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Abstract In this paper we consider the problem of
deadlock-free wormhole unicast routing in networks with
irregular topologies. To prevent deadlocks, for each router
some input/output pairs (turns) have to be prohibited. We
analyze the problem of minimizing the number of
prohibited turns for providing deadlock-free routing. A
new algorithm is proposed, which guarantees that this
number does not exceed 1/3 of the total number of turns
and that it is still possible to send messages between any
two initially connected nodes. To the best of our
knowledge this is the first meaningful upper bound on the
fraction of  turns to be prohibited to prevent deadlocks for
networks with an irregular toplogy. Also, the problem of
routing in the presence of prohibited turns is considered
and appropriate methods developed.

1. Introduction

We are considering computer/ communication
networks, consisting of computing nodes (which do not
have to be identical) connected by bi-directional links.
Each node can be viewed as the combination of a router
and a processor with some RAM, bus and I/O circuitry. In
this paper we concentrate on networks with arbitrary
(irregular) topologies, such as networks of workstations
(NOWs).

Many existing methods for message transmission
utilize wormhole routing, where each message (or each
packet of the message) is divided into flits, all of which
follow the same path [21]. In wormhole routing, a router
begins forwarding a packet as soon as the header is
received and the required channel buffer in the next router
can accept one or more flits of the packet. Flits are
transmitted from one router to the next in a pipelined
fashion and may occupy several channels along the path
from source to destination. Only the header flit of a
packet contains information required for routing. If the
header flit is blocked because the required buffer in the
next router along it's path is full, all of the flits in the
packet are blocked, and, therefore, so are the channels that
they occupy. If more than one flit can be buffered at a
node, flits behind the header can "catch up" until the
available buffer space is filled. At that point, they block
and can continue only after the header is unblocked.

Wormhole routing is efficient because it allows low
channel-setup time, low-latency communications and

reduced communication overhead  [2,21]. It has been
adopted in almost all existing direct networks [5].
Gradually, variations of this technique, known as cut-
through routing [16], are being used in commercial NOW
implementations like Myrinet [1,14]. However, wormhole
routing is very susceptible to deadlocks because packets
are allowed to hold many resources while requesting
others. Recently, NOWs have emerged as an inexpensive
alternative to massively parallel multiprocessors. In order
to minimize network latency and achieve high bandwidth
communications, recent experimental and commercial
switches for NOWs implement wormhole routing
[1,18,22]. A flexible router architecture that implements a
variety of routing and switching schemes by dedicating a
microprogrammable routing engine to each incoming link
was presented in [15]. Design of efficient deadlock-free
routing algorithms in irregular topologies introduces new
challenges, which we are going to address in this paper.

One way to solve the deadlock problem is to allow
the preemption of packets [21]. However, because of
requirements for low latency and reliability, packet
preemption is not used in most direct network
architectures and deadlocks are avoided by the routing
algorithms. To avoid deadlocks, the routing algorithm
itself must be shown to be deadlock-free.

Overall, wormhole routing strategies can be divided
into adaptive and non-adaptive techniques
[7,8,9,10,21,23]. For non-adaptive routing the route
followed by a packet is completely defined by the source
and destination addresses. For adaptive routing the route
depends also on dynamic network conditions, such as the
presence of faulty or congested channels. In this paper we
consider mostly non-adaptive methods. However, the
proposed methods are extendable for adaptive routing as
well. For non-adaptive methods, deadlocks are absent if
and only if there are no cycles in the channel dependency
graph [9,10].

Several routing methods currently exist for routing in
regular topologies, such as 2-dimensional and
multidimensional meshes and tori  and hypercubes
[4,6,24]. In addition, approaches to the more difficult
problem of routing in the presence of faults (fault-tolerant
routing) also have been developed for some of these
topologies for the cases when the number of faults is
relatively small compared to the number of nodes [6,24].
Very few papers have been published on wormhole
routing for irregular networks such as NOWs [20]. Some
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of these algorithms require complex signaling hardware at
the routers. Even for regular topologies finding a good
trade-off between communication performances and
hardware costs is an open problem [10]. In this paper we
take on these challenges.

