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Abstract. In this paper we consider the problem of deadlock-free unicast wormhole routing in
computer and communication networks with irregular topologies.  An example of such networks
are Network of Workstations (NOWs). In general, the topology of these networks can be quite
random. Several methods exist in the literature for wormhole routing in
networks/multiprocessors with a regular topology, such as a n-dimensional mesh, but very few
papers have been published on wormhole routing for irregular networks.  Some of these existing
techniques require complex signaling hardware at the routers or result in a large amount of
congestion at some specific links.  The problem of deadlock-free routing consists of two parts.
First, all deadlocks must be eliminated. An usual way of doing this, both for regular and irregular
topologies, is to forbid some turns. The second part, which is the focus of this paper, is the
problem of selecting an optimal (usually the shortest) path after the restrictions on routing have
been formulated. We propose three efficient approaches for solving this problem. These
approaches (local, global and mixed) differ in a way distances in the network graph are estimated
using local information stored in the routers. Our approach for non-adaptive unicast deadlock-
free wormhole routing provides for message paths very close to the shortest ones and more
uniform distribution of the traffic between communication links in the system. Initial simulation
results presented in the paper indicate that the proposed approaches are promising in terms of
both throughput and scalability.
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1. INTRODUCTION

Wormhole routing is efficient because it allows low
channel-setup time, low latency communications and
reduced communication overhead [2,7,9,17]. It has
been adopted in almost all existing inter-connection
networks. Gradually, variations of this technique, are
being incorporated in commercial NOW
implementations like Myrinet [1,13,14,18]. Recently,
NOWs have emerged as an inexpensive alternative to
massively parallel multiprocessors [16].  NOWs
comprise a collection of routing switches,
communication links and workstations interconnected
in an irregular topology. In order to minimize network

latency and achieve high bandwidth communications,
recent experimental and commercial switches for
NOWs  implement wormhole routing [1,13,18].
However, wormhole routing is very susceptible to
deadlocks [6,7,8,9,10,12,17] because packets are
allowed to hold many resources while requesting
others. Design of efficient deadlock-free routing
algorithms in irregular topologies introduces new
challenges, which we shall address in this paper.

 Overall, routing strategies can be divided into adaptive
[3,6,8,12,17] (taking into account existing queue sizes)
and unadaptive techniques [2,5,9,17]. In this paper, we
will consider non-adaptive methods, which can



however be extended for adaptive routing. Several
routing methods currently exist for regular topologies,
such as 2-dimensional meshes or hypercubes
[2,4,6,7,9,11,12]. In addition several approaches have
been developed for the more difficult problem of
routing in the presence of faults [2,4,9,11,18,19,20]
when the number of faults is relatively small compared
to the number of nodes. We note that if the number of
faults is large then the fault-tolerant routing problem
becomes almost equivalent to routing in an arbitrary
topology.

For the case of a general topology, the most widespread
routing strategy is based on the spanning tree approach
[16,18]. According to this strategy, once a spanning
tree is constructed, any two nodes can communicate
with each other along the tree without any deadlocks.
The main drawbacks of this approach are the long
message paths and high load on the edges near the root
node [16]. This method can be improved by allowing
shortcuts using edges, not belonging to the spanning
tree [16]- but this could result in deadlocks due to the
formation of cycles in the channel dependency graph.
A more general routing strategy is the following. Each
edge is labeled by a number, such that there are no
cycles, consisting of edges with the same label. Then,
for routing, it is allowed  to only increase labels along
the routing path (or, in a more general case, first
increase, then decrease them, but not otherwise).
Examples of this strategy are e-cube [9,17] and North-
Last [12] approach for meshes and spanning tree
[16,18] approach for an arbitrary network (all edges
going up to the root of the tree are marked by 0, all
edges going down by 1 etc.). To measure the efficiency
of the routing strategy, the average message delivery
time can be used [3,5,9,17] as a parameter for
comparison. Any good routing strategy aims to increase
the maximal sustainable throughput and decrease the
delivery time for generation rates below the saturation
point.

This paper is organized as following. In Section 2 a
general mathematical model of the network, and the
unicast "spanning tree" based routing approach is
discussed and the global, local and mixed strategies are
introduced. Section 3 presents the experimental results
for these approaches. In Section 4 we consider
performance enhancements in these routing strategies
by the addition of virtual networks. Section 5 is
devoted to conclusions.

