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ABSTRACT

We investigate the optimal covering of vertices by Hamming balls of radius ¢ in a hyper-
cube Z7 such that any vertex in Z¥ can be uniquely identified by examining the vertices
that cover it. Given Z3 and an integer £ > 1, we find a {(minimal) set C of vertices such that
every vertex in 27 belongs to a unique set of balls of radius ¢ centered at the vertices in C.
This 1s useful in diagnosing processor faults in hypercube-based multiprocessor systems.

Keywords: Coding theory, distributed systems, fault diagnosis, fault tolerance, multipro-
CesSOors.

*This research was supported in part by the National Science Foundation under grant no. MIP 9630096,
by NATO under grant no. 910411, and by a start-up grant from Boston University's College of Engineering.




1 Introduction

A hypercube computer is a multiprocessor system with N = 2™ processors interconnected
as an n-dimensional binary cube. Each processor P, constitutes a node of the cube and is
a self-contained computer with its own CPU and local memory. Each P, also has direct
communication paths to n other neighbor processors through the edges of the cube. The
processors are labeled with n-bit vectors such that two processors are adjacent if and only
the Hamming distance between their n-bit labels is one. An example of a commercial hyper-
cube computer is the NCUBE/ten, which is a 10-dimenstonal system developed by NCUBE
Corporation {7, 8.

We investigate the problem of covering the vertices of a hypercube Z7 such that we can
uniquely identify any vertex in Z3 by examining the vertices that cover it. We define a ball
of radius ¢ centered on a vertex v to be the set of vertices of ZJ that are at distance at most
t from v. (The distance between vertices v; and v; is the number of edges in the shortest
path between v; and v;.} The vertex v is then said to cover itself and every other vertex in
its ball. Given Z% and an integer £ > 1, we determine a (minimal) set C of vertices such
that every vertex of ZJ belongs to a unique set of balls of radius ¢ centered at the vertices

in C. We view C as a covering code such that all vertices in it are codewords.

An application of our results lies in fault diagnosis of hypercube-based multiprocessor
systems. The goal of fault diagnosis is to locate faulty processors. Specific software routines
are executed on certain selected processors to carry out diagnosis. The selection is done by
generating the code C that allows for unique identification of processors. Every processor
corresponding to a codeword vertex tests itelf and all its neighboring processors. This cor-
responds to the use of balls of radius one centered at the codewords, i.e. ¢ = 1. Hence an

optimal code minimizes the amount of overhead required to implement fault diagnosis.

2 Vertex covering

Let Mi(n) be the minimum number of codewords required to identify every vertex uniquely

in a n-dimensional hypercube when balls of radius ¢ are used. We first derive the following




lower bounds on M;(n):

Theorem 1 For an n-dimensional hypercube with N = 2™ vertices,

1. Mi(n) 2 [logy(N + 1)].
2N

1+Z§=n(?)r

Proof: The first lower bound follows from the fact that there are N + 1 cases (/N differ-

2. Mi(n) 2

ent vertices, and the selection of no vertex—no vertex is identified) to be distinguished.

Therefore, the information can be encoded in a minimum of [log, (N + 1}| bits.

To prove the second bound, consider a matrix with M;(n) rows and N columns. An entry

z;; in this matrix is one if vertex i covers vertex j. The number of ones in this matrix is
t

Mi(n) - V(t), where V(¢) = > ( ? ) is the number of vertices that are at distance at most
7=0
t from any vertex v in the hypercube. The definition of M;(n) implies that the maximum

number of columns with a single one is M;(n); an additional M,;(n) - V(¢) — M;(n) ones are
present in the matrix. Since every other column of the matrix has at least two ones, we have

Mi(n) - V(t) — Mi(n) _
> >

Mt(‘n) + N,

which yields
2N 2N
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We next turn to the problem of generating codewords to cover the vertices in Z¥. 'This

will lead to upper bounds on M(n).

Let K(n,q) be the size of a minimal code’ C* of length n with covering radius g, i.e.,

every noncodeword is at Hamming distance at most g from a codeword of C* {3, 4].

1 A minimal code is one that has a minimum number of codewords.




Theorem 2 For any given t < n/2, the code C for identifyying vertices in the n-dimensional
binary cube (n > 2) can be obtained by selecting as codewords all vertices at distance t

from the codewords of a minimal code C* which has covering radius 2t, i.e. C = {z|3u €
C* d{z,u) =t}

Proof: We first make the following observation: if vertices v; and v, are such that there is
at least one ball of radius 2¢ centered at a vertex in C* to which v; (v5) belongs but vy (v;)

does not belong, then v, and v, can be distinguished using codewords from €. We therefore

need to prove that a set of vertices can be distinguished even if they always belong to the

same ball centered at a vertex u € C*.

