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Abstract  

We are considering a problem of fault-
tolerant wormhole unicast routing in computer
networks, consisting of nodes (processor units),
connected by bi-directional links. Each node can
be viewed as the combination of a router and a
processor with some RAM, bus and I/O
circuitry. We concentrate on networks with
arbitrary (irregular) topologies.

The problem of routing in the presence of
faults is divided into two sub-problems:
diagnosis and reconfiguration of the network
and deadlock-free routing in the new network. In
this paper we consider non-adaptive routing, not
taking the sizes of corresponding message
queues into account.

1. Introduction
The problems of fault detection (testing) and

fault location (diagnosis) have been mostly
studied under the general area of system-level
diagnosis [7,21,29]. System-level diagnosis
techniques model the system as a test graph,
whose vertices denote the nodes and an edge or
test link (pi,pj) from node pi to node pj indicates
that pi tests pj.

While the test graph in  is a subgraph of the
system graph, it generally contains as many
vertices as there are nodes in the system. For
large systems, this approach requires the
execution of the test program on every node and
can involve significant overhead. Also, it
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implies that for centralized testing the amount of
information sent to the host is relatively large
and requires rather complex analysis of the test
results. Clearly, a distributed testing strategy that
requires fewer tester nodes is desirable. The
fault model in system-level diagnosis has
generally been limited to processor (node) faults
and link and router faults have rarely been
considered [21,30,31].

Recently, several authors have proposed
techniques for testing and diagnosis of
multiprocessors based on self-testing [25]. These
techniques can be useful for diagnosis of a large
number of processor faults but they are less
efficient for detection and location of link and
router faults.

Most of the drawbacks mentioned above can
be alleviated by combining self-test and system
test. The main idea of our approach is to select
some nodes, called monitors, which execute a
comprehensive self-test. Fault-free monitors are
then used to test non-monitor nodes at the
second stage of the test. This approach allows
simple identification of faulty processors. From
the mathematical point of view, this leads to the
problem of covering the system graph by balls
of some given radius R (usually R=1) centered at
monitors for detection of processor (node) faults.

To detect all single node faults, we need to
cover each node by at least one ball. The
corresponding problem of finding the minimal
covering system of balls is known as the 1-
covering problem. We note that this problem is
still open even for such regular topologies as
binary n-cubes [3].

To detect and locate faults in the
communication block of the system, instead of



using coverings by balls, path based techniques
utilizing shorter messages travelling longer
distances can be used. This approach leads to the
problem of covering links, nodes and pairs of
neighboring links by minimal sets of paths
[2,18,19]. The major criterion for selecting a
system of covering monitors or covering paths is
the time required for testing. Other criteria
include memory for storing the testing programs
in monitors and complexity of the analysis of
testing results.

The following classes of faults are
considered in this paper:
1. Processor faults.
2. Link faults (including links between routers

and processors). For a bi-directional link
two faults may occur when a message
cannot be transmitted in either direction.
The number of link faults can then be
evaluated as  ∑
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where di is the degree (number of neighbors)
of node i in the network graph.

3. Router faults. We consider two types of
router faults

3.1 Total Router Faults (TRFs). In this
case, no messages can go through the
router (removal fault, [23]). If every node
consists of a router and a processor then
the number of these faults is equal to N.

3.2 Partial Router Faults (PRFs). In this
case, messages cannot be transmitted
from one incoming link to one outgoing
link of the router. For example, for 2D
meshes a message can be transmitted in
any direction but cannot make a turn. The
bypass fault models presented in [23] is
the special case of PRFs. The number of
different single PRFs is:
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We note that a TRF can be represented as a
multiple link fault, and a link fault as a multiple
PRF fault.

We consider two main methods to detect
and locate these faults. First of them is based on
covering the network graph by minimal set of
balls, centered on monitors, which perform self-
check and system check of neighboring nodes
[2]. Second method is based on covering all
nodes/links by minimal set of paths.

After location and isolation of faulty
components the system should go through the
pre-routing stage. At the end of this stage the
routing table will be constructed in routers of
every node. This table for node I should indicate
for every destination J a neighbor of I where the
message should be send in such a way that no
deadlocks can appear in the system.

In this paper we consider the case when
wormhole routing [26] is used. According to this
method, each message is divided into flits and
all flits follow the same path. The major
consideration is the absence of deadlocks [4,8].
Most of the known methods for wormhole
routing were designed for a specific architecture,
such as n-dimensional mesh [10,31], while the
design of deadlock-free routing algorithms in
irregular topologies introduces new challenges
[23].