2. UNICAST SPANNING-TREE BASED
DEADLOCK-FREE ROUTING

We assume that the given network consists of N nodes
connected by E edges.  Also, we assume that all nodes

are connected (for any two nodes there exists a path
between them).   In general, a network graph G can be
considered to be a multigraph- their exist several edges
between the same two nodes [7,9,17]. In particular, if k
virtual networks are used, each two nodes are
connected either by 0, or by k edges. (Each physical
channel is split into k virtual channels using time
multiplexing [6,7]). Each virtual channel has its own
buffer. Sum of the capacities of these virtual channels
is restricted by the capacity of the original physical
channel (so large k will lead to performance
degradation.) Usually this multigraph is characterized
by a given network graph and the parameter k. In
general the number of virtual channels can be different
for different links.

 In the case of deterministic routing, a routing strategy
will be a function on the set of pairs (s,d) where s and d
are nodes. For each such pair, the value of this routing
function will be either 0 (message will not be
transmitted), or a vector of edges representing the path
from s to d. The set of all path vectors will be denoted
by P [6,7].

As indicated earlier, a major consideration for any
wormhole-based routing strategy is to demonstrate it to
be deadlock free. The condition for deadlock
elimination can be checked by analyzing P.  Based on
P, the channel dependancy graph can be constructed,
with the nodes of this graph corresponding to edges in
G. For the deterministic case there must be no cycles in
the channel dependancy graph [6,7,8,9,10].

The whole problem of deadlock-free wormhole routing
can be divided into two parts. First, we have to prevent
all deadlocks (eliminate all cycles in channel
dependency graph. It can be done using either the node,
link or turn models [6,7,8,9,10,12,17]:

Node model: each node has some label. It is prohibited
to have three sequential nodes in a path, with labels p1,
p2, p3 , if  p1 < p2 and p3 < p2.

Link model: each link has some label. It is prohibited to
have two sequential links with labels p1, p2 in a path, if
p1 < p2.

Turn model: any turn is either permitted, or prohibited.
The link model covers the node model (all links can be
labeled with two labels, corresponding to UP and
DOWN direction in node model). Similarly, the turn
model covers the link model. The advantage of the
node model is its compactness - if the number of nodes
is N, number of links can be of the order of N2 and
number of turns of the order of N3.

We note that a set of prohibited turns preventing
deadlocks does not completely specify the routing



strategy, i.e. several routing strategies can satisfy the
same set of restrictions on turns in the network graph.

This paper is devoted to routing strategies satisfying
selected sets of prohibited turns and minimizing
average path lengths and average delivery time for
given restrictions on local memories in routers. In
particular, we investigate the case when the popular
up/down algorithm [16,18] is used to construct a set of
prohibited turns. We note that the developed methods
can be used when a set of prohibited turns is selected in
a different way.

According to up/down approach, we first construct a
spanning tree T(G) for the network graph G. Then, we
label the nodes preserving the partial order defined by
T(G) . Labels are unique (different nodes have different
labels). It can be shown, that if labels are repeated, it
will either lead to deadlock, or the set or permitted
turns will be the same, as for some unique labeling.

To avoid deadlocks, any allowable routing path
consists of two phases - at the first phase labels can not
decrease, and at the second - they cannot increase
(TOP-DOWN restriction). For example, it is prohibited
to have three sequential nodes with labels p1, p2, p3 in
the path, if  p1 < p2 and p3 < p2. Since any path
containing links from T(G) satisfies this restriction, any
message will be delivered if G is a connected graph.
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Fig.1  Example of a spanning tree and its
labeling (links of T(G) are shown in bold).

An example of a random graph, its spanning tree and
labeling of its nodes is shown in Fig. 1.

We now address the problem of routing in G. Lets
assume that T(G) is already constructed and each node
I is labeled by Li. For a given source s and destination d
it is necessary to select a shortest routing path a1,…,am
(a1=s, am=d) among all possible paths, satisfying
up/down restrictions.
For any intermediate node i of a packet path a routing
protocol estimates the length of the shortest path
between neighbors of i and the destination, satisfying
the restrictions on turns imposed by up/down

algorithm, and routes the packet to neighbor j, which
has the lowest estimated length (providing that the
corresponding turns in i and j are permitted). Sizes of
local memories in routers will determine the accuracy
of these estimations and performance of the
corresponding routing strategies.

For the local approach the distance between any two
nodes is estimated as the tree distance (in links) in
T(G). In this case, the size of the local memory in
routers required for storing T(G) and node labeling is
O(N) (N is a number of nodes) and O(N2) steps will be
required to compute the distances.

