
 An approach for designing on-line testable state machines

P. K. Lala M. G. Karpovsky
 Department of Computer Science Department of Electrical and Computer
 and Computer Engineering Engineering
 University of Arkansas Boston University
 Fayetteville, AR 72701 Boston, MA 02215

1. Introduction
Synthesis of state machines have attracted the attention of researchers for more than two
decades. Several state assignment techniques that result in efficient implementation of the
next state logic have been developed [1-3]. However, none of these addresses the
testability of an implemented machine. A popular approach for enhancing the testability
of a state machine is to modify its design by using the scan path technique e.g. LSSD [4].
A number of techniques for synthesizing testable state machine directly from their
specifications have also been proposed [5-6]. The goal of these techniques is to make
state machines fully testable for all single stuck-at faults, and to derive test sequences for
them by using test generation techniques for combinational circuits. The major problem
with these techniques as well as the LSSD is that they can only increase the off-line
testability i.e. they simplify the detection of permanent faults. Recent studies show that
transient faults will be the dominant faults in systems designed using deep submicron
technology [7]. Traditional off-line testability approaches cannot guarantee the detection
of transient faults; they have to be detected during normal operation of a circuit. This in
turn requires that circuits be designed so that they have built-in mechanisms for on-line
fault detection. Over the years some techniques have been proposed for designing state
machines with on-line fault detection capability [8-10]. However, these techniques
concentrate mainly on the post design modifications rather than designing machines that
are on-line testable by design. This paper proposes a new approach for designing state
machines that have built-in capability for enhancing on-line and off-line testability.

2. Proposed approach:

The architecture of the proposed state machine is shown in Fig.1. It is assumed that that
the states of a machine are encoded using 1-hot code. The code for the initial state is
first loaded into Reg. R by using the system clock. The next state corresponding to an
input is determined by the next state logic. The next state logic is designed using
transmission gates (TX gates) and tri-state buffers only. The next state is stored in Reg.
Q. However, the outputs of the next state logic are transferred into Q by using the preset
and the reset inputs associated with each bit of Q, instead of using the system clock. In
other words, Reg. Q operates in asynchronous mode.

 Initial State

 scan_out scan_in

 System Clock

 Input

scan_out scan_in

 Scan clock

Fig. 1 Proposed architecture of state machines

The contents of Regs. R and Q are EX-ORed, and the result is checked for even parity.
In the absence of any circuit fault, the outputs of the EX-OR block will either be all 0s or
contain two 1s. An all 0s output indicates that the current state and the next are identical.
On the other hand, if the next state is different from the current state, the EX-OR outputs
will have exactly two 1’s. Any other output pattern will indicate the presence of a fault in

Next State Logic

 Reg Q

 Reg R

 EX-OR

Parity Checker

the state machine. Thus the proposed design approach guarantees the on-line testability of
a state machine.

As can be seen in Fig.1 both reg. R and Q have scan-in/scan-out features. Thus, any
pattern can be serially loaded into R to test the TX gates in the next state logic block. The
output of the block is loaded into Q by using the individual preset and reset inputs of the
register, and then scanned out. Also, appropriate input patterns can be loaded into R and
Q by using the scan clock to test the EX-OR gates and the parity checker circuit. Thus,
the off-line testing of state machines based on the model of Fig.1 is considerably
simplified.

The next state logic is implemented by using TX gates and tri-state buffers only. Since
each state is 1-hot encoded, the state transitions can be implemented in reg. Q by
deactivating the state bit corresponding to the current state, and at the same time
activating the state bit corresponding to the next state. If the current and the next state are
identical i.e. there is no state change produced by an input, the state bits in Q are not
deactivated.

Let us illustrate the proposed approach by designing the state machine(an MCNC
benchmark circuit) specified in Table 1. We consider only the next states, the inclusion
of the output logic is straightforward.

 _ _ _ _
x1 x2 x1 x2 x1 x2 x1 x2

A A − − B
B A − C B
C − D C B
D E D C −
E E D − F
F E − G F
G − H G F
H I H G −
I I H − −

Table 1. State machine

The states are encoded using 1-out-of-9 code as shown below:

 R1 R2 R3 R4 R5 R6 R7 R8 R9

A 1 0 0 0 0 0 0 0 0
B 0 1 0 0 0 0 0 0 0
C 0 0 1 0 0 0 0 0 0
D 0 0 0 1 0 0 0 0 0
E 0 0 0 0 1 0 0 0 0

F 0 0 0 0 0 1 0 0 0
G 0 0 0 0 0 0 1 0 0
H 0 0 0 0 0 0 0 1 0
I 0 0 0 0 0 0 0 0 1

The implementation of reg Q is shown in Fig.2 . During normal operation the content of each
register bit is determined by the values assigned to its p (preset) and r (reset) inputs.
The contents of Q are transferred to R by the system clock.

 scan out scan in
 scan clock

 p p p p
 r r r r

Fig. 2 Structure of Reg.Q

As stated previously state the next state corresponding to a current state and an input is
determined by setting and resetting the appropriate state bits in reg. Q . Table 2 shows the
setting and resetting of bits in reg.Q for implementing the state machine of Table 1.

