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ABSTRACT

It is shown that properties of simple and composite circulant
matrices may be generalized to circulants of finite groups. The
closure porperties are investigated and simple methods for
calculations of ranks, determinants, genmeralized inverses {(Moor-
Penrose), eigenvalues and eigenvectors of such a circulants are
suggested. Methods of abstract harmnniﬁ ananlysis are used to

solve these problems.




CIRCULANTS ON FtNITE GROUPS

. INTRODUCTION

The properties of circulants and ﬁnmpniitl circulants have been
studied recently in a number of articles [1,2,3,ﬁ].-'ln this paper, we
generalize the concepts of circulant and co@pnsite circulant to the case
of an arbitrary finite group, study the properties of such circulants and,
in particular, generalize some of the resﬁlts of {1,2,3]. A circulant
F on 3 finite group G with e]ementé dénﬂted'by -1,...,9 is defined as
a composite kg X kg matrix F = IF, 0 = H£G™  (,5=1,...,9)
where T is a matrix-valued functiﬁn, f: G *7Hk,k’lﬁk,k is the set of
all k x k matrices over the field € of ﬁnmplex numbers and j-l is

the inverse of j in 6. (iIf G 1is a c#clic group, a circulant on G

is the same as an ordinary composite cfrculant [1,3].)

Circulants of finite groups G arise in the sciution of synthesis
and controllability problems for Iinéar convolution~type systems whose
input and output signéls are functions defined on G {see, e.g., [5,6,71).
Thus a study of the pruéerties of circulants on finite groups is of

considerable importance.




1. PROPERTIES OF CIRCULANTS ON FINITE GROUPS

We first note some closure properties of the set

Cir(G,k) = {I!f(j"i)ll | f: 6 ~ M k}

of all circulants on a given group G with the respect to the

basic algebraic operations.

| ‘ .
Theorem 1 (i) |{f FeCir(G,k), then F e Cir(G,k).

(¢i) If F F € Cir(G,k) and « 0 € C,

AR TR

n
then ( X uiFi) e Cir(G,k).
=]

(ifi} If Fos Fy € Cir(G,k), then (F]'Fz) e Cir{G,k}.

{iv) If FlaFy € Cir(6,k), then (F]*Fz

I*FZ is the Hadamard product of FI and Fz)‘

€ Cir{G,k)
(F
(v) 1f F ecir(Gk) F, e Cir(6,k,), then (F QF,)

HCir(G,k]kzg). (F] ®F2 is the Kronecker product of

F., F, and g is the order of G).
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Proof.  Properties (i), (ii}, (iv}, (v} follows immediately from the

definition of Cir{G,k).

1oy _ =1 _ _
We prove (iii). Let F, = ey G DN, Fy = 0E, (5 1LF = IIF, it = FF,

H

and suppose that ;') = i 'i, for some i12iy:dysdy € G Then




Theorem 2

(i) 1If the equation FX = ¢ (F,d ¢ Cir(G,k)} is solvable, then

its set of solutions contains at ieast one circulant on G.

(1i) Let S e V(F,9}). if T e V(F,®D, then (S + T} e V(F,¢);

for every X € V(F,$) there exists a T € WF,® such that

X=5+T7,

(1i1) dimV(F,O) = k(kg - rankF). (1)

Proof. . (i} Let

FellFs M, x= o, e =le, M (FL X d e M
| . K

3 ’

i, = 1,...,9). tf FX = ¢ is solvable, there exist Xq’l

(g = 1,...,q9) such that

| L=

FoooX. . =9, | (2)

L2
/|

Let

Then X e Cir(G,k) and, since F,b ¢ Cir{G,k}, we have also

=9 - | (P:r = I,np.,g]a Now let P o= r-ljl

PaT -1 P.r r P:]

rop,]
a=r p in {(2) for some r e {1,...,9}. Then by (2}, (3},



-1, -1
p=1 r j,r 'p rop,l p

and so X ¢ V{(F,d).

Part (ii) follows from (ii) of Theorem 1.

(iii) Conditions (2}, (3) hold for every X ¢ ¥{(F,$); hence putting

¢; 1 =0 (i =1,...,9) in (2), we obtain (1).

We now consider the calculation of ranks, detdrminants and

generalized inverses of circulants on a finite group.

]

Vle shall use the generalized Fourier transform > on G

for matrix-valued functions {j) = me R(j)u {}] cG: m= l,..a,k];

b=1,...,k,)

A ~ g -
bla) = My )l =) 2 ARG i, (4)

where R, is the w-th irreducible unitary representation of G

of dimension dw over the field € of complex numbers,

ot

flw) < Mk}dmxkzdm [8].