For the case when the number of faults is large, fault-
tolerant routing becomes very similar to routing in an
irregular topology. Efficient and scalable fault-tolerant
routing techniques for meshes and tori developed by the
authors can be find in [24,25]. If the network graph can be
embedded in a mesh (or hypercube) and the difference
between the number of nodes in the mesh and the number
of nodes in the original network is small, then this
embedding with the corresponding fault-tolerant routing
can be used for routing in the original network.

For the approaches that we will outline in this paper,
packets will be delivered without deadlocks for all
sources and destinations.

For the case of a general topology, several routing
strategies based on the spanning tree approach have been
developed [19,22]. In this case, a spanning tree must be
first constructed. Any two nodes can communicate with
each other along the tree without any deadlocks. The main
drawbacks of these approaches are the long packet paths
and high loads for the edges near the root node. The
method can be improved by allowing shortcuts using
edges, not belonging to the spanning tree, but the above
drawbacks cannot be eliminated. The problem of finding
deadlock-free tree-based wormhole algorithms has been
widely regarded in the literature as a difficult one. We
will outline our approach for solution of this problem in
the next sections.

2. Mathematical model

We assume that the original network consists of N
nodes, connected by E edges. Also we assume that all
nodes are connected (for any two nodes there exists a path
between them). In the general case network graph G can
be considered as a multigraph with several edges between
two nodes. In particular, if V virtual networks [9,10,11]
are used, any two nodes are connected either by 0, or by V
edges. (Each physical channel is split into V virtual
channels, using time multiplexing. Each virtual channel
has its own buffer. Sum of the capacities of these virtual
channels is restricted by the capacity of the original
physical channel, so large V will lead to performance
degradation. The number of virtual channels can vary for
different links).

We will consider in this paper mostly the case of
deterministic (non-adaptive) unicast routing. A routing
strategy will then be a function on the set of pairs (s, d),
where s and d are source and destination nodes. For each
such pair the value of this routing function will be either 0
(packet will not be transmitted), or a vector of edges
representing a path from s to d. The set of all path vectors
will be denoted by P.

The condition for deadlock elimination can be
checked by analyzing P. Based on P, the channel

dependency graph can be constructed, nodes of this graph
correspond to edges in G and edges in the channel
dependency graph correspond to "turns" in G. For the
deterministic case there must be no cycles in the channel
dependency graph to prevent deadlocks [9,10].

For every routing strategy some of the turns in
network graph G are prohibited. The turn in G is a 3-tuple
of nodes (a,b,c) such that (a,b) and (b,c) are edges of G,
a≠c. (Nodes of G are labeled by 1,2,…,N, and we do not
distinguish between a node and its label). In order to
correctly model existing switch-based networks as the
DEC Autonet [22] and Myrinet [1] we assume that G is
symmetric, i.e. if (a,b) is an edge in G , then (b,a) is also
an edge. In Autonet and Myrinet these symmetrical
channels can be used simultaneously without contention.
We assume that if (a,b,c) is prohibited, then (c,b,a) is also
prohibited, and we will consider these two turns as one.
The total number of turns in T=Σ(di (di +1))/2, where di is
a degree (number of neighbors) of node i. For example,
for the up/down routing a spanning tree for G is
constructed, nodes are labeled preserving the partial order
defined by the tree (the root has label 1) and turn (a,b,c) is
prohibited if b>a and b>c.

N-1N-21 2

N

Fig.1. Example of a network with z≈1-6/N for the spanning
tree (up/down) approach and z≈2/N for the proposed approach
(the edges of the selected spanning tree are shown in bold).

