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Abstract

A sequence of binary words of length n is called a cube dominat-
ing path, if the Hamming distance between two consecutive words is
always one, and every binary word of length n is within Hamming
distance one from at least one these words. If also the �rst and last
words are Hamming distance one apart, the sequence is called a cube
dominating cycle. Bounds on the cardinality of such sequences are
given, and it is shown that asymptotically the shortest cube dominat-
ing path and cycle consist of 2n(1 + o(1))=n words.

1 Introduction

Denote by F the binary alphabet, and by F n the space of binary vectors of
length n endowed with the Hamming metric d(�; �), i.e., the binary hyper-
cube. The covering radius of a code C � F n is de�ned to be the smallest
integer R such that the distance from every point to the nearest codeword
does not exceed R. The covering radius of codes has been widely studied;
see e.g., the book [4]. Let c1; c2; . . . ; cM be a sequence of codewords such
that the Hamming distance between any two consecutive codewords equals
one. If moreover, the set fc1; c2; . . . ; cMg | which may consist of fewer
than M codewords | has covering radius at most one, we call C a cube
dominating path (CDP). Such dominating paths have been considered in
general graphs in, e.g., [8], [10] and [18].

CDPs can be used for testing and diagnosis of multiprocessors with in-
terconnections de�ned by F n (see, e.g., [15], [9], [16]). In this case every
node (processor) is labelled by an n-bit binary vector, and two nodes are
connected by a bidirectional line if and only if the Hamming distance be-
tween the corresponding labels is equal to one. If c1, . . . , cM is a CDP
in F n, then one can use the following procedure for testing and diagnosis.
First, node c1 tests itself and, if it passes the test, it tests the neighbours.
After this the software ("dynamic agent") for test generation is moved to
c2 and so on. For this approach testing time is determined by the length
M of the selected CDP. Similar procedures for testing and diagnosis of
multiprocessors can be found in [2].

In Section 3, we consider the situation when also d(cM ; c1) = 1, in which
case the sequence of codewords is called a cube dominating cycle (CDC). In
general graphs such cycles have been studied, e.g., in [1], [3], [6] and [14].
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Our codes are related to circuit codes; for circuit codes, see, e.g., [7]
and [13]. A sequence c1; . . . ; cM of binary vectors of length n such that
d(c1; c2) = d(c2; c3) = . . . = d(cM ; c1) = 1 is called a length n, spread k
circuit code (1 � k � n), if for all i and j, d(ci; cj) = s < k implies that
i� j � �s (mod M).

2 Short dominating paths

For a vector c 2 F n denote by B(c) the ball of radius one centered at c,
i.e., B(c) = fx : d(x; c) � 1g. We will say that a vector c covers a vector
x if x 2 B(c).

Given n, our goal is to minimize the lengthM of a CDP. Let S(n) stand
for such minimal length.

Lemma 1 Let c1; . . . ; cM be a CDP, then
a) jB(c1)j = n+ 1;
b) jB(c2) nB(c1)j = n� 1;
c) For 3 � k �M , jB(ck) n [

k�1
i=1B(ci)j � n� 2.

Proof The statements a) and b) are immediate. Let ei stand for the vector
from F n having 1 in the i-th coordinate and 0's elsewhere. If ck = ck�2 then
jB(ck) n [

k�1
i=1B(ci)j � jB(ck) n B(ck�2)j = 0, i.e., c) is valid. So, we may

assume without loss of generality that ck�2 = 0; ck�1 = e1; ck = e1 + e2.
Then

jB(ck) n [
k�1
i=1B(ci)j � jB(ck) n[

k�1
i=k�2B(ci)j = jB(e1+ e2) n (B(0) [B(e1))j

= (n+ 1)� jfe1; e2; e1 + e2gj = n� 2:

2

Theorem 1 For n � 3,

T (n) �
2n � 4

n� 2
:

Proof Let c1; . . . ; cM be a CDP with M = T (n). By de�nition, j [M
i=1

B(ci)j = 2n. Then by the previous lemma

2n = j [M
i=1 B(ci)j � (n+ 1) + (n� 1) + (M � 2)(n � 2);
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yielding

M � 2 �
2n � 2n

n� 2
:

2

A CDP attaining the previous bound is called perfect. In other words,
a CDP c1; . . . ; cM is perfect if and only if for every k, 3 � k �M ,

jB(ck) n [
k�1
i=1B(ci)j = n� 2:

Lemma 2

T (n + 1) � 2T (n):

Proof Let c1; . . . ; cM be a CDP with M = T (n). The following CDP can
be constructed in dimension n+ 1:

(c1; 0); . . . ; (cM ; 0); (cM ; 1); . . . ; (c1; 1):

2

Theorem 2

T (1) = 1; T (2) = 2; T (3) = 4; T (4) = 6; T (5) = 10; T (6) = 16; T (7) = 28:

Proof This is proved using the bound from Theorem 1, computer search
and the following CDPs (here we mention only the indices of the coordinates
to be changed):
n = 2: 1
n = 3: 123
n = 4: 12341
n = 5: 121345121
n = 6: 123415361234153
n = 7: 121314256476165242312561764.