The foilowing two important properties of the Fourier transform

() will be used in what follows.

(i} Let f: G +-Hk x: G > M

) ’
!,kz kz,k3 K.,k




Then
3 -]
.E} F{] " 1)x(j) = ¥(i) (i =1,...,9)
J:=
£
Flw)x (@) = dog ™ ¥(w) ¥R ¢ R(G) (5)

where R(G) is the set of all irreducible honequivalent unitary

representations of G.

(ii) If M« M. | » denote ]M12'= Trace M M. Then for every
[*72
f: 6 ~ Hk,k

g 2 -1,2 2

Ef )P =9 T awlfwm|? . (6)

=1 R «R{G)

W
Theorem 3. Let F = Hf(j*li)ﬂ (f(j-]i) = "fm R(j-]i)”;
i, =1,...,0;5 m,2=1,...,k} be a circulant on finite group G, with
g elements. Then:
(i) rank F = X dwrankf (w) . (7}
R ¢R(G)
)
kg - kdw® D dw

(ii) det F=g9 TT du " (detf(w)) ; (8}

R eR(G}

s

-1 dw’ ~* -1
(iit) Let Qij = ﬂqm’R(J i = HR i(ﬁ} =5 Trace (Fm,R(w)Rm(J ‘I))ﬂ. (9)
wt g

+ + .
Then F = 0. (F is the Moore-Penrose inverse of F}.



Proof. = Let x; G = Mk | ¥: ¢ ~ Mk | and
x{1) ¥(1)
F- = i (ID)
x(g) ¥(g)
Then
g -]
) 1:(.] i)}{(j) = ?(E) {| = ]:'**:g) (I])
j=1
and by (5),
Flox(w) = dog™¥(w) VR < R(B) - (2)

(i) Let ¥ =0. Then for every R e R(G), ¥{(w) = 0 and the space

of solutions x(w) of (12) has dimension dw{kdw-rankf (w)).

Since x{(w) is the Fourier transform.for x{i)}, the dimension of

the null-space of F s z dw(kdw-rankf(w)). Hence,
R R{G)
we

since [8]:

2  dw =g, | (13)

we have (7).




(ii} Let ¥(i) = ax(i) = (i = 1;Dn¢;g). Then by {12},
| 1 of

(?(m) -hg-‘*i £) x(w) =0, vnmea(t;) '{E’= " ). (1)

Hence, by (10}, (14), the -numbers ﬁs(m) (s=1,...,kdw) are
eigenvalues of matrix flw) iff lS(m) = gdmilﬁs(m) are eigen~
o ' .

values of F; in that case, in view of (IB? - the:multiplicity

i
of ls(m) (S =1,...,kdw) is dw. Thus, by (13),

kdw 2 dw |
det F= TT TT OgeN®= TT G TT (gl)® -
R €R(G) S$=1 " R €R{G) S=|
k “kdw?, . N, L\ dw
=g 9 TT oo (deff(w)) .
&mEH(G)
x (1)} v(1)
(11i) Let FecCir(G,k),f:G>HM ,, X-= : v ||
x(g) ¥(q)

(x(i), ¥(i) « M5 | = Iyeenyq).

Since for every H.i £ Mkl ’k]j Hz < Hk]’kzj H3 £ HI( -.k

* w12 Y “ ot
m;n fHIHZ H3I = |H1Hhﬂ3 H3I i fF M,, H] (15)
) .

we have by {5), (6)



min|Fx-6| =min 212 e xG)-¥( |2 -
X X i=1 j=I

g 2 dm-]min 'gdm-lf{m)x(m]-W(m)|2 =

ﬁﬂER(G) ${w)
= g Z  do |f@)f (0 ¥{w)-¥(w|”. (16)
R cR(G)
w
But from (9), using (&), we deduce
F+ (w) 245 2q (w) (m, 2 =1 | k) (17)
m,ﬂ,_ =4 qm,ﬂ,m My = 1yeou,

It now follows from (16}, (17) in view of (5), (6) and

Qe Cir(G,k} that

nin|Fx-¢|% =g 2 do” ' g%du ™ F (@) q(w) ¥lw) ¥ (w) | =

X RNER(G)
g 9 g .
- T|E fG7Y) I qUT DG -usY|? = |Fov-v)?

and thus, by {15), Q¢ = F+. -

Corollary | A circulant F = Hf(j-]i)ﬂ (f: G+ M, ) on G is
» .

nonsingular iff f{w) nonsingular for every R, € R{G).