As it is illustrated in Fig.1, reduction in a number Z
of prohibited for deadlock elimination turns results in a
decrease of average path length t of packets. (If turns
(i,N,j) (i,j=1,2,…,N-1)  are prohibited then Z=N (N-1)/2
and t≈N/2,   and if turns (i+1, i, N)  ( i=1,2,…,N-2)  are
prohibited, then Z= N-1 and t≈2). We note that for another
selection of the spanning tree Z can be drastically reduced
for this example, but the problem of construction of an
optimal tree is NP-hard and in the general case even for
the best selection of a spanning tree and the
corresponding labeling of nodes Z can be rather large.

This reduction in the average path length results in a
reduction of average delivery time and increase in
throughput. For example, for 2-d meshes and (x-y) routing
z=Z/T=1/3 and for North-Last routing [15] z=1/6 and
North-Last has better performance in terms of delivery
time and throughput.  In [11,12] Glass and Ni investigated
in depth the turn model, which prohibits some turns in the
multidimensional meshes to break all the possible
deadlocks. (In their works only 90-degree turns have been
considered which is sufficient for meshes). Our
simulation results for random graphs with N=256 nodes
also illustrate a strong correlation between fractions of



302-297                                 3

prohibited turns and average delivery time for networks
with irregular topologies.

In this paper we will use the turn model for irregular
networks. Fractions z=Z/T of prohibited turns will be used
as one of the criteria of efficiency of a routing strategy.

We note that a set of prohibited turns preventing
deadlocks does not specify completely the routing
strategy, i.e. several routing strategies can satisfy the
same set of restrictions on turns in the network graph.

In Section 3 we describe techniques for constructing
minimal sets of prohibited turns to prevent deadlocks.
Section 4 is devoted to routing strategies satisfying
selected sets of prohibited turns and minimizing average
path lengths and average delivery time for given
restrictions on local memories in routers.

As far as it is known to us, for all known routing
strategies for irregular topologies z may be close to 1 for
some network graphs. For example, for routing with
up/down restrictions z depends on a selection of the
spanning tree for the network graph and in some cases (as
it is shown by Fig.1) may be close to 1. We are not aware
of any technique for construction of spanning trees, which
will guarantee a meaningful upper bound on fraction z of
prohibited turns.

In the next section we will outline our approach for
unicast non-adaptive deadlock-free wormhole routing
with a fraction of prohibited turns not exceeding 1/3. (For
some topologies this upper bound cannot be improved).
We will describe an approach for construction of the
corresponding spanning tree and restrictions on turns
defined by this tree. We will denote the algorithm
implementing this approach as "z-algorithm". To the best
of our knowledge, z-algorithm is the first algorithm
providing a meaningful upper bound on a fraction of turns
in network, which have to be prohibited to prevent
deadlocks.

In Section 4 we will outline local, global and mixed
(hierarchical) approaches for routing satisfying
restrictions on turns generated by z-algorithm. The goal of
these approaches is to minimize average delivery time and
to provide for a good trade-off between average delivery
time and sizes of local memories in routers. We will also
describe in this section local, mixed and global
approaches for the case of routing with two virtual
networks combining advantages of z-algorithm and the
up/down approach.

The complexities of the algorithms described in
Sections 3 and 4 do not exceed O(N3) (N is a number of
nodes). These algorithms have to be implemented only
when there is a change in the topology of the original
network (faults are detected in some nodes, new users join
the system, etc.)

3. Deadlock elimination by turn prohibition

In this section we will describe our results on lower
and upper bounds on fractions z=z(N,E) of turns which
have to be prohibited to prevent deadlocks in a given
network graph. The proposed upper bound is constructive,

i.e. its proof generates a simple algorithm (we call it z-
algorithm) for construction of a tree and labeling of nodes
by 1,2,…,N such that turn (a,b,c) is prohibited iff at least
one of the edges (a,b) or (b,c) does not belong to the tree
and a>b and c>b.

Denote by z(N,E) a minimal fraction of prohibited
turns for prevention of deadlocks in network graph G with
N nodes and E edges. Let di be a number of neighbors
(degree) of node i and T be the total number of turns
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The following lower bounds for z(N,E) will  be useful
to estimate performances of the routing strategies that will
be described later in this section.

