
Spectral Techniques for Design and Testing of Computer Hardware

Mark G. Karpovsky Radomir S. Stankovi�c Jaakko T. Astola

Reliable Computing Lab. Dept. of Computer Science Tampere Int. Center

for Signal Processing

Boston University Faculty of Electronics Tampere University of Technology

Boston 18 000 Ni�s Tampere

USA Yugoslavia Finland

Abstract

This paper presents a tutorial review of spectral methods in logic synthesis and testing of digital de-
vices. The methods discussed are based on spectral characteristics of Boolean functions and autocor-
relation functions. Then, we proposed a method for optimization of decision diagram representations
of systems of Boolean functions through the autocorrelation functions.

1 Introduction

Spectral techniques are a mathematical discipline which may be described as an area of abstract
harmonic analysis devoted to the applications in engineering, primarily electrical and computer
engineering.

Spectral techniques provide an approach to the problems in these areas which often permits
derivation of alternative methods for solving complex tasks eÆciently in terms of space and time.
Transferring a problem from the original into the spectral domain may provide several advantages.
In particular, some numerical calculation tasks diÆcult to perform in the original domain, may
be simple in the spectral domain. The convolution product, that is often used in description and
mathematical modeling of linear shift-invariant systems, is a supporting example. Some properties of
a signal or a system, which are shadowed or diÆcult to observe in the original domain, become easy
observable in the spectral domain. Examples are determination of cut-o� frequencies and sampling
rates in signal processing, and detection of decomposability and symmetry properties in logic design,
see for example, [1], [9], [25], [26]. The fast calculation algorithms for spectral coeÆcients further
improve performances of the related algorithms. Decision diagrams (DDs) extends applicability of
these algorithms to functions de�ned in a large number of points, [3], [37].

In digital devices design, cost of design is growing very fast with an increasing number of
components. Cost of testing is also growing with the increasing density of components and limited
number of input and output pins. Poor controllability and poor observability make the problem
of testing even more complex. The cost of testing for many products is higher than cost of design.
Traditional methods of design and testing require brute force computer search for solving optimization
problems. Unlike to that, spectral methods may provide for simple "analytic" solutions.

To support research and related activities in applications, the First Workshop on Spectral
Methods was organized in 1983, at Boston University, USA, providing a forum for discussion and

exchange of ideas among at about 30 participants. After that, the workshops on spectral techniques
were organized in Montreal, Canada, 1986, Dortmund, Germany, 1989, Beijing, P.R. of China, 1990,
and 1994. SPECLOG 2000, in Tampere, Finland is a continuation of attempts in organizing, joining
e�orts, and conducting research in spectral techniques.

The present paper is a contribution to these e�orts. It discusses the spectral methods in
logic design and testing of digital devices. The results presented are based on the use of spectral
characteristics of the functions realized and their autocorrelation functions. Then, we introduce a
method for optimization of DD representations for systems of Boolean functions through their integer
equivalents and autocorrelation functions.

Presentation in this paper is organized as follows.
In Section 2, we present basic facts from harmonic analysis over �nite (Abelian) groups. In

Section 3, we discuss applications to spectral synthesis. In Section 4, we present methods for testing
of digital devices based on spectral characteristics of functions realized by devices under testing. In
Section 5, spectral techniques for robust data compression are reviewed. In Section 6, we introduce
a method for optimization of DD representations through the autocorrelation functions. Paper ends
with some closing remarks about advantages and limitations of spectral methods and their present
use in practice.

2 Spectral Transforms

In this paper, a discrete function f(x) is considered as a mapping f : G ! P , x 2 G, f(x) 2 P ,
where G is an Abelian group of order jGj = N , and P is the �eld of complex numbers or a �nite
(Galois) �eld. We denote by P (G) the space of all thus de�ned functions.

Example 1 The switching functions are a particular example, when xi 2 f0; 1g, thus G = (f0; 1g;�) =
Cm
2 , where � denotes the addition modulo 2 (EXOR), and P = GF (2).

Alternatively, m-variable switching functions can be considered as a subset of functions in C(Cm
2 ,

where C is the �eld of complex numbers, if the logic values 0 and 1 for f(x) are interpreted as integers
0, and 1, respectively. In this case, a system of k switching functions can be represented by an integer
equivalent function f(z) =

Pk�1
i=0 2

k�1�ifi.

A spectral transform is de�ned as a mapping T : f(x)! bf(w), where x;w 2 G, f(x); bf(w) 2 P .
The mapping T is de�ned in terms of a set of basic functions. Di�erent spectral transforms are

de�ned by choosing di�erent sets of basic functions [9].
A merit of performing such a mapping T over a given function f is in the property that many

problems of design and testing are diÆcult in the original domain x and simple in the "frequency"
domain w.

2.1 Fourier transforms on �nite groups

Fourier transform over G is de�ned by using the group characters as the set of basic functions.
For a given group G, the groups characters of �w over the complex �eld C are de�ned as a

homomorphism �w : G! C with j�wj = 1. Thus,

�w(x� y) = �w(x)�w(y):

The multiplicative group f�wg is isomorphic to the original (additive) Abelian group G. The set of
group characters forms a complete orthogonal system, thus, a basis in C(G). Therefore,

2

1

N
< �w; �� >= Æw;�;

where < �; � > denotes the inner product in C(G).
Then, the Fourier transform in C(G) is de�ned as follows

bf =
1

N

X
x

f(x)�w(x) =
1

N
< f; �w >;

where < :;> denotes the inner product in C(G).
The inverse transform is de�ned by

f(x) =
X
w

bf(w)�w(x):
Example 2 (Discrete Walsh Transform)
Let G = Cm

2 . Then, the group characters are the discrete Walsh functions �w(x) = Wx(x) =
(�1)<w; x >, where <; : > denotes the inner product.

Note that group of Walsh functions fWw(x)g is isomorphic to the group of linear Boolean
functions

f(x1; : : : ; xm) =
mM
i=1

cixi:

In matrix notation, Walsh transform is de�ned by the Walsh matrix

Wm =
mO
i=1

W1;

where
 denotes the Kronecker product and the basic Walsh matrix is de�ned as

W1 =

"
1 1
1 �1

#
:

For example if m = 3,

W3 =

"
1 1
1 �1

#

"
1 1
1 �1

#

"
1 1
1 �1

#

=

26666666666664

1 1 1 1 1 1 1 1
1 �1 1 �1 1 �1 1 �1
1 1 �1 �1 1 1 �1 �1
1 �1 �1 1 1 �1 �1 1
1 1 1 1 �1 �1 �1 �1
1 �1 1 �1 �1 1 �1 1
1 1 �1 �1 �1 �1 1 1
1 �1 �1 1 �1 1 1 �1

37777777777775
:

3

The Walsh spectrum bf represented as a vector bf = [bf(0); : : : ; bf(2n � 1)]T , is de�ned as

bf = 2�mWmf ;

where f is the vector of function values. Thus, f = [f(0); : : : ; f(2n � 1)]T .
Since the entries of Hm are in f1;�1g, the Walsh spectrum can be calculated in terms of

additions. A factorization of Hm in terms of the Kronecker product representable sparse matrices
permits derivation of a fast algorithm (FWHT) for calculation of the Walsh transform. Complexity
of FWHT (number of additions) is m2m.

The same considerations apply if the groups characters are de�ned over some �eld P di�erent
from C provided that some relationships between jGj and the characteristics of P are satis�ed.

2.2 Related transforms

In some applications, it is convenient to use basic functions di�erent from the Fourier basis consisting
of group characters.

For example, if f(x) 2 C(Cm
2) can be approximated by a polynomial of a small degree, then

the basic functions for a Fourier-like transform may be selected as the discrete Haar functions Hw.

Example 3 (Discrete Haar functions)
For m = 3, and G = C3

2 , the unnormalized discrete Haar functions are de�ned as rows of the Haar
matrix

H3 =

26666666666664

1 1 1 1 1 1 1 1
1 1 1 1 �1 �1 �1 �1
1 1 �1 �1 0 0 0 0
0 0 0 0 1 1 �1 �1
1 �1 0 0 0 0 0 0
0 0 1 �1 0 0 0 0
0 0 0 0 1 �1 0 0
0 0 0 0 0 0 1 �1

37777777777775
:

In this case, bf depends on a local behavior of f(x). Computation of

f(x) =
X
w

Hw(x) bf(w);
in a �nite �eld (Haar-Galois transform) results in a decrease of the memory size.

2.3 Autocorrelation function

Autocorrelation is a very useful concept in spectral methods for analysis and synthesis of networks
realizing logic functions.