Very few papers  [23,28] have been
published on routing for networks with irregular
topologies. The proposed techniques based on
spanning trees may result in traffic contentions
near roots of these trees. In this paper we
describe another approach for non-adaptive
unicast routing deadlock-free wormhole routing,
which provides for message paths very close to
the shortest ones and more uniform distribution
of the traffic between communication links in
the system.

2.  Testing and diagnosis of
computer networks
2.1 Testing and diagnosis of processor
faults

In this section, we investigate testing and
diagnosis of faulty nodes combining self-test and
system test. For testing, we select some nodes as
monitors. These monitors perform a self-test
first. If a monitor passes the self-test it then
starts testing its neighbors. An example of
monitor placement for processor testing for the
irregular topology is shown in Fig.1.

The testing problem can be formulated in
the following way: select a minimal set of nodes
(monitors) such that balls of radius 1 (radius R in
the general case) centered at monitors cover all
other processors. (A ball with a center P of
radius R is the set of processors connected by
paths of length at most R to P). This problem



was analyzed in [2,15,16,17]. We note that to
decrease the test time, balls should be disjoint.
Thus, not all nodes at distance at most R from a
monitor are included in the corresponding ball.
For Example of Fig.1 the balls may be selected
as {2,4,6}, {7,1,5}, {8,3,9}.
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Fig.1  Monitor placement for node testing
(monitors are shown in black)

For diagnosis monitor placement can be the
same as for testing, and diagnosis is done by
comparing results of the tests (signatures) from a
monitor and its neighbors. In this case, every
monitor sends a message to the other nodes (or
to the host, if centralized testing is used), which
indicates the faulty node in its ball (among its
neighbors). For single node faults this message
can be encoded in  log2(di+1)  bits, where di is
the degree of monitor I.

For this approach we have the following
lower bound for a minimal number of monitors,
M, required for diagnosing a fault involving a
single node:

M ≥ K, where K is the smallest integer such

that   Nd
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(we assume d1 ≥ d2 ≥ … ≥ dN). In particular,
    M ≥ N/(d1+1).       (4)

We also have the following upperbound for the
best monitor placement:
    M ≤ N/2   (N>1).       (5)
To prove (5), one can construct a spanning tree
in the network graph and select as monitors all
nodes on either odd, or even levels.

In Fig. 2 the results of simulations for the
number of monitors normalized to numbers of
nodes are given (here and below all results are
averaged for 1,000 randomly generated graphs).

Fig.2 illustrates advantages of our approach
based on combining self-test and system test
which results in a reduction of a number of

testers from the total number of nodes, N, in the
original graph to the number, M, of monitors.

Fig.2 Densities of monitors M/N required for
node covering as functions of numbers N of
nodes for randomly generated graphs with
average degrees equal to 4 (stars) and 8 (pluses).

Monitor placement based on covering of
nodes and aimed at single node faults provides
for a near-complete diagnosis of faults of higher
multiplicity. We have shown [17] that as the
number of nodes grows, the diagnosabililty
(probability of correct location) of faults of
multiplicity exactly t (t nodes are faulty)
approaches 1 when N is growing  if  t ≤ O(N1/2).
From the practical point of view, this implies
that for large systems, the number of faulty
nodes can grow at the rate of up to N1/2 without
loss of diagnosability.

2.2. Testing and diagnosis of link faults
In this section, we outline two approaches

for testing and diagnosis of link faults - the first
is based on covering all the links by balls
centered at monitors and the second is based on
covering of links by paths starting at monitors.

The first approach provides for testing and
diagnosis of all single and multiple link faults
and isolation of these faults by disabling the
ports connecting monitors and faulty links. This
fault isolation allows for graceful degradation
and facilitates system reconfiguration. The main
disadvantage of this approach is a large number
of required monitors.

For the second approach based on covering
of links by paths starting at monitors, the



number of monitors is going down, however the
location of multiple link faults becomes difficult.

Link covering by balls
Let M be the number of monitors required

for detection of link faults. In a d-regular graph,
with L links and N nodes, perfect link testing is
achieved with M=L/d  = N/2  monitors if
every link is tested by exactly one monitor. If
perfect monitor placement is unavailable, we are
looking for an optimal monitor placement,
minimizing the number of monitors. An example
of this optimal monitor placement is given in
Fig.3 (monitors are shown in black).
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Fig.3 Monitor placement for link covering
by balls for the network of Fig.1

The monitor placement problem for link
testing is related to the problem of determining
the point covering number of the system graph
G. A vertex and an edge in G cover each other if
they are incident, and the size of the smallest set
of vertices that covers all the edges in G is called
the point covering number α(G) [7]. Clearly, M
= α(G) and the processors in the smallest cover
are selected as monitors. A set of vertices in G is
independent if no two of them are adjacent. Let
β(G) be the size of the maximum independent
set for G. The maximum independent set can be
constructed using a simple procedure described
in [7]. For any nontrivial connected graph G
with N vertices, α(G)+ β(G)= N. This equation
can be used to determine α(G).