First we note, that

z(N,E) ≥ (E-N+1)/T. (1)

This bound follows from the fact that there are β = E-
N+1 linearly independent cycles in G (β is the cyclomatic
number for G [13]) and each one of these cycles has to
contain at least one prohibited turn to prevent deadlocks.

For example, for 2-d r×r meshes N=r2, E=2(r-1)r,
T=6(r-2)2+12(r-2)+4,

z(N,E)≥ (r2-2r+1)/(6r2-12r+4)                (2)

and the lower bound for z(N,E) in this case is close to 1/6
for large meshes. We note that for the North-Last
algorithm [6] and 2-d meshes the fraction of prohibited
turns is equal to lower bound (2), which proves optimality
of the North-Last algorithm.

For the example shown in Fig.2, N=10, E=17, T=44
and by (1) z(N,E)≥8/44.

Let C={C1, …CR} be a system of cycles in G and m is
a maximal number of cycles from C containing the same
turn. Then

z(N,E) ≥ R/mT (3)

If m=1, then z(N,E) ≥ R/T, where R is a maximal number
of cycles in the network graph such that every turn
belongs to at most one cycle.

For the example shown in Fig.2 one can select as C
the system of all 9 triangles and one cycle of length 5
(R=10). In this case cycles don't have common turns
(m=1), and by (3) z(N,E)≥ 10/44.

Bound (1) is useful when a number of cycles in G is
small and (3) can be used for a networks with large
numbers of cycles.

We will describe below an algorithm  (z-algorithm)
for prevention of deadlocks (selection of sets of
prohibited turns) such that for any network graph z≤ 1/3.

 At the first step, a node with the minimal degree is
selected and labeled by 1. If after deletion from G of node
1 and all edges neighboring 1, the remaining graph G-1 is
still connected, then we prohibit all d1(d1-1)/2 turns
(a,1,b) and permit all turns (1,b,c). If after deletion from
G of node 1 and all edges adjacent to 1 the remaining
graph G-1 consists of disconnected subgraphs G1,…,Gs,
(this procedure is used also for s=1) then, we select nodes
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a1,…,as (called tree nodes) such that ai is a node of Gi and
(ai,1) is an edge in G. All edges (ai,1) are added to the
spanning tree. All constructed tree nodes, except one, are
added to the set of basic nodes B (initially B=∅). At the
next step we repeat the same procedure to the remaining
graph G-1, labeling non-basic node with a minimal degree
by 2. If several non-basic nodes have the same degree, a
node non-adjacent to a tree node is selected (if it exists).
At each step, basic nodes are selected in such a way, that
every component of connectivity has only one basic node.
Process is finished, when all nodes are labeled.

By this procedure, turn (a,b,c) is prohibited if and
only if a>b, c>b and at least one of the edges (a,b) or (b,c)
does not belong to the constructed spanning tree. For
example, after the first step we permit all s(s-1)/2 turns
(ai,1, aj) (i,j=1,…,s, i≠j), prohibit all remaining turns
(a,1,b) (where a,b ∉{a1,…,as}) and permit all turns
(1,b,c).)

To prove that for this procedure z≤ 1/3 we note that at
step j we prohibit some of the prohibited turns (a,j,b)
(a>j, b>j) and permit all turns (j,b,c) (b>j, c>j). The
number of prohibited turns at step j is at most dj(dj-1)/2
and the number of permitted turns (j,b,c) is W=Σ(di-1)
where summation is made for all dj nodes i, adjacent to j.
If  node j has a minimal degree in the remaining graph H
or if it is non-connected with a basic node, which has a
minimal degree (we assume H to be connected), then W≥
dj(dj-1). The only remaining case is, when j is connected
with a basic node with minimal degree d', at most d'-1
nodes with degree greater or equal than dj, and at least dj-
d' nodes with degree greater or equal than dj+1.