For a given m-variable switching function f , the autocorelation function Bf is de�ned as

Bf (�) =
2m�1X
x=0

f(x)f(x� �); � 2 f0; : : : ; 2m � 1g;

4

The Winer-Khinchin theorem states a relationship between the autocorrelation function and
Walsh (Fourier) coeÆcients

Bf = 2mW�1(Wf)2:

It may be remarked that the autocorrelation function is invariant to the shift operator � in terms
of which Bf is de�ned. Due to that, it performs some compression of data in the sense that several
functions may have the same autocorrelation function Bf . Fig. 1 illustrates this property of Bf . In
this �gure, '� = f(x��) is a shifted function for f , WK denotes the Wiener-Khinchin theorem, and
CBf

denotes the set of functions having the same autocorrelation function Bf . However, although we
are sacri�cing a part of data, this compression makes description of problems where the shift is not
important in terms of the autocorrelation language very eÆcient. For example, the autocorrelation
is very useful in the applications where we are interested in the equality of some function values, and
not in their magnitude.

f

� �

Bf
WK

WK

CB

�

f

Figure 1: Autocorrelation functions.

For a system of k switching functions f (i)(x1; : : : ; xn), i = 0; : : : ; k�1, the total autocorrelation
function is de�ned as the sum of autocorelation functions of each function in the system. Thus,

Bf (�) =
k�1X
i=0

Bf(i)(�):

Note that for any � 6= 0, Bf � Bf (0). The set GI(f) of all values for � such that Bf (�) =
Bf (0) =

Pk�1
i=0

P2m�1
x=0 f (i)(x) is a group with respect to the EXOR as the group operation which is

denoted as the inertia group of the system f .
A generalization of autocorrelation to systems of p-valued m-variable functions is straight-

forward. For a system of p-valued functions f(z) = ff (i)(z(0); : : : ; z(m�1))g, i = 0; : : : ; k � 1,
z(i] 2 fo; : : : ; p� 1g, a system of characteristic functions is de�ned as

f (i)r =

(
1; f (i)(z) = r,

0; f (i)(z) 6= r.

Then, the total autocorrelation function is de�ned as [9]

Bf (�) =
p�1X
r=0

k�1X
i=0

B(i)
r (�):

5

f x()

f w()

Generator of
Basic Functions

Memory

� w()x

�

�

Figure 2: Spectral synthesis.

Further generalizations to functions on arbitrary �nite Abelian groups are also straightforward,
see for example, [9]. In this case, the Winer-Khinchin theorem is de�ned with respect to the Fourier
transforms de�ned in terms of group characters. It should be noted that this theorem is correct for
the autocorrelation functions of discrete functions and characteristic functions associated to them,
however, it does not apply to the related total autocorrelation functions.

3 Spectral Synthesis

Fig. 2 illustrates the method of spectral synthesis by the example of Fourier transforms. It is assumed
that a given function f is represented as

f(x) = 2�m
X
w

bf(w)�w(x);
Spectral coeÆcients bf(w) for f are stored in a memory and added, after multiplication with

basic functions �w provided by a suitably designed function generator, which produces f at the
output of the system.

Complexity of spectral realization of a given f (memory size) is proportional to the number of
non-zero coeÆcients bf(w) which have to be stored in the memory for a hardware implementation of
f . The same method applies to any other spectral transform. Advantages of spectral synthesis are

1. Structural design and simple architectures consisting of standard components such as adders,
memories, etc.

2. Simple o�-line testing and on-line error detection and correction.

3. Adaptability and programmability for a given functional behavior.

4. EÆcient optimization techniques.

In particular, spectral synthesis is eÆcient for digital function generators.

Example 4 For the function f(x) = sinx, where the argument x and the function values are rep-
resented by 16 bits, thus, x 2 C16

2 , f(x) 2 C16
2 , the transition from the traditional synthesis to the

spectral approach with Haar functions results in about 25% hardware savings.

6

x1

z1

xm zm

f x(). .
. .
. .� �

z = � x
Linear Non-linear

Figure 3: Realization by linearization of f .

3.1 Complexity of realization of Boolean functions

Let f : Cm
2 ! C2 be a Boolean function. Denote by L(f) the minimum number of two input gates

to implement f .
It is shown that for almost all f , L(f) � 2m

m as m!1 [21], [33].
Denote by �(f) = jf(x; y)jx 2 Cm

2 ; y 2 Cm
2 ; d(x; y) = 1; f(x) = f(y)gj. It may be stated [34]

that for almost all f1; f2, as m!1,

�(f1) � �(f2)! L(f1) � L(f2):

Complexity of realization may be reduced by the linearization and polynomial approximation
of Boolean functions.

3.2 Linearization of Boolean functions

Linearization of Boolean functions assumes representing a given system of Boolean functions as
the superposition of a system of linear Boolean functions and a residual nonlinear part of minimal
complexity. Fig. 3 shows the realization of a given function f based on the linearization. The
network produced consists of a serial connection of a linear and a nonlinear blocks. The linear block
consists of EXOR circuits only. For an m-variable function, complexity of the linear block increases
asymptotically no faster than m2= log2m as m ! 1 [9], whereas the complexity of the nonlinear
block is almost always an exponentially increasing function of m. Therefore, the complexity of the
linear block may be ignored in linearization problems.

The linearization of a system of Boolean functions is performed to meet some criterion of the
complexity of the realization of f(x). In this paper, we consider the complexity of f(x) as the
minimum number of two input gates to implement f(x).

3.2.1 Linearization problem

The linearization problem may be formulated as follows.
For a given f : Cm

2 ! C2, �nd a nonsingular over GF (2) (m�m) matrix � such that

f(x) = �(�x);

and �(�)! max�.

7

3.2.2 Solution of the linearization problem

A solution of the linearization problem can be found as follows.

1. Construct by the Wiener-Khinchin theorem and FWHT the autocorrelation function

Bf (�) =
X
x

f(x)f(x� �);

2. Find �0 such that B(�) = max� 6=0B(�).

3. Find �i, i = 1; : : : ;m � 1, such that B(�i) = max� =2Ti�1
B(�), where Ti = fc0�0 � c1�1 � � � � �

ci�1�i�1g, ci 2 f0; 1g.

4. Construct

T =

266666664

�0
�1
�
�
�

�m�1

377777775
;

and determine

� = T�1

where all the calculations are in GF (2).

Complexity of solving the linearization problem for a given f does not exceed O(m2m) and may
be much smaller than this if we have a compact description of f .

For randomly generated Boolean functions, the linearization results in about 20% reduction in
the gate counts. Generalization to multi-valued p-ary logic (p-prime) is possible.

The method of synthesis by linearization will be illustrated by the following example.

Example 5 Table 1 shows a system of two four-variable Boolean functions f (0) and f (1), and the
total autocorrelation function B of this system [9]. Fig. 4 shows a direct AND-EXOR realization of
this system with two-input circuits. This realization is chosen for a comparison to the realization by
linearization of f , since in the linearization method the linear part is realized by EXOR circuits, and
the criterion for minimization is expressed in terms of two-input gates count. The maximum value
of B(�) = B(0) = 16 for the inputs 5 = (0101), 10 = (1010), and 15 = (1111). Thus, as it is pointed
out in Section 2.3, the inertia group for this system is GI = f(0000); (0101); (1010); (1111)g. As a
basis for GI we take (0101) and (1010), and determine

T =

26664
1 0 0 1
0 1 1 0
0 0 0 1
0 0 1 0

37775 :

8

Then,

� = T�1 =

26664
1 0 1 0
0 1 0 1
0 0 0 1
0 0 1 0

37775 :
The matrix T determines a reordering of the truth-vector F of a four-variable function f as

F = [f(0); f(10); f(5); f(15); f(4); f(14); f(11); f(8):f(2); f(13); f(7); f(12); f(6); f(9); f(3)]T :

Table 1 shows functions f
(0)
� and f

(1)
� produced by this reordering from f (0) and f (1). Thus, these

functions satisfy the relation

f�(x) = f(��1x):

Therefore, we determine the intermediate values z1; z2; z3; z4 in Fig. 3 from � = T�1, as

z1 = x1 � x3;

z2 = x2 � x4

z3 = x4

z4 = x3:

From there,

f (0) = z1 _ z2 = (x1 � x4) _ (x2 � x3)

f (1) = z1z2 = (x1 � x4)(x2 � x3);

where _ denotes logical OR. It should be noted that both f (0) and f (1) do not essentially depend on
z3 and z4.

Fig. 5 shows the corresponding AND-EXOR realization of this system of Boolean functions by
two-input circuits. Thus, for a comparison with the direct realization in Fig. 4, the logical OR is
realized by using AND and EXOR circuits.