The experimental results on numbers of
monitors for link covering for randomly
generated graphs are shown in Fig.4.

We note that if the average degree increases,
the number of monitors increases for link
covering and decreases for ball covering but in
both cases considerable savings can be obtained
by using as testers monitors only.

Fig.4 Densities of monitors M/N required
for link covering as functions of numbers N
of nodes for randomly generated graphs with
average degrees equal to 4 and 8.

Link covering by paths
For detection of link faults using this

approach, we need to cover every link by at least
one message path starting at a monitor. Each
node (and therefore, each link) can belong to the
path only once. To avoid the contention we will
partition the set of covering paths into W groups
(phases), such that paths within a group do not
intersect (do not have common nodes). The
minimal number of phases for link faults is
 )(max5.0 ii

d  . For Example shown at Fig.1, the

following 2 paths will cover all links (in this
case W=2): (Path 1): 6-2-5-1-3-8-9-4; (Path 2):
3-4-2-1-7-5-8.

As a criterion for selection of a set of paths
covering all links for detection of link faults we
will use test time T that can be estimated as
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where )(i
Mt is a time required to initiate phase i of

the test, )(i
jT  is a time required to perform a test

by monitor j and )(i
Ht is a time to send test results

from monitors to the host at phase i.
We note, that if every link in the original

graph belong to a cycle and β is a cyclomatic
number of the graph [11] then we have for the
minimal number R of required paths

R≤ β +1 .                   (7)



To locate a single link fault, it is necessary
that each link is covered by a unique
combination of paths. The lower bound on the
number of paths (messages) is  log2(L+1) ,
where L is the number of links. For Example of
Fig.1 L=13 and one may select 5 paths, which
are represented by the following covering matrix
C=(Cij), where Cij =1 iff link i is covered by path
j (i=1,…,13; j=1,…,5):

1-2 1-3 1-5 1-7 2-4 2-5 2-6 3-4 3-8 4-9 5-7 5-8 8-9

0 0 0 1 0 0 0 1 0 1 1 1 1

0 1 0 1 1 1 0 0 1 1 0 1 0

C= 0 1 1 0 0 1 1 0 1 1 0 0 1 .
1 1 0 0 0 1 0 1 0 1 0 1 0

1 1 0 0 0 0 0 0 0 0 0 0 0

In the general case, all columns in the
covering matrix should be different and C
should not contain the all-zeros columns. We
note that the number of phases W required for
diagnosis is upperbounded by the number of
rows in the covering matrix. The following
lower bound for the minimal number of paths R
covering all links can be obtained, similar to the
bounds for node covering by balls:

R ≥ 2L/(Pmax+1),        (9)
where Pmax is the length of the maximum path
(in links).

Diagnosis of all link faults can be
implemented by first covering all edges by at
most N/2  disjoint paths or cycles  [24], and
then by covering each path/cycle of length k (in
edges) by k/2  paths of the length k/2  each.
For example, path 1-2-3-4-5 will be covered by
3 paths: 1-2-3, 2-3-4 and 3-4-5. It will ensure the
diagnosability of single link faults. Since the
sum of lengths of all disjoint paths is L, the
upperbound for R is:

R ≤ L/2 +N/2.              (10)
Similar criteria can be used for diagnosis of

more than one link fault. For location of at most
t link faults the number of paths is lower-

bounded by ∑
=
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componentwise ORs of at most t columns of the
coverage matrix C, should be different, which
means that C is a check matrix of a

superimposed code of length L correcting t
errors [20].

2.3. Testing and diagnosis of router faults
To test routers we can adopt the same path-

based approach as it was done for link faults.
Let us first consider the case of total router

faults (TRFs). In this case, we have to cover all
router nodes in the network graph by paths.
Example of such covering is given in Fig.6.

Thus, the problem of testing TRFs can be
reduced to covering of all nodes by paths
minimizing test time T, which can be estimated
by (6).

If the network graph is connected, one can
use for testing a path covering the maximal
number of nodes and cover N-Pmax-1 remaining
nodes by at most   (N-Pmax-1)/2  paths. Thus, the
number of paths sufficient for testing of TRFs is
upperbounded by:
   R ≤  (N-Pmax+1)/2 .       (11)

For diagnosis of TRFs, we can cover all
nodes by the set of disjoint paths, as outlined
above. It will lead to the formula
   R ≤ RT

  Pmax/2 ,     (12)
where RT is the number of paths suffiicient

for testing of TRFs.
For detection of partial router faults (PRFs,

Section 2.2.3), all possible turns (pairs of
neighboring links) should be covered. One
solution of this problem for the network in Fig.1
is given by the following 8 paths:

(A): 6-2-1-5; (C): 3-4-2-1-7-5-8;
(E): 9-4-3-8-5-1-7; (G): 1-5-2-4-9;
(B): 7-5-1-3; (D): 7-5-2-1-3-8-9-4;
(F): 7-1-3-4-2-6 (H): 6-2-5-8.