In each case, the number of permitted turns is larger
than number of prohibited turns by at least a factor of two
(we note, that it is true for at least two nodes in any
graph). In view of this, we can prove that z≤ 1/3 using
induction by N.

We note that the proposed z-algorithm provides for at
least one permitted path (along the constructed spanning
tree) between any two nodes in G.

The complexity of z-algorithm does not exceed O(N2)
1

2

3 10

7 8

94

5 6

Fig.2. Example of a network with node labeling (the
spanning tree shown in bold.)

We will illustrate now the proposed algorithm for
deadlock elimination by the example shown in Fig.2.  At
the first step we delete node 1 and edges (3,1) and (10,1),
prohibit turn (3,1,10) and permit turns (4,3,1), (5,3,1),
(6,3,1), (2,3,1), (1,10,7), (1,10,8), (1,10,9). Edge (1,3) is
added to the spanning tree (nodes 3 and 10 are tree
nodes). At the second step, after deletion of node 2, we
have two disconnected graphs, and two edges (2,3) and
(2,7) are added to the spanning tree (7 is selected as a

basic node). After 9 steps the total number Z of prohibited
turns is 11 and since there are T=44 turns in the network
we have z=1/4. The resulting labeling of nodes is given in
Fig.2. (Edges of the resulting spanning tree are presented
in Fig.2 by bold lines).

In many cases z-algorithm is optimal in terms of a
number of prohibited turns. For example, one can prove
by this algorithm and lower bounds (1)-(3) that for
infinite 2-d meshes z=1/6 and for 3-d meshes z=1/5.

For the full bipartite graph K3,3  with N=6 (see Fig.3)
z=5/18 (turns (2,1,4), (2,1,6), (4,1,6), (3,2,5), (4,3,6) are
prohibited), and z-algorithm is optimal in this case since
for any full bipartite graph Kn,n with N=2n by (2)-(3)
z≥1/4.

1

2

35

5 4
Fig.3. Routing for bipartite graph K3,3

In Fig.4 we present results of computer simulation of
average fraction zav of turns, prohibited by z-algorithm
and the up/down approach for deadlock elimination in
networks with N=256 nodes as a function of average
degree d (number of neighbors for every node). The
results are averaged over 1,000 randomly selected
connected networks. One can see from Fig.4 that zav is
growing with increase in d and z-algorithm is outper-
forming the up/down approach by at least 10% for d≥10.

We note also that our approach guarantees that z≤1/3
but does not guarantee the minimum number of prohibited
turns (for the example shown in Fig.2 in the solution
presented above turn (7,2,8) does not have to be
prohibited, and z can go down to 10/44).

Fig.4 Fraction zav of prohibited turns versus average degree d of
nodes for networks with N=256 nodes for z-algorithm (lower
curve) and for up/down approach.
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We are planning to investigate the problem of
minimization of a number of prohibited turns for deadlock
prevention. We are planning also to modify our approach
for the case of fault-tolerant routing. In this case some
nodes (or links) will be identified as faulty and the set of
prohibited turns should be dynamically reconfigured on-
line. Our initial results for fault-tolerant wormhole routing
for networks with regular topologies can be found in [24].
This fault-tolerant routing will be considered as a special
case of routing in networks with changing topology (new
users are added to the system, or some users are
disconnected). We believe that as long as the rate of the
change is low the proposed approach for deadlock-
elimination will be efficient.

4. Deadlock-free unicast routing

In the previous section we described the approach for
construction of spanning tree T(G) and labeling of nodes
for any given network graph G such that to prevent
deadlocks it is sufficient to prohibit turns (a,b,c) where
a>b, c>b and at least one of the edges (a,b) and (b,c) does
not belong to T(G). (The fraction of these turns does not
exceed 1/3).

We will describe in this section several routing
strategies satisfying these restrictions and minimizing
average path lengths between sources and destinations for
given restrictions on local memories in routers. These
strategies do not require virtual networks. Generalizations
of these strategies to the case of two virtual networks will
be also given at the end of this section.