For the global approach the distance between two
nodes is the length of the shortest path between these
nodes such that this path satisfy the restrictions
imposed by up/down algorithm. The size of the local
memory required for the global approach is O(N2) and
O(N3) steps are needed to compute the distances.

The mixed (hierarchical) approach is a combination of
the local and global approaches.

First, we consider the global routing algorithm, based
on global knowledge (this algorithm is efficient if a
number of nodes is small). For this algorithm, in the
first phase two matrices E and F are formed, that show
for every pair of source-destination nodes if the label-
increasing and label-decreasing paths exist and length
of the shortest of these paths (if the paths exist,
information about the next node along the shortest path
can also be stored). This phase requires about N3

operations (N is  the number of nodes). Next, if we
need to route from s to d, we can find the shortest
distance as d(s,d) = min (E(s,i)+F(i,d)) (for all i  such
that E(s,i) and F(i,d) are defined). The corresponding
value of Li shows the minimal label, which will be
reached. To maximize the saturation point, a criterion
based on max(Li) (for all i such that E(s,i) and F(i,d)
are defined are considered) can be used.

For the above example (see Fig.1) we have the
following matrices E and F:
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One can see from these matrices that a path of length 2
(5-8-9) is already indicated in the E and F matrices and
this is the shortest for all possible i.

If the use of global knowledge is too costly, a local
algorithm can be used. Let us assume that we need to
find a routing path from s to d and Ls≥Ld. Then we look
for all nodes c, adjacent to s, such that Ls ≥Lc and select
the node which is closest to d. The distance between c
and d is estimated as the tree distance in T(G). At the
next step, we find a best route between c and d, etc. For
example, let us assume that we need to find a routing
path from node 5 to node 9 in Fig.1. Since these nodes
have the same label, at the first step nodes 1,2,7 will be
analyzed. The corresponding distances to node 9 are 3
(for 1), 4 (for 2) and 4 (for 7). So, node 1 is selected.
Using this approach iteratively, we construct path 5-1-
3-4-9. (The global approach generates the shortest path
5-8-9,  it is worth pointing out that the local approach
has no information about the legal shortcuts between 8-
9 and 2-4).

We will now describe a mixed approach, which will be
a combination of the local and the global routing
approaches. Let us partition spanning tree T(G) into Q
disjoint connected components (clusters). Every node
will have information about the structure of all clusters
directly above it in T(G) (including the cluster it
belongs to). Also, the structure of T(G) with node
labels is stored (for the whole graph G). For the
example of Fig.1 if nodes 1,2,3,4 form one cluster and
all other clusters consist of one node, path 5-2-4-9 will
be generated using mixed approach, since it has no
information about the inter-cluster link  8-9.

We note that global and local approaches are extreme
cases of the mixed approach with Q=1 and Q=N. We
note also that this approach provides for a tradeoff
between the sizes of local memories in routers and the
throughput of the system. If more memory is available,
the number of clusters Q can be decreased, with the

proportional increase in sizes of clusters. This will
provide for more information about shortcuts in T(G).
To store the information about one cluster of size H,
we need at most H2/2 bits (binary memory cells). If we
suppose that tree T(G) is a balanced binary tree, and all
clusters have the same number of nodes (so Q=N/H),
then, each node has information about at most log2(Q)
clusters, and we have size Mr of memory in routers
Mr=log2(Q)N2/(2Q2). For example, if Mr =104 and
N=103, then Q≈15 and each cluster has about 60 nodes.
Typically, resources available for routing are known in
advance, so the most difficult problem in application of
the mixed approach is to find a good partition of the
spanning tree of the original graph into clusters in such
a way that global information about clusters can be
stored in local memories of routers.

3. SIMULATION EXPERIMENTS

The experiments were conducted for randomly
generated connected networks with 64 and  256 nodes
and varying node degrees ranging from 5 to 20. The
following assumptions for our experiments are similar
to those used by [5,11].

All network channels are bi-directional and symmetric.
The buffer size for each input/output port is 1 flit.
Nodes operate asynchronously and memory capacities
of nodes are unlimited - this assumption permits us not
to consider loss of messages (or packets) and
consequent re-transmission due to insufficient memory
space. Messages that are blocked from immediately
entering the network are queued at the source node
(there are no limitations on a queue length).  Messages
arriving at a destination node are immediately
consumed. When multiple messages are waiting for the
same channel, the message that has arrived first gets to
use the channel first. All messages have lengths equal
to 200 flits. The flit size (in bits) is equal to the number
of physical channels that compose a link. Each flit is
transmitted in a single cycle link ("hop") time- this time
represents the basic temporal unit of the model.