 _ _ _ _
x1 x2 x1 x2 x1 x2 x1 x2

A pQ1 − − rQ1 pQ2

B rQ2 pQ1 − rQ2 pQ3 pQ2

C − rQ3 pQ4 pQ3 rQ3 pQ2

D rQ4 pQ5 pQ4 rQ4 pQ3 −
E pQ5 rQ5pQ4 − rQ5 pQ6

 F rQ6 pQ5 − rQ6 pQ7 pQ6

 G − rQ7 pQ8 pQ7 rQ7 pQ6
 H rQ8 pQ9 pQ8 rQ8 pQ7 −

I pQ9 rQ9 pQ8 − −

 Table 2 Presetting and resetting of bits in Reg.Q
 _ _
The first row in Table 2 ,for example, indicates that for current state A and input x1 x2 , bit Q1 in
Fig.2 is preset, thus keeping Q1 Q2 Q3 …..Q9 = 1 0 0….. 0 i.e. there is no change in the state bits
 _
 bits. When the input is x1 x2 the next state is B. This can be implemented by resetting Q1 and

Q1 Q2 Q3 Q9

 _
presetting Q2.. For inputs x1 x2 and x1 x2, the next states are unspecified, therefore none of the
state bits is preset or reset. The circuit for generating an enable signal corresponding to each input
combination is shown in Fig. 3.

 x1 x2

 0 0
 _ _
 0 En1(= x1x2)

 _
 x1 x2

 _
 x1 x2

 0 0
 _
 0 En2(= x1x2)

 x1 x2

 _ _
 x1 x2

 0 0

 0 En3(= x1x2)

 x1 x2

 _
 x1 x2

 0 0
 _
 0 En4(= x1x2)

 _
 x1 x2

 Fig. 3 Generation of enable signals

Fig. 4 shows the circuit needed to generate set and reset signals for activating transitions
from state B for various input combinations. Current state B is identified by R2 = 1 and
R1..R3 ….R9 = 0 0….0. Therefore in Fig. 4, R2 (= 1) is used to enable the tri-state buffer.
The next state logic for implementing other state transitions can be derived in a similar
manner. Note that at any time only one enable signal is activated. Also only tri-state
buffer is enabled at a time, thus the outputs of the TX gates can be connected together if
they drive the same preset and reset inputs of the state bits in Q register.

 En1
 0

 rQ2 pQ1

 __
 R2 __ En1
 En3
1

 rQ2 pQ3

 0
 En3

 En4
 0

 pQ2

 __
 En4

 Fig. 4 Transitions from state B

The proposed technique has been applied to several MCNC benchmarks circuits. The
number of registers, transmission gates and buffers needed to implement each circuit are
shown in Table 3. As mentioned previously some additional circuit are also needed to
generate appropriate enable signals (corresponding to input combinations) for the
transmission gates.

 Length of # of # of # of
Circuit reg. R and Q TX gates tri-state buffers EX-OR gates

 bbara 10-bit 60 10 19
 bbsse 16-bit 56 16 31
 bbtas 6-bit 24 6 11
 beecount 7-bit 28 7 13
 cse 16-bit 91 16 31
 dk14 7-bit 56 7 13
 dk27 7-bit 14 7 13
 ex2 19-bit 72 19 37
 ex5 9-bit 32 9 17
 modulo12 12-bit 12 12 23
 opus 10-bit 15 10 19

Table 4. Components needed for implementing MCNC benchmark circuits

3. Conclusion:

A new approach for designing state machines that have built-in on-line and off-line
testability has been proposed. The resulting machines have scan_in/scan_out capability
that allows the testing of the next state logic composed of tri-state buffers and TX gates
only. The number of buffers required is equal to the number of states in a machine, and
the number of TX gates is equal to the number of specified next states. The on-line
testing capability is achieved by EX-ORing the outputs of the two registers in a machine,
and checking for even parity at the outputs of the EX-OR gates. The number of EX-OR
gates equals the length of the registers, plus those needed for parity checking.

4. References:

1.T.Villa and A. Sangiovanni-Vincenetelli, “NOVA: State Assignment of finite state
machines for optimal two-level logic implementations”, IEEE Trans.on Computers, Sept.,
1990, pp.1326-1334.

2. S.Devadas, B.Ma, R.Newton, and A. Sangiovanni-Vincenetelli, “MUSTANG: State
assignment of finite state machines targeting multi-level logic implementations”, IEEE
Trans.on Computer-Aided Design, Dec.1988, pp.

3. B.Lin and R.Newton, “Synthesis of multiple level logic from symbolic high-level
description languages”, Proc. VLSI’89 Conf., Munich, Germany, 1989, pp.

4. E.B.Eichelberger and T.W.Williams, “A logic system structure for LSI testability”,
Pro.ACM/IEEE Design Automation Conf., 1978, pp.462-468.

5. S.Devadas and K.Kreutzer, “Boolean minimization and algebraic factorization
procedures for fully testable sequential machines “ IEEE Conf on CAD, 1989, pp.208-
211

6. S. Devadas et.al, “A synthesis and optimization procedure for fully and easily testable
sequential machines”, IEEE Trans. on CAD, Oct.1989, pp.110-1107.

7. M. Nicolaidis, “Time redundancy based soft error tolerance to rescue nanometer
technologies”, IEEE VLSI Test Symposium, April 1999, pp.86-94.

8. N.K. Jha and S.J.Wang, “Design and synthesis of self-checking VLSI circuits and
systems”, IEEE Trans. on CAD, June 1993, pp. 878-887.

9. A. Matrosova and S. Ostanin, “Self-checking FSM design with observing only FSM
outputs”, Proc.6th IEEE On-line Testing Workshop, Palma de Mallorca, Spain, 2000,
pp.153-154.