3.3 Polynomial approximation of Boolean functions

In the previous section, the realization of a given f was based on linear and nonlinear blocks connected
serially, minimizing the complexity of the nonlinear part. Polynomial approximation of systems of
switching functions generates networks with the linear and nonlinear blocks connected in parallel,
and minimizing a complexity of the nonlinear part. Unlike the method for linearization of switching
functions, which is based on the autocorrelation function, the polynomial approximations are based
on the eÆcient use of spectral characteristics in optimization problems.

A switching function is approximated by a product of q linear functions l0; : : : ; lq�1 if

f(x) = fp(x)
q�1Y
i=0

li(x):

9

Table 1: System of Boolean functions.

x1x2x3x4 f (0) f (1) B f
(0)
� f

(1)
�

0 0000 0 0 16 0 0
1 0001 1 0 8 0 0
2 0010 1 0 8 0 0
3 0011 1 1 8 0 0
4 0100 1 0 8 1 0
5 0101 0 0 16 1 0
6 0110 1 1 8 1 0
7 0111 1 0 8 1 0
8 1000 1 0 8 1 0
9 1001 1 1 8 1 0
10 1010 0 0 16 1 0
11 1011 1 0 8 1 0
12 1100 1 1 8 1 1
13 1101 1 0 8 1 1
14 1110 1 0 8 1 1
15 1111 0 0 16 1 1

x1

x2

x2 x1

x3

x4

x3

x4

�
�

�
�

�

�
�

�
f

(0)

f
(1)

Figure 4: Realization of f (0) and f (0) in Example 5.

x1

x2

x3

x4

�

�

�
�

f
(0)

f
(1)

� 	

Figure 5: Realization by linearization of f (0) and f (0) in Example 5.

10

l0

lq-1

fp

f x()

.

.

.
.

.

..

.

.
.

.

..

.

.
.

.

.

Figure 6: Realization by polynomial approximation of f .

The function P (x) =
Qq�1

i=0 li(x) is a polynomial of degree q denoted as a polynomial approxi-
mation of f . Fig. 6 shows the structure of a network which can be used to realize a given f which
has a polynomial approximation P (x). In this �gure, � denotes logic multiplication of inputs in the
circuit.

An m-tuple l = (l0; : : : ; lm�1) is denoted as a linearity point for a given f(x0; : : : ; xm�1) if

l(x) =
m�1M
s=0

lsxs � lm;

is an approximation of f .
It is shown [9], that a switching function f(x0; : : : ; xm�1) has linearity points l0; : : : ; lq(f)�1 i�

j bf(li)j = 2�m
2m�1X
x=0

f(x); i = 0; : : : ; q(f)� 1;

where bf is the Walsh spectrum of f and li =
Pm�1

s=0 l
(i)
s 2s.

Due to that, a solution of the polynomial approximation can be found as follows.

1. Calculate the Walsh spectrum bf of the function f .

2. Construct the group of linearity points li for which j bf(li)j = 2�m
P

x f(x), and select an arbi-
trary basis of this group.

3. Determine P (x) as

P (x) =

q(f)�1Y
i=0

m�1M
s=0

l(i)s xs � sign(Sf (li))

!
mod 2;

where

sign(x) =

(
1; if x > 0;
0; if x � 0:

The following example illustrates the method and application of polynomial approximations of
Boolean functions.

11

x1

x2

x2

x3

x3

x4

x4

�

_

_
_

f

Figure 7: Realization for f in Example 6.

x1
x1

x1

x2
x2

x2

x3
x3

x3

x4 x4

x4

�

� �

l0

l1

fp
fp

fp

f f

f

Figure 8: Realization by polynomial approximation for f in Example 6.

Example 6 Consider a four-variable Boolean function f = x2x3x4 � x1x2x3x4. The truth-vector
for f is F = [0001000001010000]T , and the Walsh spectrum for f is

bf = [3;�1; 3;�1;�1;�1;�1;�1;�3; 1;�3; 1; 1; 1; 1; 1]T :

Therefore, j bf(0)j = j bf(2)j = j bf(8)j = j bf(10)j = 2�4
P

x f(x) = 3=16.
It follows, that the group of linearity points consists of inputs (0000), (0100), , (0101). As a

basis we take l0 = (0001), and l1 = (0101). Since sign(bf(l0)) = sign(bf(8)) = 0, and sign(bf(l1)) =
sign(bf(10)) = 0, the optimal approximation is P (x) = (x2 � x4)x4. The nonlinear part is fp(x) =
x1 _ x3. Therefore, f = x4(x2 � x4)(x1 _ x3).

Fig. 7 shows a straightforward realization of f by two-input circuits. Fig. 8 shows the realization
through the polynomial approximation for f . We have shown a straightforward realization through
polynomial approximation corresponding to the general model in Fig. 6, then a realization by taking
advantages that x4(x2 � x4) = x2x4 � x4 = x4(x2 � 1) = x2x4, and an AND-EXOR realization, with
logic OR circuit implemented in terms of AND and EXOR circuits.

4 Spectral Techniques for Functional Testing

With the advent of VLSI and corresponding drastic increase in the density of gates on a chip, high-
level functional testing is one of the most viable approaches to the testing of computer hardware.

12

x1

xm

f x().
.
. DUT

�

Figure 9: Functional testing.

It may be remarked that testing is the "bottleneck" for computer industry. Interconnection of
components in device-under-test (DUT) is too complex or not known for a user, which makes the
testing a rather diÆcult and both space and time complex task.

Fig. 9 shows the basic task in functional testing. The inputs x0; : : : xm�1 and the output
�
f are

accessible. Verify f =
�
f , where f is fault free response.

4.1 Linear check tests

Two well known methods of functional testing are signature analysis, see for example, [23], [35], and
syndrome check sums [10]. However, these methods have several practical limitation, mainly due to
the considerable testing time and the diÆculty in estimating the fault coverage. For these reasons, a
method denoted as the linear check test sets has been proposed in and further elaborated and used
in [4], [12], [13], [19]. The method can be formulated as follows.

For a given f : Cm
2 ! GF (2), �nd a partition fB0; : : : ; Br�1g of C

m
2 such that 8i; j jBij = jBjj.

The subsets Bi are denoted as the test sets and are dependent on the function implemented by DUT.
Test sets are determined in such a way that under fault free conditions the sum of the outputs for
all inputs within a test set is the same constant Ki for every test set.

The method for error detection consists of the veri�cation of a linear equality checkX
�2Bi

f(x� �)�K = 0; (1)

for every i and every x 2 f0; : : : ; 2m � 1g.
It follows that a testing procedure can be formulated as follows.
When computing f(x), �nd i such that x 2 Bi and verify

P
xi2Bi

f(x) = Ki.
Good features of the method are that Ki is the only value to be stored for a given f . Test time

(test complexity) is T (f) = jBij. In many cases, the method gives better error detecting and/or
error-locating capability, and, in general, requires less testing time.

Example 7 (m-bit multiplier)

An m-bit multiplier is a device realizing a function

f(x0; : : : ; xm�1; y0; : : : ; ym�1) = x � y;

where x =
P

i xi2
m�1�i, and y =

P
i yi2

m�1�i, with xi; yi 2 f0; 1g.
The domain C2m

2 can be partitioned into the test sets f02m; 0m1m; 1m0m; 12mg, where the expo-
nentiation ri is de�ned as the repetition of the symbol r 2 f0; 1g, i times. Therefore, in this case, we
have the following check

13

f(x0; : : : ; xm�1; y0; : : : ; ym�1) + f(x0; : : : ; xm�1; y0; : : : ; ym�1)
+f(x0; : : : ; xm�1; y0; : : : ; ym�1) + f(x0; : : : ; xm�1; y0; : : : ; ym�1) = (2m � 1)2:

For T (f) = 4, (x; y); (x; y); (x; y); (x; y) form one block of the partition for testing.

It was shown in [10], [13], [19], [20], that linear equality checks have very good error-detecting
and error-correcting capabilities and may be easily implemented. Very simple equality checks were
considered in [19] for many standard computer blocks, and in [13] for programs which evaluate
polynomials.