For any intermediate node i of a packet path a routing
protocol estimates length of the shortest path between
neighbors of i and the destination, satisfying the
restrictions on turns imposed by z-algorithm, and routes
the packet to neighbor j, which has the lowest estimation
(providing that the corresponding turns in i and j are
permitted). Sizes of local memories in routers will
determine accuracy of these estimations and performance
of the corresponding routing strategies.

For the local approach the distance between any two
nodes is estimated as the tree distance (in links) in T(G).
In this case, the size of the local memory in routers
required for storing T(G) and node labeling is O(N) (N is
a number of nodes) and O(N2) steps will be required to
compute the distances.

For the global approach the distance between two
nodes is the length of the shortest path between these
nodes such that this path satisfy the restrictions imposed
by z-algorithm. The size of the local memory required for
the global approach is O(N2) and O(N3) steps are needed
to compute the distances.

We will also describe the mixed (hierarchical)
approach, which will be a combination of the local and
global approaches.

We will illustrate now local, global and mixed
approaches for the network shown in Fig.5. (The spanning

tree and labeling of nodes generated by z-algorithm are
also given in Fig.5).

Suppose that the source is node 5 and the destination
is node 2. Then for the local approach path 5-9-7-6-2 of
length l=4 will be selected, since in this case there is no
information in the local memory of node 5 about edges
(2,4) and (6,8). For the global approach path 5-4-2 of
length l=2 will be selected.

1

5

8

7

6

2
9

4
3

Fig.5. Example of routing using local, global and mixed
approaches.

For the mixed approach we partition spanning tree
T(G) into Q disjoint connected components (clusters).
Every node will have global information about structures
of all clusters. Also, the structure of T(G) with node labels
is stored in local memories. (The local and global
approaches for estimating distances outlined above are
special cases of the mixed approach with Q=N and Q=1).

We note that the mixed approach allows efficient use
of the available memory in routers to achieve the best
possible routing. More memory is available, smaller
number of clusters Q will be, with the proportional
increase in the size of each cluster. This will provide for
more information about shortcuts in T(G).

5. Conclusions

Our approach for constructing a deadlock-free
routing strategy consists of two stages.

At the first stage using the turn model we are
constructing a set of prohibited turns to prevent
deadlocks. We outlined in Section 3 two approaches for
solving this problem. For the first approach (z-algorithm)
we can guarantee that a fraction of prohibited turns do not
exceed 1/3 for any network topology. Using the lower
bounds on a fraction of prohibited turns we can show that
z-algorithm is optimal or close to optimal in many cases.
Our initial simulation results show that z-algorithm has
better performance (and lower number of prohibited
turns) than the approach based on up/down restrictions.
The second approach for constructing a set of prohibited
turns is based on two virtual networks. Since the
restrictions on turns imposed by z-algorithm and the
up/down approach are complimenting each other, we are
using two virtual networks Vz and Vupdown for routing
based on z-algorithm and the up/down approach. A packet
which have been moving in Vz can be transferred to
Vupdown (but not otherwise)

At the second stage our goal is to construct an
optimal routing strategy satisfying a given set of
prohibited turns and given sizes of local memories. We
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outlined in the Section 4 three approaches to solve this
problem. These approaches (local, global and mixed)
differ in the way distances in the network graph are
estimated by using local information stored in routers.
The global-information-based approach provides for the
shortest path and smallest delivery times but requires
local memories in routers of the order O(N2). For the local
approach memory of the size O(N) is sufficient but this
result in an increase in delivery time. The mixed approach
provides for a good trade-off between sizes of local
memories and delivery time. We are planning to
investigate these approaches and compare them with the
existing techniques.

We also plan to generalize our routing techniques to
the case of adaptive routing taking into account queue
sizes at each node and to the case of fault-tolerant routing
when some of the nodes and/or links in the network are
identified as faulty.
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