Proof. The proof follows from (i) of Theerem 3 in view of

F e M C Fw) e M and  (13).

kg*kg kdwx dw



_IU_

Thus, it follows from Theorem 3 that calculation of ranks,
eigenﬁalues, determinants and generalized inverses of a kg X kg
circulant F may be reduced to the analogous calculation for
kdw X kdw matrices ?(m) for all Rm e R(G). Since all the numbers

dwd are divisors of g L8] and )2 dmz = g, the caluclations
RNER(G)

 for Flw) (RMER(G)) involve considerably less operations than the

direct calculations for the original circulant F.

We now consider the case in which for every J,i € G

F., = f(j-Ii) is @ circulant on some group G

% | of the dbrder gy

i.e., f: G +-Eir(G],kl) and k = k,*g,. The special case of these
circulants F in which G, is a cyclic group and kl = 1 have been

" studied in [3]).

| f f(j_]i) € ﬁir(ﬁl,ki) for every j,i € G, then it fol lows
from {(4) and (ii) of Theorem 1, that f(w) E.Cir(G],k]dw) for every
Rm € R(G). Thus for calculation of ranks, eigenvalues, determinants

and generalized inverses of f{w) for every R{w) ¢ R{G) may be used

again Theorem 3.

To end this section, we note that most of the results of Theorems

i,2,3 may easily be generalized to the case of circulants

1. ]
F=0{f(j i)il, where f: G Hk],ki and k] ¥ k2 .
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111 CIRCULANTS ON ABELIAN GROUPS FOR k=t

We now consider the case of clrculants F = Hf(j-]i)ﬂ, f: 6> C,

where G is a finite Abelian group i(this is.the-mnst important case
for control theory [5,6,7]).

Corollary 2. For any normal matrix M = HHIJH (M

and any Abeiian group G of order g, there exists a unique circulant

ij € G PsJseessg)

Fy € Cir{G,1) on G which is unitarily similar to M.

ek p————

Proof  Since G is Abelian, dw = 1 for every Rm ¢ R(G). Hence,
if Aﬂ(m) (w -Il,...;g) are the eigenvalues of M, then, as in the

proof of (ii) of Theorem 3, we put fH(m) = gfllﬁ(m). Then

fH(i) = g'l z 'lﬂ(m)am(i'l) for every i€ G and Fy = "fn(jf]i)ﬂ
RmER(G) ' T

is a circulant on & which Is unitarily similar to M.

We also note that if F ¢ Cir(G,1} then
R (1)

for all Rw € R{G) are eigenvectors f F and if

R (g)

FlsFy € Cir(G,!) then F'F2 = FyF.

Corollary 3.  Let F = Hf(j"]!)ﬂ (f: G~ C; i,j=1,...,9) be a

circulant on an Abelian group G. Then:
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l: if F(m) ?50

(i) rank F = % 'F(m),Or’ whare GI?{m),O = ; (18)

RueR(G) 0, if #lw) =0
(i1} det F=g9 T 1 Flw; (19)
R e¢R{G)
@ .
| , & y |
(i) Fr=lle b=gl Z  F (R (7 i), where
1] RmER(G) . . .

[ #F 1w, if Flo) #0
@ =4 (20)

0, if Flw) =0

.

(iv)  F is nonsingular iff f(uw) #{ﬁﬁ.fﬂr all R ¢ R(G) .

Proof. The proof follows from Thenrem.S and'Cdrnllary I with k=l

since in our case dw =1 for ever R e R(G). Thus, for Abelian

~groups, calculation of the rank, eigenvalues, determinant and

generalized inverse of a circulant F -ﬂf(j-]i)ﬂ may. be reduced

to calculation of the Fourier transform f,

Express G as a direct product of cyclic subgroups, G = [ ] Ge .
_ $=]

Let 9c be the order of Gs (S = 1,...,n}.'.Thén calculation of

n
the Fourier transform on G involves only g Z 9¢ additions and

S=]

muttiplications (Fast Fourier Transform on G- [9]). Consequently, by

(18)-(20), calcutation of the rénk or determinant of a circulant on G

n -
requires only g+g Z 9¢ additions and multiplications, while
Sw] ;
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calculation of the generalized inverse of a circulant requires

i |
g + 2g Eﬁ,gs additions and multiplications.
S=1 |
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