4.2 Linear check for polynomials

Assume that a given f(x) is represented by polynomial, thus, f(x) = P (x) =
Ps

i=0 aix
i, where

ai 2 C, x = (x0; : : : ; xm�1), xi 2 f0; 1g.
For the construction of a check set and a constant K satisfying (1) for P (x), we may use the

results from [19], and [13].
Let V (m; d) be a maximal binary linear error-correcting code with the code words of length m

and distance d, and let V ?(m; d) be a dual code to V (m; d). Then,

V ?(m; d) = f� = (�1; : : : ; �m) 2 Ggg;

with
Lm

i=1 �ixi = 0 for every x = (x1; : : : ; xm] 2 V (m; d).
Methods for constructing V (m; d),a nd V ?(m; d) and estimating their cardinalities may be

found e.g. in [28]. It was shown in [13] and [19] that if

Pd(x) =
X
i=0

aix
i;

with as 6= 0, and x 2 f0; : : : ; 2ng, thenX
�2V ?(m;d+1)

Pd(x� �)�K = 0;

where

K = jV (m; d + 1)j�1
X
x2G

Pd(x) = jV (m; d+ 1)j�1

dX
i=0

ai(i+ 1)�1
!

iX
r=0

i+ 1
�

!!
2(i+1��)mB� ;

where B� stands for Bernoulli numbers.
A solution of the problem of constructing a linear check test for polynomials can be formulated

as follows.

1. Construct a maximal linear code V of length m and distance s+ 1.

2. Select B0 = V ?, where Bi = coset of V ? in Cm
2 , and V ? is the dual code for V .X

�2V ?

f(x� �) = K;

where K is the reference value. It follows,

f � Æ = K;

where Æ(x) = 1, x 2 V ?, T (f) = 2m

jV j .

14

The proof is based on the property that if degf(x) = s, then bf(w) = 0, if jjwjj > s, where jjwjj
is the Hamming norm of w.

All polynomials of the same degree s have the same check but di�erent reference values K.
Test complexity depends on the degree s and the number m of bits in x.

Example 8 Consider a function f(x) = x2�1, where m = 3 and s = 2. Therefore, V = f000; 111g,
V ? = B0 = f000; 011; 101; 110g, and V ? � 001 = B1 = f001; 010; 100; 111g. It follows,

X
�2V ?

f(x) =
X

�2V ?�001

= 67;

and thus, Tf = 4.

4.3 Systems of Linear Orthogonal Checks

Two partitions B = fB0; : : : ; Br�1g and D = fD0; : : : ;Dt�1g of C
m
2 are orthogonal if jBi \Dj j = 1.

Any system of orthogonal linear checks detects up to 2l � 1 errors and corrects up to 2l�1 � 1
errors.

4.4 Linear Inequality Checks

It was shown in [10], [13], [19], [20], that equality checks may be eÆciently used in the case where
f(x) is an integer for every x, and very few non-integer functions have nontrivial equality checks. A
generalization of linear check methods to the case of non-integer computations was given in [12]. It
were proposed that linear inequality checksX

�2T

f(x� �)�K � �; (2)

where � is a given small constant, should be used for error detection in numerical computations. In
this method, the main task is to construct an optimal inequality with the minimum cardinality jT j
of a check set. A solution of that problem was given in [10]. It consists of the following steps.

1. Approximate f(x) by a Chebyche� polynomial (in L1)

f(x) = P (x) + �(x);

where �(x) � � for 8x, and � is a given enough small value.

2. Construct V ? = B0 for P (x), (equality check for P).

Then � = � � jV ?j, with T (f; �) = T (P; 0).

Small increase in � may result in a drastic decrease of test complexity T (f; �).

Example 9 Consider a function f(y) = y�0:5 sin�=2y0:5, for 0 � y < 1. For y = 2�23x, and
x 2 f0; 1; : : : ; 223 � 1g, we have T (f; 0) = 223.

If f(y) = P2(y) + �(y), since degP2(y) = 2, then �(y) � 14 � 10�5 for all y.
For P2(y), we have T (P2) = 25, where V is (23, 18, 3) the shortened Hamming code, and

� = 14 � 10�5 � 25 � 5 � 10�3, and T (f; 5 � 10�3) = 25.

15

Advantages of the linear inequality checks are

1. The test is independent on the implementation of a program or a device computing the given
function f(x).

2. In many practical cases, the checks are very simple and have good error-detecting and error-
locating capability.

The main limitations of this approach are

1. Impossibility to use for intermittent faults,

2. Possibility to use when the implemented function f(x) has a good best-absolute-error polyno-
mial approximation.

5 Robust Compression of Test Response

Built-in o�-line testing (BIST) becomes in many cases a necessary feature of a VLSI chip. Evidently,
the area needed for the checking circuitry and for the storage of reference data should be minimized.
This requirement gives rise to testing techniques based on reducing the amount of test response data
(response compression) see, for example, [18].

To reduce the storage size, test responses are compressed into an r-bit word called signature.
Several compression of test responses techniques (signature analysis techniques) have been reported
[15], [23]. We point out few of them using spectral methods [8], [27], [40].

The most popular among di�erent test compression techniques, the linear feedback shift registers
(LFSR) the reason being that LFSR can easily be implemented in BIST VLSI design.

In the case of multiple input LFSR compressors, the observed response
�
f= f � e, where f is

the fault-free response and e is an error, is compressed into a signature y(
�
f). Since the mapping

y :
�
f! y(

�
f) is linear, we have y(

�
f) = y(f) � y(e). Therefore, e is masked i� y(e) = 0, which we

denote as the aliasing of the error. It follows that linear compressors are not robust. In the case of
nonlinear compressors, error masking depends on both f and e, that is, e is masked for a given f i�
y(f) = y(f � e).

The error masking characteristic function for a compressor y is denoted as E(f; e) = 1 i�
y(f � e) = y(f), E(f; e) 2 f0; 1g.

An error-masking probability (aliasing probability) is de�ned as

Q =
X
f;e6=0

E(f; e)Pr(f; e):

For complex devices, as processors, it is usually assumed that f and e are independent random
variables, and, therefore, Pr(f; e) = Pr(f)Pr(e). Since for an LFSR, E(f; e) = 1 i� y(e) = 0, then Q
for LFSR compressors depends solely on Pr(e). Thus, LFSRs are not robust and their performances
depend on distributions of errors Pr(e) which are diÆcult to estimate (computing these distributions
require gate-level or even transistor-level descriptions of DUTs which may be too complex for VLSI
devices).

We will describe below a class of robust compressors (quadratic compressors). For these com-
pressors aliasing probabilities do not depend on distributions of errors in DUTs.

16

x1

y1 z1

xm ym zm

. . .

. . .

. . .DUT f

r m<<

Figure 10: Robust compression of test response.

The concept of quadratic compressors is based on the quadratic nonrepetitive function of 2T
variables over GF (2k), the Galois �eld of 2k elements

y(
�
f) =

�
f0

�
f1 � � � � �

�
f2T�2

�
f2t�1;

where
�
f i2 GF (2k) and

�
f is a sequence of test responses consisting of 2kT bits. We consider

�
f as a

sequence of k-bit symbols f
�
f i2 GF (2k), i = 0; : : : ; 2T�1, where

�
f= f�e = ffi�ei; fi; ei 2 GF (2k)g,

i = 0; : : : ; 2T � 1g.

The k-bit function y(
�
f) is computed by multiplying two k-bit blocks

�
f i and

�
f i+1 and accumu-

lating the sum.
It is shown in [17] that quadratic compressors are optimal, that is, for any r � k bits representing

a signature and chosen form k.bit y(
�
f) we have Q(e) = 2�r for all e 6= 0. Therefore, an average

performance measure (aliasing probability) for quadratic compressor Q is independent of the statistic
of errors and these compressors are robust which provides for an equal protection (equal error masking
probability) against all errors

PAL(e) =

(
1; e 2 Kern(f);
0; e =2 Kern(f);

Thus, compressors based on a non-repetitive quadratic forms over Zr
2 are robust with equal

error detection for all errors (PAL(e) = 2r, e 6= 0).
Complexity of quadratic compressors is O(m � r).

5.1 Robust quadratic compressor, case r = 1, m = 2s

We will consider now a special case of robust quadratic compressors with one output line (r = 1).
In this case, the function implemented by the quadratic compressor can be described as

f(y1; : : : ; y2s) = y1y2 � y3y4 � � � � y2s�1y2s;

where yi 2 f0; 1g.
We note that f is a bent function [22], i.e., f , represented as a binary vector of length 2m, is at

the maximal Hamming distance from any linear Boolean function of m variables. We note also that

17

non-repetitive quadratic forms implemented by robust compressors have some properties which are
similar to "white noise", i.e., their Walsh autocorrelations are at

Bf (e) =
X
y

f(y)f(y � e) = Const:

for e 6= 0. Denote

Y1 = (y1; : : : ; yr);

Y2 = (yr+1; : : : ; y2r);

...