2

For n = 3; 4 these CDPs are perfect; for n = 5; 6; 7 they are not. For
other optimal CDPs of lengths 3 and 7, see the proof of Theorem 5.
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3 Short dominating cycles

Consider now the cyclic case, in which cM = c1. Given n, our goal is again
to minimize M . Let S(n) stand for the minimum.

Theorem 3 For n � 4,

S(n) �
2n

n� 2
:

Proof Let c1; . . . ; cM be a CDC withM = S(n) codewords. Because n � 4,
S(n) � K(4; 1) = 4. Here K(n;R) denotes the smallest cardinality of any
binary code of length n and covering radius R. Consider the codeword
indices 1; 2; . . . ;M cyclically, so that M + 1 is interpreted as 1. Then for
each i, the codeword ci covers at most n � 2 such vectors that are not
covered by ci�1 and ci�2. Indeed, without loss of generality ci�2 = 000 . . . 0
and ci�1 = 100 . . . 0. If ci = ci�2, there is nothing to prove. So, assume
without loss of generality that ci = 110 . . . 0. Of the n + 1 vectors that ci
covers, the vectors ci�1, ci�2 and 010 . . . 0 are already covered by ci�1 and
ci�2. We claim that the union of the sets Ai := B(ci) n (B(ci�1) [B(ci�2))
is the whole space F n. Then we obtain the inequality 2n � (n�2)S(n) and
the theorem follows.

It remains to show that every vector x 2 F n is in at least one of the
sets Ai. Because n � 4, the distance between x and its complement x is
at least four. Let cj be any codeword in C that covers x. By the triangle
inequality, d(x; cj ) � 3, d(x; cj�1) � 2 and d(x; cj+1) � 2. Consequently,
none of the codewords cj�1, cj and cj+1 cover x. Let now i be the smallest
index exceeding j such that ci covers x. Then i is as required. 2

If the binary vectors c1; . . . ; cM of length n form a CDC and M =
2n=(n � 2), it is again natural to call this sequence a perfect CDC.

Theorem 4 Assume that c1, c2, . . . , cM is a sequence of codewords of
length n � 5 and M = 2n=(n � 2). Then the following two properties are
equivalent:

i) the sequence forms a CDC;
ii) the sequence forms a length n, spread 3 circuit code.

Proof Assume that i) holds. From the previous proof we see that the sets
Ai must be disjoint and each must have cardinality n � 2. In particular,
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d(ci; ci+2) = 2 for all i (cyclically). Moreover, all the ci must be di�erent
codewords: if ci = cj = 0, say, then Ai and Aj both contain n � 2 > 1

2
n

vectors of weight 1 and hence have a nonempty intersection.
Without loss of generality, ci = 000 . . . 0, ci�1 = 100 . . . 0 and ci�2 =

110 . . . 0 and cs 6= ci. We show that d(ci; cs) > 2 whenever ji� sj > 2.
Denote by w(c) the weight of c, i.e., the number of 1's in it. Let cj be

any codeword covering 111 . . . 1. Then w(cj) � 4. Let k be the �rst index
among j, j + 1, . . . , i� 3 such that d(ck; ci) � 2, i.e., w(ck) = 2. Then Ak

contains two vectors of weight 1, and since ck 6= ci�2, the intersection of
Ak and Ai is nonempty, a contradiction. Assume that k is the last index
among i+ 3, i+ 4, . . . , j � 1, j such that d(ck; ci) � 2. Then we have the
same contradiction as before, but now for the perfect CDC in which we go
through the same codewords in the reverse order.

Conversely, if ii) holds, then the setsAi in the previous proof are disjoint.
Indeed, Ai \ Aj 6= ; implies d(ci; cj) � 2, but the only codewords within
distance two from ci are ci�1, ci�2, ci+1 and ci+2 and by the de�nition of
the sets Aj, Ai has an empty intersection with Ai�1, Ai�2, Ai+1 and Ai+2.
Each Ai has cardinality n � 2, and M = 2n=(n � 2) therefore implies that
the union of Ai's is the whole space. Hence the sequence forms a CDC. 2

So, if a sequence of codewords of length n attains the upper bound
2n=(n�2) on length n, spread 3 circuit codes, or the lower bound 2n=(n�2)
on CDCs of length n, it is simultanously a CDC and a spread 3 circuit code.
Notice that the result is not valid for n = 4: in the proof of Theorem 5 we
have a sequence of codewords of length 4 and cardinality 24=(4 � 2) = 8,
which is a CDC but not a spread 3 circuit code. However, it is known that
there is a length 4 spread 3 circuit code with 8 codewords (see, e.g., the
table in [13]), and therefore the converse part of the previous proof (which
is valid also for n = 4) gives the result S(4) = 8 from circuit codes. In the
same way we get the bound S(6) = 16.