Without loss of generality, let © = 00...0 € C*. All vertices with ¢ ones now belong to
N, et

T
C and serve as codewords for identifying a vertex. Given two vertices v, and v, that are

in the same ball centered at u, we show that we can always find a codeword z € C* such
that z covers vy but not v;. Let 7; be the bitwise complement of v;, and let v;v; (v; + v;)
be the component-wise AND (OR) of v; and v;, and v; < v; if vv; = v;. Let w{v) = )
and w(vy) = Iy, where w(v)} is the weight of any given vertex v. Assume, without loss of
generality, that {; > [;. It follows therefore that {5 > 1 because otherwise both v, and

will be the all-0 vertex u.

We choose z € C such that either z < v\ or v;73 € z, and S; = w(zv,) = [1/2].

Then, d(z,v;) = t + {; — 28] < t. We next consider the vector z = I{v; + v3). Obviously,

w(z) = n — Il — ly + k, where & = w(vi1p). Choose y = z(xv;) so that either y < z,
or 2 < y. The remaining nonzero components of x can be chosen arbitrarily. Note that

w(z(v17z2)) = min{t, [; — k}, and w(zz) = min{t — min{t,{, — k},n —{, — I, + k}. Therefore,

Se = w(zryy)

max{0,¢ — min{t,l; — k} — min{t —min{t,/, —k},n— L — b + k}}

max{0,{ — min{¢t,}, ~k} - (n— 1, — ls + k)}

|

max{0,(t — L +k)—(n—-U ~L+k)} = max{0,t + 1, — n}

Now, the distance between z and v, is given by

d(il?, 'L?’g) = 1{2 — 252




t 4+l — 2 - max{0,t + I — n}

[

t+ lg — Hlﬂ.}[{ﬂ, 2(t + Eg — ’ﬂ‘.)}

4+ Ih + min{ﬂ, 2(?1 —f— 32)}

(

min{t + Iy, (n — 28) + (n — I3} + ¢t} > min{t + 1y, ¢ + 1}

if n > 2¢. Since [, > 1, this implies that d(z, v3) > . a

Corollary 1 For t < n/f2, the number of codewords required for identifying vertices, i.e.

covering every vertez with a unique subsef of codewords, in a binary cube is given by
M) < K27 ) ©

Exact values (for small n) as well as bounds on K (n,2t) are available in the literature

(e.g. [2]).

Example: Consider a 5-dimensional binary cube. The best code with covering radius two is
C* = {00000, 11111}. Therefore, the set of ten codewords {10000, ...,11110} can be selected
as the identifying code €. In this example, the number of codewords is 10. From the lower
bound (1), we get M,(5) > 64/7, i.e. m > 10. Therefore, the number of codewords in the

identifying code for this example is minimal and M, (5) = 10.

We next estimate the ratio r, between the upper bound and the lower bound on M;(n),
the number of codewords. From (1) and (2), and using the result K(ny + ng, 4 + £) <
K(ny,t1)K{(ns, ty) from [2] we get,

2n+1
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) <M < ( ] ) K@/

Furthermore, since K(n,1) < -2, it follows that
gliega{n+1}}

2n+1
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If n/2¢ 4+ 1 = 2°, then using ) ( T ) ~n'/t! for n — oo and t/n — 0, we get?
1=t}

on+l < < 2 o/ 2t " nt
L+ nt/tl My(n) ~{ J

m t
The ratio r, of the upper bound to the lower bound (n — o0) is given by
(n/t)(2t/n)22™ (nt /)

22"
t?t

(¢1)3

For { =1, we have r,, = 2 as before, while for t = 2, r, = 32.

T —

22#*1 .

For the special case of n = {45+ 1)¢, s > 1, we have the following corollary, which follows

from the fact that K(r(2s 4+ 1),rs) < {K(25+ 1,5)} = 2".

