evolution block of the
checker (EvCh). Any output vector of PTC is formed by M binary one -rail outputs. Output vectors of
EvCh are M dual-rail-coded outputs. In Figure 2, the checker is shown as MD-checker. If the two
compared vectors are equal, the resulting vector will be equal to the EvCh output vector. If they are
not, the ExCh will receive a predetermined faulty dual -rail vector.

An example of the match detection function is shown in Table 2. In this table: S'(i), V(i) - dual-
rail code of bit i of an output vector of the EvCh; S§°(i), V(i) - dual-rail code of bit i of the
corresponding output vector the match detector (MD); d(i) - the state of bit i of the PTC single-rail
output vector d(Y).

For the MD-architecture at any clock, an input

Table 2. Truth table of the Match Detector. L. . .
vector initiates “/-out-of-M” code of Y,. This code is

50 S(i). V(i) S(i). V(i) introduced both into the EXFSM and the match detector.
1 1 0 1 0 Output vectors produced by ExFSM are transformed
into the same J(Y,,) code that has been produced by the
0 0 1 0 1 PTC. The match detector checks whether these codes
1 0 1 1 1 are the same, and if the codes differ from one another,
the MD-checker will produce the error signal.
0 1 0 0 0
0 0 0 0 IV. Benchmarks results
1 1 1 1

We applied the synthesis approach described above to several MCNC benchmarks to compute
FPGA implementations for Xilinx-4000 series FPGSs [13] Results for benchmarks are presented in
Table 3. In this table: L - number of input lines, N - number of output lines, H - number of product
terms (transitions), R - number of states of the FSM, M - number of output vectors;

S and S$" - complexities (numbers of CLBs) of the initial FSM and the MD -checker

correspondingly, " :%* 100% S*, Q* - complexity (numbers of CLBs) and overhead (in %) for
S

FSM self-checking implementations based on the Berger coding architecture [1, 6].

Table 3. Overheads results for FSM benchmarks implemented by Xilinx-4000 series FPGAS

NAME R L N H M SisM s & sMp Yoid
bbsse 13 7 7 53 14 37 38 103% 22 59%
cse 13 7 7 98 12 60 51 85% 24 40%
Dk-14 7 5 3 56 13 38 31 82% 22 58%
Dk-15 4 5 3 30 16 27 26 96% 21 78%
styr 32 10 9 161 25 110 77 70% 52 47%
saund 32 12 11 134 27 116 79 68% 58 50%
S1488 48 19 8 236 64 213 201 94%, 153 72%
S1 20 6 3 109 20 116 38 33% 33 28%
pma 24 8 8 120 24 91 83 91% 49 54%
planet 51 19 7 118 54 82 151 184% | 135 165%
S820 24 18 18 199 22 175 91 52% 57 33%
Ex6 8 8 5 36 14 45 46 102% 34 76%
Exl 20 23 9 154 60 74 171 | 231% | 133 180%
tav 4 4 4 49 11 26 23 88% 21 81%
big 18 28 17 185 17 124 87 70% 71 57%




One can see from this table that the proposed approach for design of total ly self-checking

microcontrollers results in overheads, which are about 65%. Our approach results in about 25 -30%
reduction of overhead as compared to known implementation [1, 6].

V.

Conclusions

We have proposed a novel technique for the synthesis of self-checking FPGA-based FSMs. By

utilizing intrinsic features of the FSMs, the proposed architecture allows implementation of
controllers by a single-rail scheme without any additional encoding of output words. This results in
considerable reduction of the required overhead. Benchmarks results indicate that the proposed
approach for the design of self-checking FSMs is efficient from the point of view of required

overheads.
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