Y2s = (y2r�1; : : : ; y2r):

f = Y1Y2 � Y3Y4 � � � � � Y2s�1Y2s;

where f 2 Zr
2 . Then,

1. f is robust for any r,

2. PAL(e) = 2�r for any e 6= 0,

3. f is bent (at autocorrelation) ,

Let fi(y) = 1 i� f(y) = 1.

Bi(e) =
X
y

fi(y)fi(y � e);

B(e) =
X
i

Bi(e) = Const:

for e 6= 0.

6 Reduction of Sizes of DD Representations

Decision diagrams (DDs) are a data structure permitting eÆcient representation of discrete functions
de�ned on groups of large orders [32]. DDs are derived by the reduction of decision trees (DTs). The
reduction is performed by sharing the isomorphic subtrees and deleting the redundant information
from the DT. The reduction procedure is formalized through the reduction rules [32] adapted to the
range of functions represented.

Di�erent DDs are de�ned for representation of di�erent classes of discrete functions, [32], [36],
[38]. Binary decision diagrams (BDDs) are the basic concept in DD representations [32], and are
used to represent Boolean functions [32]. The systems of Boolean functions are represented by
Shared BDDs (SBDDs) which are derived by joining isomorphic parts in BDDs for each function
in the system. Multi-terminal binary DDs (MTBDDs) [3] are a generalization of BDDs used to
represent functions in C(C2

m). They can represent systems of Boolean functions represented by the
corresponding integer equivalent functions f(z).

18

In many applications, the eÆciency of the use of DD representations is determined by the size
of the DD de�ned as the number of nodes in the DD for a given f .

In this section, we show that the linearization method may be useful in DD representations
since gives an exact algorithm for linear transformation of DDs. Then, we present a procedure
for minimization of MTBDDs for systems of Boolean functions based on the total autocorrelation
functions de�ned below.

6.1 Reduction of sizes of DDs by linearization of Boolean functions

BDDs are derived by the recursive application of the Shannon expansion f = xif0 � xif1, where
f0, and f1 are co-factors of f for xi = 0 and xi01, respectively, to all the variables in f . Linearly
transformed BDDs (LT-BDDs) are a generalization derived by performing the expansions with re-
spect to a linear combination of subsets of variables. The chief problem in LT-BDD representations
is to determine a suitable linear combination of variables for a given function f . Few heuristic al-
gorithms have been proposed to solve this problem, see for example, [6], [7], [?]. Algorithms for
eÆcient manipulation with LT-BDDs are presented in [?]. Therefore, the determination of linear
combinations of variables in LT-BDDs is an interesting and important task, since LT-BDDs permit
for some functions the exponential reduction of the size compared to the BDDs.

The linearization method for Boolean functions presented in Section 3.2 provides an exact
algorithm for linear transformation of BDDs and Shared BDDs for systems of Boolean functions
[32]. This statement will be explained and illustrated by the following example.

Example 10 Fig. 11 shows SBDD for the system of Boolean functions f (0)(x) and f (1)(x) de�ned
in Table 1. This SBDD represents the given system in the form of expressions

f (0) = x1x2x3x4 � x1x2x3 � x1x2x3 � x1x2x3x4 � x1x2x3x4 � x1x2x3x4 � x1x2x3 � x1x2x3;

f (1) = x1x2x3x4 � x1x2x3x4 � x1x2x3x4 � x1x2x3x4:

As is shown in Example 5, after linearization, this system is converted into the system f
(0)
� (z)

and f
(1)
� (z), in terms of new variables zi, i = 1; 2; 3; 4 expressed as linear combination of original

variables xi, i = 1; 2; 3; 4. It follows that the given system can be represented by a SBDD derived
by decomposition in terms of linear combination of variables. Fig. 12 shows SBDD for the given
system derived by the linearization method. This SBDD represents the given system in the form of
expressions

f (0) = (x1 � x3)� (x1 � x3)(x2 � x4);

f (1) = (x1 � x3)(x2 � x4):

Compared to the present methods for linear transformation of DDs, an advantage is that the
linearization method through total autocorrelation functions provides an exact algorithm to deter-
mine linear combination of variables in terms of which the decomposition is performed. At the same
time, the method can be used for systems of Boolean functions.

6.2 Reduction of sizes of DDs through the total autocorrelation functions

In what follows, it is assumed that a given system is represented by the integer equivalent function
f(z). Since, the reduction of size(MTBDD(fz)) is an NP-complete problem [2], the procedure

19

S2 S2

S2 S2
S2 S2

S2 S2
S2 S2

S2
S2S2 S2

S2 S2

x1
x1

x2 x2
x2 x2x2 x2

x2 x2

x3

x4 x4

x4
x4

x3

x3x3
x3

x3 x3

x3

x3 x3
x3

x3
x3

x3

x1 x1

_ _

_ __ _

_
_

_ _

_
__ _ __

f
(0)

f
(1)

01

Figure 11: STBDD for the system of functions.

S2 S2

S2

x1� x3

x1� x3

x1� x3

x1� x3

x2� x4 x2� x4

f
(0)

f
(1)

01

Figure 12: STBDD for the system of functions derived by the linearization method.

20

described below provides for near minimal solutions. The procedure performs minimization of a
MTBDD for a given f(x1; : : : xn) level by level by starting from the bottom level corresponding to
the variable xn. It guarantees the maximal number of equal pairs of values of f(x). Each pair is
assigned to a non-terminal node at the level to which xn is assigned. Thus, for each equal pair
we can reduce a node at the lowest level in the MTBDD. Then, we encode pairs of values of f(x)
and repeat the procedure at thus produced MTBDD for n � 1 variables. Under the assumption
that we minimized the number of nodes at the previous level, we get a minimal number of nodes
a the level n � 1. The criterion for the minimization is determined by the maximum value of
the total autocorrelation function for f(x) and subsequently, by the maximum values of the total
autocorrelation functions for integer-valued functions obtained by encoding pairs of values at each
level during the implementation of the procedure. The maximum values for total autocorrelation
functions may be achieved for di�erent inputs � . Therefore, the procedure depends on the choice of
� at each level in the sense that for di�erent choices of � di�erent reduction possibilities at the upper
levels may be achieved. At each level i, for a chosen input � , we perform the reordering of function
values of the corresponding function of i variables derived by encoding equal pairs of function values
at the preceding levels in the MTBDD. This reordering is determined by the matrix relation

� � � = [0; : : : ; 1]T ;

where � denotes the multiplication in GF (2), and � is any (i� i) matrix over GF (2) satisfying this
requirement. Since, the requirement may be achieved for di�erent matrices �, the method depends
also on the choice of a particular matrix �. However, this is a usual feature of nearly optimal solutions
of NP-hard problems.

The implementation of the method is formalized through a procedure denoted in what follows
as the K-procedure. Example 11 illustrates the application of the method.

Unlike the method presented in [29], the method presented in this paper can be used for both
single output and systems of Boolean functions, and extends the class of permutation matrices for
input vectors compared to that allowed in optimization of DDs by variables ordering. Therefore, the
method proposed in many cases produces MTBDDs with smaller or at least equal sizes compared
to the methods using the variables ordering. However, there are some counter examples. Example
12, Example 13, and Example 14 illustrate that feature as well as dependency on di�erent choices
for � and �. However, since we use an extended set of permutation matrices for the permutation of
elements of the truth-vector, the method proposed may produce solutions which can not be achieved
by the variable reordering. Example 15 illustrates this statement.

K-procedure

1. Assign to a given multi-output function f0; : : : ; fk�1, an integer equivalent function f(z) =Pk�1�i
i=0 2ifi.

2. Denote by R the range of f(z) assigned to f . For each di�erent value i 2 R, determine
characteristic functions

fi(z) =

(
1; if f(z) = i;
0; otherwise;

21

3. Calculate the autocorrelation functionsBfi for each fi(z), and the total autocorrelation function

Bf (�) =
k�1X
i=0

Bfi(�):

4. Determine the n-tuple of input variables � = (x1; : : : ; xn), where Bf takes the maximum value,
excepting the value Bf (0). If there few possibilities, choose any of them arbitrarily.

5. Determine a matrix � from the requirement

� � � = (0; : : : ; 0; 1)T ;

where � denotes the multiplication over GF (2).

6. Determine a function

f�(� � x) = f(x):

That means, reorder values in a vector F representing values of f by the mapping x =
(x1; : : : ; xn)! x�(x1; : : : ; xn), where x� = ��1 � x.

7. In a vector F� representing the values of f�, perform the coding of pairs of adjacent values
by assigning the same symbol to the identical pairs. Denote the resulting function of (n � 1)
variables by Qn�1.