It is immediately clear from the de�nition that in a CDC each coordinate
must all in all be changed an even number of times, and therefore the
cardinality of every CDC is even.

Lemma 3 For n � 2, the cardinality of a CDC is even. 2
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Corollary 1 For n � 4;

S(n) � 2d
1

2
d

2n

n� 2
ee:

Lemma 4

S(n+ 1) � 2S(n):

Proof Again, if c1; . . . ; cM is a CDC of length n then

(c1; 0); . . . ; (cM ; 0); (cM ; 1); . . . ; (c1; 1)

is a CDC of length n+ 1. 2

Theorem 5 S(1) = 1; S(2) = 2; S(3) = 4; S(4) = 8; S(5) = 12; S(6) =
16; S(7) = 28.

Proof The following CDCs attain the given bounds (here we mention only
the indices of the coordinates to be changed):
n = 2: 1
n = 3: 121
n = 4: 1231243
n = 5: 12341523141
n = 6: 123415361234153
n = 7: 123425647616524231256176465.

The lower bounds follow from Corollary 1 for n = 4; 5; 6 and from
S(n) � T (n) for n = 7 and for the easy case n = 3. 2

4 Asymptotically optimal CDPs

As we have seen from the lower bound of Theorem 1, the length of CDPs
cannot be less than

2n

n
(1 + o(1)):

In what follows we will show that asymptotically this can be attained. Let
M(n) be the length of the shortest CDPs in dimension n, and de�ne

�n =
M(n)n

2n
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and
� = lim

n!1
�n:

We will show that the limit exists and equals 1.
Although we will later consider the case of arbitrary n, we start from a

subsequence of dimensions illustrating the idea.
Let Gm = (gm1 ;g

m
2 ; . . . ;g

m
2m) stand for a Gray code of length m, i.e.

an ordering of all the 2m binary m-vectors satisfying d(gmi ;g
m
i+1) = 1 for

i = 1; . . . ; 2m � 1, and d(gm2m;g
m
1 ) = 1. A possible way to construct such

a code is to use reection, i.e., given a Gray code of length m we produce
another one of length m+ 1 as follows:

Gm+1 = f(gm1 ; 0); (g
m
2 ; 0); . . . ; (g

m
2m; 0); (g

m
2m; 1); (g

m
2m�1; 1); . . . ; (g

m
1 ; 1)g:

Consider now the Hamming code Cm of length 2m � 1 having 2k =
22

m�m�1 codewords. The generator matrix of the code, say Vm, can be
composed of vectors of weight 3 (see, e.g., [17] for a proof of this fact), say,
v1;v2; . . . ;vk. Using the construction of van Zanten [19], we obtain the
following ordering of the Hamming code:

Cm = (cm1 ; c
m
2 ; . . . ; c

m
2k)

= (gk1Vm;g
k
2Vm; . . . ;g

k
2kVm)

which satis�es d(cmi ; c
m
i+1) = 3 for i = 1; . . . ; 2k � 1, and d(cm2k ; c

m
1 ) = 3.

Thus we can construct another code

Ĉm = (ĉm1 ; ĉ
m
2 ; . . . ; ĉ

m
3�2k )

= (cm1 ; c
m
1 + e1;1; c

m
1 + e1;1 + e1;2; c

m
2 ; c

m
2 + e2;1; c

m
2 + e2;1 + e2;2; . . . ;

cm2k ; c
m
2k + e2k;1; c

m
2k + e2k;1 + e2k ;2);

where ei;1 is the binary vector having zeros in all coordinates except the �rst
one where the vectors cmi and cmi+1 di�er, where it has 1. The de�nition of
ei;2 is similar, except that we place the only 1 in the second position where

the corresponding vectors di�er. The words of this new code Ĉm possess
the property that d(ĉmi ; ĉ

m
i+1) = 1.

Now, we construct a new code Pm of length 2m+m� 1 in the following
way:

Pm = (p1;p2; . . . ;pM)
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= ((ĉm1 ;g
m
1 ); (ĉ

m
1 ;g

m
2 ); . . . ; (ĉ

m
1 ;g

m
2m); (ĉ

m
2 ;g

m
2m); (ĉ

m
3 ;g

m
2m);

(ĉm4 ;g
m
2m); (ĉ

m
4 ;g

m
2m�1); . . . ; (ĉ

m
4 ;g

m
1 ); (ĉ

m
5 ;g

m
1 ); (ĉ

m
6 ;g

m
1 );

. . .