In this case W=6 (the test will require 6
phases) and the covering is optimal.

For the location of PRFs, the following
upperbound holds:

R ≤ M'
T

 Pmax/2 ,       (13)
where R'

T is the number of paths necessary for
testing of PRFs.

For detection and diagnosis of all single and
multiple PRFs in irregular networks one can use
all nodes as monitors with each monitor sending
test messages to all nodes that are at the distance



2 from the monitor. In this case T=O(d1
2)+O(N),

where ii
dd max1 = .

3. Deadlock-Free Routing in
Computer Networks

In this section we propose a new approach to
deadlock-free wormhole unicast routing. We
first construct a spanning tree T(G) for the
network graph G. Then, we label the nodes (by
unique labels) preserving the partial order
defined by T(G).

To avoid deadlocks it is prohibited to have
three sequential nodes with labels p1, p2, p3 in
the path, if  p1 < p2 and p3 < p2 (TOP-DOWN
restriction).  Since any path containing links
from T(G) satisfies this restriction, any message
will be delivered if G is a connected graph.

This approach does not require virtual
networks. As opposed to the known spanning
tree approaches (see e.g. [23]) for our method
trees will be used only for labeling of nodes of G
at the pre-routing (routing table construction)
stage. This will result in a decrease of traffic
contention near the root of the trees, which is a
bottleneck for many existing spanning tree
approaches.

The example of the spanning tree and
labeling of the nodes, constructed by this
algorithm is shown in Fig.1.

Next, we address the problem of routing in
G, assuming that T(G) is already constructed and
each node I is labeled by Li. For a given source
S and destination D it is necessary to select a
shortest routing path a1,…,am (a1=S, am=D)
among all possible paths, satisfying TOP-
DOWN restriction.

First, we introduce a global routing
algorithm, based on global knowledge (this
algorithm is efficient if a number of nodes is
small). For this algorithm at the first phase two
matrices E and F are formed, that show for
every pair of source-destination nodes if the
label-increasing and label-decreasing paths exist
and lengths of the shortest paths. This phase
requires about N3 operations (N is  the number of
nodes). Next, if we need to route from S to D,
we can find a shortest distance as d(S,D) = min
(E(S,I)+F(I,D))  (for all I such that E(S,I) and
F(I,D) are defined). The value of LI shows the
minimal label, which will be reached.

If the use of global knowledge is too costly,
a local algorithm can be used. Let us assume
that we need to find a routing path from S to D
and Ls≥Ld. Then we look for all nodes C,
adjacent to S, such that Ls ≥Lc and select the
node, closest to D. The distance between C and
D is estimated as the tree distance in T(G). At
the next step we find a best route between C and
D, etc. For example, finding a routing path from
node 5 to node 9 in Fig.5, we construct path 5-1-
3-4-9. (The global approach generates the
shortest path 5-8-9).

To compare the developed methods,
computer simulations for randomly generated
graphs with N=64 nodes have been performed.
About 10,000 uniformly distributed messages
(with length 200 flits) have been generated for
every graph and every message generation rate.

In Fig.6 the dependencies of the average
delivery time (latency) from a message
generation rate for local and global approaches
are shown (N=64, average degree 8).

Fig. 6. Dependency of average message
delivery time (clock cycles) on message
generation rate for local (left) and, global
(right) approaches.

This graph illustrates a good scalability of
the proposed approach.

Conclusions
In this paper, we investigated the problem of

detection and location of permanent faults in



computer networks with arbitrary topologies.
For processor faults, we have proposed the use
of a monitor-based approach, covering all nodes
by balls of radius one, centered at monitors. A
maximum of N/2  monitors for N processors is
required to test all single faults. For detection
and location of link and router faults, methods
based on covering network graphs by
appropriate sets of paths have been developed.
The transition from testing to diagnosis of router
and link faults results in an increase in a number
of covering paths by at most a factor of  Pmax/2 ,
where Pmax is the maximal length of a path in the
network.

Also, the problem or deadlock-free
wormhole routing was considered. The proposed
methods provide for efficient deadlock-free
wormhole routing for networks with irregular
topologies. These approaches result in message
paths very close to the minimal ones. Results of
simulation experiments illustrate a good
scalability of these techniques.
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