8. Repeat the previous procedure for i = n� 1 to some k until there are identical pairs in Qk.

9. Determine MTBDD for f�k .

It is possible to show that the K-procedure produces the maximal number of identical pairs or
isomorphic subtrees at the each level in the MTBDD provided that the maximal number of identical
pairs at the previous level is generated.

Remark 1 (Lower bound of nodes in MTBDD produced by K-procedure)
We �rst minimize the number of non-terminal nodes at the level to which xn is assigned. Under
this condition, we minimize the number of non-terminal nodes at the level corresponding to xn�1,
and we continue the procedure until the root node. Each pair of equal values permits reduction of a
subtree whose size depends on the level we are processing. The total amount of nodes in the resulting
MTBDD(f�) is upper bound by

L � 2n � 1�
1

2

nX
i=1

B(n�i�1)
max 2i�1:

where Bk
max is the maximum value of the total autocorrelation function at the level k.

Remark 2 For each pair of values determined by K-procedure, a node in the MTBDD(f��1
i
) may

be reduced. It follows, that K-procedure produces the minimal number of di�erent nodes at each
level in the MTBDD(f��1

i
). However, since the pairing of nodes at the i-th level is performed by

the total autocorrelation function for Qi, this is not necessarily the exact minimum of nodes in
the MTBDD(f), which may be achieved by an ordering of elements of F optimal in the sense that
produces the MTBDD(f) of the minimum size.

22

Remark 3 A reordering of elements in F can be represented through a permutation matrix P. We
denote by Pdv, PFreeBDD, and PK , the set of permutation matrices used in optimization of MTBDDs
by variables ordering, in FreeBDDs, and in MTBDDs for f� determined by K-procedure. Then,

Pdv �FreeBDD� PK :

We explain the K-procedure by the following example.

Example 11 Table 2 shows an two-output function f0 � f1 of four variables. This function is repre-
sented by the integer equivalent function f = 2f0 + f1. The maximum value for the autocorrelation
function Bf is 8 which corresponds to the n-tuple �max(1111).

Fig. 13 shows MTBDT(f). Fig. 14 shows the corresponding MTBDD(f). We determine a
matrix �4 from the requirement

�4 � �max = �4

26664
1
1
1
1

37775 =
26664
0
0
0
1

37775 :

S2

S2 S2

S2 S2
S2

S2

S2 S2 S2 S2 S2
S2 S2 S2

x1

x2 x2 x2
x2

x3

x4 x4 x4 x4
x4 x4 x4 x4

x4 x4 x4 x4 x4 x4
x4 x4

x3 x3
x3 x3x3 x3

x3

x1

_

_ _

_

_ _ _ _ _ _ _ _

_ _ _

f

0 0 032 23 021 3 3 21 1 1

Figure 13: MTBDT for f .

Therefore, among the matrices satisfying this requirement, we arbitrarily choose

�4 =

26664
1 1 1 1
0 0 1 1
1 0 0 1
1 1 1 0

37775 :

23

S2

S2
S2

S2 S2 S2
S2

S2 S2 S2 S2 S2 S2

x1

x2
x2 x2

x2

x3

x4

x4 x4

x4

x4

x4x4
x4

x4
x4x4

x4

x3
x3

x3 x3x3
x3 x3

x1

_

_ _

_

_
_ _ _

_
_

_ _
_

f

0 32 2 03 21

Figure 14: MTBDD for f .

We determine the inverse matrix for �4 over GF (2)

��14 =

26664
1 0 1 1
0 1 1 1
1 1 0 1
1 0 0 1

37775 :
Table 3 shows the mapping of vectors of variables in f by using ��14 . Then, we determine

��14 (F) = [f(0); f(15); f(12); f(3); f(6); f(9); f(10); f(5); f(11); f(4); f(7); f(8); f(13); f(2); f(1); f(14)]T :

For f in Table 2,
��14 (F) = [00j03j11j12j21j33j03j22]T .
We perform the coding of pairs of function values in �4(F) as follows
Q = [0; 4; 1; 5; 6; 3; 4; 2]T , where 00 = 0, 03 = 4, 11 = 1, 12 = 5, 21 = 6, 33 = 3, 22 = 2.

Fig. 15 shows MTBDT(f��1
4
). Fig. 16 shows MTBDT(f��1

4
) with encoded pairs of equal values for

constant nodes. We determine the characteristic functions for each value 0,1,2,3,4,5,6 in Q. They
are de�ned as fi = 1 if fi = i, and 0 otherwise. There is a single non-trivial characteristic function
f4. It is given by

f4 = [01000010]T ;

and its autocorrelation function is given by

Bf6 = [20000002]T :

24

S2

S2 S2

S2 S2
S2

S2

S2 S2 S2 S2 S2
S2 S2 S2

x1

x2 x2 x2
x2

x3

x4 x4 x4 x4
x4 x4 x4 x4

x4 x4 x4 x4 x4 x4
x4 x4

x3 x3
x3 x3x3 x3

x3

x1

_

_ _

_

_ _ _ _ _ _ _ _

_ _ _

f

0 0 0 3 1 1 1 2 2 1 3 3 0 3 2

0 4 1 5 6 3 4 2

2

Figure 15: MTBDT for f��1
4
.

S2

S2
S2

S2 S2
S2 S2

x1

x2 x2
x2x2

x3 x3 x3 x3 x3
x3 x3 x3

x1

_

_ _

_ _ _ _

q

0 4 1 5 6 3 4 2

Figure 16: MTBDT for f��1
4

with encoded pair of function values.

25

The maximum value of the autocorrelation function Bf4 is 2 at the n-tuple of variables (111).
We determine a matrix �3 from the requirement

�3 � �max = �3

264 1
1
1

375 =
264 0
0
1

375 :

Therefore, �3 =

264 1 1 0
1 0 1
0 1 0

375. The inverse matrix is ��13 =

264 1 0 1
0 0 1
1 1 1

375.
Table 4 shows the mapping of vectors of variables in Q by using ��13 .
We determine

Q��1
3

= [q(0); q(7); q(1); q(6); q(5); q(2); q(4); q(3)]T :

For f in Table 2, Q��1
3

= [0; 2; 4; 4; 3; 1; 6; 5]T .

Fig. 17 shows MTBDT(��13 (q)), where q is a function determined by the vector Q. Fig. 18
shows the corresponding MTBDD(��13 (q)).

S2

S2
S2

S2 S2
S2 S2

x1

x2 x2
x2x2

x3 x3 x3 x3 x3
x3 x3 x3

x1

_

_ _

_ _ _ _

q

0 4 1 56342

Figure 17: MTBDT for f��1
3
(��14).

Therefore,

F��1
3
(��14) = [f(0); f(15); f(1); f(14); f(12); f(3); f(13); f(2); f(7); f(8); f(6); f(9); f(11); f(4); f(10); f(5)]T :

For f in Table 2, F��1
3
(��14) = [00j22j03j03j33j11j21j12]T .

26

S2

S2 S2

S2 S2 S2

x1

x2 x2

x2x2

x3 x3 x3 x3
x3 x3

x1

_

_ _

_ _ _

q

0 4 1 5632

Figure 18: MTBDD for f��1
3
(��14).

Fig. 19 shows MTBDT(f�) de�ned by the truth-vector F��1
3
(��14). Fig. 20 shows the corre-

sponding MTBDD(f).
Note that the recursive application of ��14 and ��13 to f is identical to the application of a

composite mapping

��14;3 = ��14 � ��13;1 ;

where

�3;1 =

"
��13 0

0 1

#
;

where 0 is (3� 1) zero matrix.
Therefore,

��14;3 =

26664
1 0 1 1
0 1 1 1
1 1 0 1
1 0 0 1

37775�
26664
1 0 1 0
0 0 1 0
1 1 1 0
0 0 0 1

37775 =

26664
0 1 0 1
1 1 0 1
1 0 0 1
1 0 1 1

37775 :
Table 5 shows the mapping of vectors of variables in f by using ��14;3. It produces the identical

permutation of values in F as a recursive application of ��14 , and ��13 to f , respectively.
In this example, the size of the MTBDD(f) was reduced from 13 to 9 non-terminal nodes by

using the proposed method.

27

Table 2: Function f and f�.