(ĉm3�2k�5;g
m
1 ); (ĉ

m
3�2k�5;g

m
2 ); . . . ; (ĉ

m
3�2k�5;g

m
2m); (ĉ

m
3�2k�4;g

m
2m); (ĉ

m
3�2k�3;g

m
2m);

(ĉm3�2k�2;g
m
2m); (ĉ

m
3�2k�2;g

m
2m�1); . . . ; (ĉ

m
3�2k�2;g

m
1 ); (ĉ

m
3�2k�1;g

m
1 ); (ĉ

m
3�2k ;g

m
1 )):

Here we concatenate the vectors of Ĉm with vectors of Gm in such a way
that with ĉm6i+1 the vectors of G

m are listed in the direct order, while with
ĉm6i+4 they are listed in the inverse order. The vectors ĉm6i+2 and ĉm6i+3 are
concatenated only with the vector gm2m, while ĉ

m
6i+5 and ĉ6i+6 are concate-

nated with gm1 . The code Pm is a CDC (and CDP even without the last
two vectors): the claim about the distances between the consecutive vectors
is trivial, and to see that Pm is a covering it is enough to notice that Pm

contains Cm � Fm as its subcode.
The total length of the CDC is 2k+m + 2k+1. Thus, for n = 2m+m� 1,

�n =
n(2k+m + 2k+1)

2n
= 1 +O(m2�m) = 1 + o(1):

To extend the idea of the construction we need the following result from
[11] (for a simpli�ed proof see [4]).

Lemma 5 For every, big enough, length n there exists a radius 1 covering
code with 2n

n
(1 + o(1)) codewords.

Employing the words of such codes in the previous construction instead
of the words of Hamming codes gives us the sought result. Assume that
we have a sequence of codes Cn where Cn has length n, covering radius
one and cardinality Mn = 2n(1 + f(n))=n where f(n) ! 0 when n ! 1.
Without loss of generality, Mn is even for all n.

It is easy to check that for our purposes it is enough that there ex-
ists an ordering of the codewords (c1; c2; . . . ; cMn

) of each Cn such thatP
d(ci; ci+1) � Mnc, where the constant c does not depend on n. In other

words, the average distance between two consecutive words in the ordering
should be a constant not depending on n. Indeed, if this is the case, then
we consider the resulting CDCs of lengths n +m where m = dlog2 ne and
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m = dlog2 ne � 1. They have cardinality at most Mn2m + (c � 1)Mn and
density

�n+m �
(n+m)2

n(1+f(n))
n

(2m + c� 1)

2n+m

= (1 +
m

n
)(1 + f(n))(1 +

c� 1

2m
)

= 1 + o(1):

Moreover, n +m gets all integers values (when we use all n and our two
choices for m).

It remains to prove the following lemma.

Lemma 6 Let Cn be a sequence of codes, where Cn has length n and size
Mn =

2n

n
(1 + o(1)). For all n, there exists an ordering fc1; c2; . . . ; cMn

g of
the codewords of Cn such that

P
d(ci; ci+1) � Mnc, where c is a constant

not depending on n.

Proof We employ an idea from [5] and [12] of a greedy construction path.
Let d(n;M) stand for the maximal possible minimumdistance of any binary
code of length n and size M . It is proved in [5, Theorem 1, part II] that
any code of size M can be ordered in such a way that

1

M

MX
i=1

d(ci; ci+1) �
1

M

MX
i=1

d(n; i):

Taking into account that d(n; i) is a non-increasing function in i and evident
d(n; i) � n we conclude

1

M

MX
i=1

d(n; i) �
1

M

MX
i=d2n=n3e

d(n; i) +
2nn

Mn3

� d
�
n; d

2n

n3
e
�
+ o(1) � 8 + o(1):

The last inequality follows from the classical Hamming bound

MV (d(n;M); n) � 2n;

where V (r; n) =
Pr

j=0

�
n
j

�
is the volume of the Hamming ball of radius r.

2

This lemma completes our proof of the following result.
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Theorem 6

� = 1:

2

The previous argument is in fact valid for all alphabets whose cardinality
is a prime power. It is easy to construct nonbinary Gray codes. For length
n = 1 the construction is trivial. If c1, c2, . . . , cm is a Gray code of length
n over the alphabet f0; 1; 2; . . . ; q � 1g, then

(c1; 0); (c1; 1); . . . ; (c1; q � 2); (c2; q � 2); (c2; q � 3); . . . ; (c2; 0);

. . . ; (cm; 0 or q � 2); (cm; q � 1); (cm�1; q � 1); . . . ; (c1; q � 1)

is a Gray code of length n + 1. The necessary modi�cations for the proof
are very minor and are omitted.

Theorem 7 Assume that q is a prime power. Then

(q � 1)nM(n)

qn
! 1

when n!1. 2
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