Communications arising from the nodes are
independent and identically distributed by a Poisson
process with the generation rate equal to 1/p
(messages/cycle/node, where p is the probability of
message generation for any cycle, at any node). In our
simulations, we considered uniform traffic only - i.e.,
each node sends a message to any other node with
equal probability.

Performance of routing algorithms are measured in
terms of the average message latency (average delivery
time) and saturation point (highest sustainable message
generation rate).



All results have been averaged over 1,000 randomly
generated connected graphs, with 150,000 different
messages for each graph.

Fig.2. shows the improvement in the performance of
the up/down routing with increase in the information
available at each node (increase in the size of the local
memory at the routers). The global, local and mixed
approaches are compared for graph size of (N) 64
nodes and the average degree per node, d= 6. The
average path length is much smaller for the global
approach (since in this case more information about
available shortcuts is stored in local memories) as

compared to the local one. The mixed approach, as
expected, falls somewhere in between. This decrease in
the average path length translates into the global
approach having a maximum sustainable throughput 5
times larger than the local approach.

Fig. 3 demonstrates the scalability of the global, local
and mixed approaches. For these experiments,  d=6.
The global approach shows the maximum scalability:
increasing the size of a network 8 times (from 32 to
256), increases the maximum throughput by 500%. For
local and mixed approaches, the corresponding increase
is between 200% and 400%.

Fig. 2. Dependency of average message delivery time (clock cycles) on message generation rate for local (pluses),
global (circles) and mixed (circles) approaches. (There are three graphs for the mixed approach for different sizes H

of clusters).

Message Latency



Fig. 3. Maximal throughput versus number of nodes for
local, global and mixed (fixed cluster size) approaches.

These graphs illustrate a good scalability of the
proposed approach. We note that the efficiency of the
proposed methods depend on algorithms, used for the
constructing of spanning tree and labeling of nodes. In
future work, these problems will be addressed.

4. EXPANSION OF THE UNICAST ROUTING
ALGORITHM FOR THE CASE OF SEVERAL
VIRTUAL NETWORKS

Up to now, we have assumed that only one virtual
networks is in use. If existing hardware supports the
use of several virtual networks (i.e. there are several
buffers in the routers for each link), the developed
algorithms can be extended. Let us consider using a
second virtual network, identical to the first one (each
path in this network consists of up and down phases).

Each message starts in the first virtual network. If after
going down (i.e. a path in which we are travelling only
over equal or increasing labels), going up is needed,
then the message is transferred to the second network
(but not otherwise). Any path with length not more
than 3 is allowed using the described routing strategy
(for k virtual networks, selected in the similar way, any
path up to the length 2k-1 is allowed). Since more
message paths are available, the load on links can be
made more uniform, which allows improved saturation
characteristics. It is especially important if the network
graph has some long cycles.

For the example shown in Fig.1, path 1-4-3 will be
allowed using two virtual networks.

Fig.4. Average message delivery time versus packet generation rate for the up/down algorithm, for local (H=1),
mixed (H=50), global (H=256) approaches, 1 and 2 (1N,2N) virtual networks (N=256).



Fig.4 shows the improvement in the performance of the
up/down routing with the addition of a second virtual
network. The graph size is 256 nodes and the average
degree per node is 6. The corresponding increase in the
maximum allowable throughput is around 10%. Fig.4
also illustrates the tradeoff between sizes of local
memories H and the throughput. For example, the
transition from the block size of H=50 to H=256
(which requires an increase in the size of the local
memory by a factor of 5) results in an increase in the
saturation point by 100%.

5. CONCLUSIONS

The proposed methods allow performing efficient
deadlock-free wormhole routing for networks with
irregular topologies. These approaches result in
message paths very close to the minimal ones.
Complexities of pre-routing stages required for
constructing routing tables are proportional to N3 for
the global approach and N2 for the local one. The
required memory size is of the order N2 for the global
approach and Nlog(N) for the local one. A mixed
approach was introduced, which combines the
advantages of global and local methods. Results of
experiments illustrate a good scalability of these
techniques.

All developed methods can be easily modified for
different deadlock prevention strategies. In this paper
we have restricted ourselves to the up/down method.
Our methods can also be extended for adaptive routing
[3,6,8] and for multicasting [9,15,16].
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