Function Characteristic functions Autocorrelation functions

x;w f0; f1 f(x) f0(z) f1(z) f2(z) f3(z) B0(z) B1(z) B2(z) B3(z) B(z)

0 00 0 1 0 0 0 4 4 4 4 16
1 10 2 0 0 1 0 2 0 0 2 4
2 11 3 0 0 0 1 2 2 0 0 4
3 11 3 0 0 0 1 2 2 0 0 4
4 01 1 0 1 0 0 0 0 2 2 4
5 10 2 0 0 1 0 0 0 2 2 4
6 01 1 0 1 0 0 0 0 0 0 0
7 11 3 0 0 0 1 0 0 0 0 0
8 11 3 0 0 0 1 0 0 0 0 0
9 01 1 0 1 0 0 0 0 0 0 0
10 01 1 0 1 0 0 0 0 2 2 4
11 10 2 0 0 1 0 0 0 2 2 4
12 00 0 1 0 0 0 2 2 0 0 4
13 00 0 1 0 0 0 2 2 0 0 4
14 10 2 0 0 1 0 0 2 2 2 4
15 00 0 1 0 0 0 2 2 2 2 8

6.3 Complexity of Determination of f from MTBDD(f�)

Remark 4 The K-procedure performs the decomposition of f with respect to the expansion rule

f = (xi � � � � � xn)f0 � (xi � � � � � xn)f1;

where f0 and f1 are co-factor of f for xi � � � � � xn = 0, and 1, respectively.

The following example illustrates dependency of the solutions achieved by the method proposed
on the choice of the permutation matrices � and inputs � where the total autocorrelation functions
take the maximum values.

Example 12 (Dependency on �)
Consider a four-variable Boolean function f given by the truth-vector F = [0010100010010100]T . For
this function size(MTBDD(f)) = 9.

The maximum value of the autocorrelation function Bf (�) = 14 for the inputs � = 6, 9, and 15.

For � = 15 and �4(15) =

26664
1 1 1 1
0 0 1 1
1 0 0 1
1 1 1 0

37775, we determine ��14 (15) =

26664
1 0 1 1
0 1 1 1
1 1 0 1
1 0 0 1

37775. The elements of
the truth-vector for f are reordered as F��1

4 (15) = [0000000011011100]T . We perform encoding of pairs

of adjacent values as Q��1
4 (15) = [00001210]T , where 00=0, 11=1, and 01=2. The maximum value of

the total autocorrelation function BQ
�
�1
4

(15)
= 6 for the input 2 = (010). For �3(2) =

264 0 0 1
1 0 0
0 1 0

375,
28

Table 3: Mapping of function values by ��14 .

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1
0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1
0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1
0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0

0 15 12 3 6 9 10 5 11 4 7 8 13 2 1 14

Table 4: Mapping of function values by ��13 .

x0 x1 x2 x3 x4 x5 x6 x7
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

0 1 2 3 4 5 6 7

0 1 0 1 1 0 1 0
0 1 0 1 0 1 0 1
0 1 1 0 1 0 0 1

0 7 1 6 5 2 4 3

Table 5: Mapping of function values by ��14 � ��13 .

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0
0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1
0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0
0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1

0 15 1 14 12 3 13 2 7 8 6 9 11 4 10 5

29

S2

S2 S2

S2 S2
S2

S2

S2 S2 S2 S2 S2
S2 S2 S2

x1

x2 x2 x2
x2

x3

x4 x4 x4 x4
x4 x4 x4 x4

x4 x4 x4 x4 x4 x4
x4 x4

x3 x3
x3 x3x3 x3

x3

x1

_

_ _

_

_ _ _ _ _ _ _ _

_ _ _

f

0 0 0 32 2 30 2 13 3 211 1

0 42 4 3 61 5

Figure 19: MTBDT for f��1
4 ���1

3
.

S2

S2 S2

S2 S2 S2

S2
S2 S2

x1

x2
x2

x2
x2

x3

x4
x4

x4

x4
x4

x4

x3 x3
x3

x3
x3

x1

_

_
_

_

_ _

_

_ _

f

0 32 1

Figure 20: MTBDD for f��1
4 ���1

3
.

30

it follows ��13 (2) =

264 0 1 0
0 0 1
1 0 0

375, and the corresponding reordering is Q��1
4 (15)��1

3 (2) = [00001120]T ,

from where F��1
4 (1)��1

3 (2) = [0000000011110100]T . For thus determined f�, size(MTBDD(f�) = 4.

If for the maximum value of the autocorrelation function Bf (�), we choose the input � = 6,

then for �4(6) =

26664
1 0 0 0
0 1 1 0
1 0 0 1
0 0 1 1

37775, we determine ��14 (6) =

26664
1 0 0 0
1 1 1 1
1 0 1 1
1 0 1 0

37775. Thus, we reorder the

elements of F for the given f as F��1
4 (6) = [0000110000101100]T .

For encoding Q��1
4 (6) = [00100210]T , where 10=2, the maximum values of the total autocorre-

lation function of Q��1
4 (6) is 6 for the input 4 = (100).

For �3(4) =

264 0 0 1
0 1 0
1 0 0

375, we determine ��13 (4) = �3(4). Therefore, the corresponding reorder-

ing is Q��1
4 (6)��1

3 (4) = [00110200]T , which produces F��1
4 (6)��1

3 (4) = [0000111100100000]T . For thus

determined f�, size(MTBDD(f�)) = 5.

Example 13 (Dependency on �)
For f in the previous example, if we chose for the maximum value of Bf the input � = 15 and

the matrix �4;r(15) =

26664
1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 0

37775, which requires ��14;r(15) =

26664
1 0 0 1
0 0 0 1
1 0 1 1
1 1 1 1

37775, then we deter-

mine the reordering F��1
4;r(15)

= [0000001111100000]T . For encoding Q��1
4;r(15)

= [00011200]T , the

maximum value of the total autocorrelation function is BQ
�
�1
4;r

(15)
= 6 for the input 7 = (111). For

�3(7) =

264 1 1 0
1 0 1
0 1 0

375, we get ��13 (7) =

264 1 0 1
0 0 1
1 1 1

375, which induces a reordering Q��1
4;r(15)�

�1
3 (7) =

[00002011]T . From there, F��1
4;r(15)�3

= [000000001011]T . For thus determined f�, size(MTBDD(f�) =

5.

However, if we chose �3;r(7) =

264 0 1 1
1 1 0
0 1 0

375, and the corresponding ��13;r (7) =

264 0 1 1
0 0 1
1 0 1

375, we
get the reordering Q��1

4;r(15)�
�1
3;r (7)

= [00110020]T , which produces F��1
4;r�

�1
3;r(7)

= [0000111100001000]T .

For thus determined f�, size(MTBDD(f�)) = 5.
The reason for the increased size is in the property that �3;r(7), unlike �3(7), did not pair

together sequences of four 0. This pairing in MTBDD(f�) means assignment of identical subvectors
of order four to the same logic value for x1. In this case, that is the negative literal xi. Due to that,
the subtree rooted in the node pointed by x1in the MTBDD is reduced to a single constant node.

The method proposed provides reduction of smallest subtrees, since produce pairs of function
values. The larger subtrees, which corresponds to the equal subvectors of orders 2k, k > 1 are not
taken into account. The method fails in the case when we chose a permutation matrix � which

31

does not provide a grouping of isomorphic smallest subtrees into a larger subtree. The Example 14
illustrates that feature of the method. However, searching for the suitable � matrices, reduces this
approach to the reduction of the sizes of DDs to the brute force methods in optimization of DDs by
variables ordering.

Example 14 Consider a function f = x2x4 + x2x3x4 + x1x2x4 + x1x3x4. The truth-vector for this
function is given by F = [1010011010100101]T . size(MTBDD(f)) = 6 for thus ordered truth vector
for f .

The maximum value of Bf = 12, which means that we may generate six pairs at the level for x4.
Then, the method proposed in this paper, for a few di�erent choices of � and � produces MTBDDs
of sizes equal to 7. However, the variable ordering produces the MTBDDs of sizes 5, 6, and 7 [29].

However, if we �rst perform encoding Q = [22322233]T , where 10 = 2, and 01 = 3, and then
apply the method proposed, we get a MTBDD of size 5, by always taking the smallest value for � .
This follows form the property that in Q, we have �ve pairs denoted by 2 and three pairs denoted by
3, which permits an immediate reduction of subtrees consisting of three non-terminal nodes.

A good feature of the method proposed in this paper, is the following. The method uses
an extended set of allowed permutation matrices for the inputs, compared to that used in DD
optimization by variable ordering. The price for such extension is minor, since the values for f
can be easily determined from f� assigned to f . Therefore, the method proposed permits to derive
eÆcient solutions which can not be achieved by the variable ordering methods. The Example 15
illustrates that feature of the method.

Example 15 Consider a function f = x1x2x3 + x2x3x4. Thus, the truth-vector for this function is
F = [0000000100000011]T . The optimization by variable ordering can produce MTBDDs of size 5.
However, the method proposed in this paper, produces a MTBDD of size 4 in the following way. The
maximum value for Bf = 14 for the inputs � = 1; 8; 9. For simplicity, we choose � = 1, which implies
�4(1) is the identity matrix of order 4, and perform the encoding as Q = [00020001]T . The maximum
of the total autocorrelation function for Q is 6 and it is achieved for the input 40(100]. For a matrix

�3(4) =

264 0 0 1
0 1 0
1 0 0

375, which is self-inverse over GF (2), we get the reordering Q��1
3

= [00000021]T ,

which produces F��1
4 ��1

3
= [0000000000000111]T . For thus determined f�, size(MTBDD(f)) = 4.

7 Closing Remarks

Considerations presented and discussed in this paper permits to state that spectral methods

1. provide for elegant analytical solutions for many problems related to design and testing,

2. can be used eÆciently as complementary tools for the existing methods,

3. are eÆcient when there are compact representations of function describing devices (e.g., digital
function generators)

4. are technologically independent.

Among reasons that spectral methods are not still not so widely accepted as they should be,
we want to point the following

32

1. Ignorance, computer engineers do not know groups, �elds, Fourier transforms,

2. Area of applicability of spectral methods is diÆcult to de�ne.

3. Development of spectral CAD tools in very expensive.

References

[1] Agaian, S., Astola, J., Egiazarian, K., Binary Polynomial Transforms and Nonlinear Digital Filters,
Marcel Dekker, 1995.

[2] Bollig, B. Wegener, I., "Improving the variable ordering of OBDDs is NP-complete", IEEE Trans. Com-

put., Vol. C-45, No. 9, 1996, 993-1002.

[3] Clarke. E, M., M.C., Millan, K.L., Zhao, X., Fujita, M., \Spectral transforms for extremely large Boolean
functions", in Kebschull, U., Schubert, E., Rosenstiel, W., Eds., Proc. IFIP WG 10.5 Workshop on

Applications of the Reed-Muller Expression in circuit Design, Hamburg, Germany, September 16-17,
1993, 86-90. Workshop Reed-Muller'93, 86-90.

[4] Goel, N., Karpovsky, M.G., "Functional testing of computer hardware based on minimization of magni-
tude of undetected errors," IEE J. Comput. Digital Tech., Vol. 129, No. 5, September 1982, 169-181.

[5] G�unther, W., Drechsler, R., "BDD minimization by linear transforms", in Advanced Computer Systems,
1998, 525-532.

[6] G�unther, W., Drechsler, R., "EÆcient manipupation algorithms for linearly transformed BDDs", Proc.
4th Int.Workshop on Applications of Reed-Muller Expansion in Corcuit Design, Victoria, Canada, May
20-21, 1999, 225-232.

[7] G�unther, W., Drechsler, R., "Minimization of BDDs using linear transformations based on evolutionary
techniques", Proc. Int. Symp. Circuit and Systems, 1999.

[8] Hsiao, T.C., Seth, S.C., "Analysis of the use of Rademacher-Walsh spectrum in compact testing", IEEE
Trans, Computers, Vol. C-33, 1984, 934-937.

[9] Karpovsky, M.G., Finite Orthogonal Series in the Design of Digital Devices, John Wiley, 1976.

[10] Karpovsky, M.G., "Error detection in digital devices and computer programs with the aid of linear
requrrent equations over �nite groups", IEEE Trans. Computers, Vol. C-26, 1977, 208-218.

[11] Karpovsky, M.G., "Error detection for polynomial computations", IEE J. Comput. Digital Tech., Vol. 2,
1979, 48-56.

[12] Karpovsky, M.G., "Testing for numerical computations," IEEE Proc., Vol. 127, pt. E, No. 2, March 1980,
69-77.

[13] Karpovksy, M.G., "Error detection for polynomial computations," IEE J. Comput. Digital Tech., C-26,
No. 6, June 1980, 523-528.

[14] Karpovsky, M.G., "Detection and location of error by linear inequality checks," Proc. IEE, Vol. 129, No.
3, May 1982, 86-92.

[15] Karpovsky, M.G., Levitin, L.B., Vainstein, F.S., "Diagnosis by singature analysis of test responses",
IEEE Trans. Computers, Vol. C-43, 1994, 141-153.

[16] Karpovsky, M.G., Nagvajara, P., "Optimal codes for the minimax criterion on error detection," IEEE

Trans. on Information Theory, November 1989.

[17] Karpovsky, M.G., Nagvajara, P., "Optimal robust compression of test responses," IEEE Trans. on Com-

puters, Vol. 39, No. 1, 1990, 138-141.

[18] Karpovsky, M.G., Roziner, T., Moraga, C., "Error detection in multiprocessor systems and array pro-
cessors," IEEE Trans. on Computers, Vol. 44, No. 3, March 1995, 383-394.

[19] Karpovsky, M.G., Trachtenberg, E.A., "Linear checking equations and error correcting capability for
computation channels", P. IFIP Congres, North Holland Publ. Co., 1977.

[20] Karpovsky, M.G., Trachtenberg, E.A., "Fourier transforms over �nite groups for error detection and error
correction in computation channels", Inf, and Control, 1979, 40, 335-358.

33

[21] Lupanov, O.B., "On a method of network synthesis", Izv. Vuzov, Radio�zika, No. 1, 1958, 43-45.

[22] MacWilliams, F.J., Sloane, N.J.A., Theory of Error-Correcting Codes, North Holland Publishing, 1978.

[23] McCluskey, E.J., Digital Test Principles, Stanford Logical Systems Insitute, 1991.

[24] Meinel, C., Somenzi, F., Theobald, T., "Linear shifting of decision diagrams", Prpc. Design Automation

Conference, 1997, 202-207.

[25] Moraga. C., "Advances in Spectral Techniques", Berichte zur angewandten Inforamtik, Universit�at Dort-
mund, 1998.2, ISSN 0946-2341.

[26] Moraga, C., Heider, R., "Tutorial review on applications of the Walsh transform in switching theory",
Proc. First Int. Workshop on Transforms and Filter Banks, TICSP Series # 1, June 1998, 494-512.

[27] Muzio. J.C., Miller, D.M., "Spectral techniques for fault detection", Proc. 12th Int. Symp. Fault Tolerant

Computing, 1982, 297-302.

[28] Peterson, W.W., Weldon, E.J., Error Correcting Codes, MIT Press, Cambridge, Mass., 2nd edn. 1972.

[29] Rice, J., Serra, M., Muzio, J.C., "The use of autocorrelation coeÆcients for variable ordering for ROB-
DDs", Proc. 4th Int. Workshop on Applications of Reed-Muller Expansion in Circuit Design, Victoria,
Canada, August 20-21, 1999, 185-196.

[30] Roziner, T., Karpovsky, M.G., "Multidimensional Fourier transforms by systolic architectures," Journal
of VLSI Signal Processing, No. 4, 1992, 343-354.

[31] Sasao, T., Switching Theory for Logic Synthesis Kluwer Academic Publishers, 1999.

[32] Sasao, T., Fujita, M., (eds.), Representations of Discrete Functions, Kluwer, 1996.

[33] Shannon, C.E., "The synthesis of two-terminal switching circuits", Bell System Tech. J., 28, No. 1, 1949.

[34] Sholomov, L.A., "Complexity criteria for Boolean functions", Problemy Kibernetiki, No. 17, 1966, (in
Russian).

[35] Smith, J.E., "Measures of the e�ectiveness of fault signature analysis", IEEE Trans. Computers, Vol.
C-29, 1980, 510-514.

[36] Stankovi�c, R.S., Spectral Transform Decision Diagrams in Simple Questions and Simple Answers, Nauka,
Belgrade, 1998.

[37] Stankovi�c, R.S., Falkowski, B.J., "FFT and decision diagrams based methods for calculation of spectral
transforms", Proc. IEEE Int. Conf. on Informatics, Communications and Signal Processing, Singapore
1997, Vol. 1, 241-245.

[38] Stankovi�c, R.S., Sasao. T., \Decision diagrams for representation of discrete functions: uniform interpre-
tation and classi�cation", Proc. ASP-DAC'98, Yokohama, Japan, February 13-17, 1998.

[39] Stankovi�c, R.S., Sasao, T., Moraga, C., \Spectral transform decision diagrams" in: [32], 55-92.

[40] Susskind, A.K., "Testing by verifyingWalsh coe�cients", Proc. 11th Int. Symp. Fault Tolerant Computing,
1981, 206-208.

34