Corollary 2 The number of codewords required for a binary cube with (ds+ 1} dimensions

ustng balls of radius st ts given by i

My((4s+1)t) < ((45+1)t)2*.

ot

As special cases, for s = 1, we have M,(5t) < ,

)2*, and for s = 2, we have

Mo (9t) < ( 3: )Qt-
Another solution to the identifying code construction problem for an n-dimensional hyper-

cube is obtained by selecting codewords separately for its two constituent {n— 1)-dimensional

cubes. This “divide and conquer” approach, which implies that M, (n) < 2M,(n — 1}, often
gives better results than the construction method using K(n,2) for small values of n; see
Table 1. (Note that for n = 3 and n = 4, we achieved the lower bound on M,(n) using ad

hoc construction methods.)

A generalization of the “divide and conquer” approach is given by the following theorem.

Theorem 3 The number of codewords required to identify vertices, i.e. cover every vertex

with a unique subset of codewords, in an n-dimensional cube is given by

Mt(ﬂ') < Ms(ﬂ) ' Mt—s(n — tl),

2a(n) ~ b(n) & ﬂliﬂ;, E%E)l =1.




Lower bound | M;(n)} (using | Mi{n) (divide
n | bound on Mj(n) K(n,2)) and conquer)
3 4* 6 6
4 6* 8 8
5 10* 10 12
6 16 24 20
7 29 49 40
10 177 300 320
16 7282 14336 20480

* Lower bound attained by ad hoc construction.

Table 1: Number of codewords required for identifying vertices in hypercubes.

Lower bound | Upper bound Upper bound on Upper bound on
n | V(2) | bound on My(n} | on K(n,4) | Ma{n) using K(n,4) | on My(n) using (3)
3 7 — — — 7
4 11 5 — — g
5 16 6 — — 12
6 22 7 — o 16
8 37 14 2 56 36
12| 79 104 12 792 400
16 | 137 450 64 7680 6400
20| 211 9893 512 97220 90000

Table 2: Number of codewords in a binary cube for ¢ = 2.
where 0 <t<n, 0<s<tandl<a<n-1.

Proof: Let z = ;25 and y = y2 be vectors of length n, where z; () and z, (y2) are of
length a and n — a, respectively. Let v* = v{v] be a vector of length n such that o (v§)
covers z; {Zz) but not y, (y2) with a ball of radius s (¢ — s) centered at it. Then d(v%, 21} < s
and d(v3,x2) < t — s, and this implies that d{v®, z) = d(+vf,z,) + d(v¥,z3) < t. Hence v*
covers & with a ball of radius {. Now, d(vf,11) > s and d(25,y2) > t — s, which implies that
d(v®,y) > t. Thus v* does not cover y with a ball of radius £. Therefore, the identifying
code C(n,t) for an n-dimensional cube can be constructed using the identifying codes for

the smaller ¢ and n — a dimensions in the following way: C{n,t) = {xy|z € C{a,s),y €
C{n—at—23s)} and M; < |C(n,t)|. O




Corollary 3 As a special case of Theorem 2, we have

Mi(n) = 2*- My(n — a).

Proof: From Theorem 3, we have M,(n) = My(a) - My(n — a) = 2° - M) (n — a}. (When

t =0, every vertex in the ag-dimensional cube must be selected as a codeword.) C

Corollary 4 For any t < n, we have

Mi(n) < My (1/2]) - Myya([n/2]). (3)

Although it may be intuitively expected that the number of codewords required for iden-
tification decreases as ¢ increases, this is not necessarily the case. For example, M,(3) = 7
but A;(3) = 4. Table 2 shows M, (2) for various values of n. Theorem 3 and Corollaries
3-4 can be easily generalized to p-ary (p > 2) n-dimensional cubes. Other topologies such

as meshes and trees can be considered similarly.

3 Applications

An application of the results of Section 2 lies in the diagnosis of faults in hypercube multi-
processor systems. Iraditional diagnosis techniques model the multiprocessor system as a
digraph, termed the test graph, whose vertices denote processors and an edge or test link
(pi,p;) from processor p; to p; indicates that p; tests p;. A test link between p; and p, is
labeled 1 (0) if p; determines p; to be faulty (fault-free) {9]. A collection of 0-1 values on the
test links is referred to as a syndrome and a central host locates a faulty processor from the
syndrome information. The number of bits in the syndrome equals the number of test links
in the test graph; this can be extremely large in systems with thousands of processors, and

can easily lead to traffic congestion when the syndrome is communicated to the host.

To carry out eflicient fault diagnosis, we determine a covering code on the vertices {pro-
cessors) such that every processor is covered by a unique set of codewords. We refer to the

codewords as monitors. Every monitor tests itelf and all its neighboring processors and sends

8




a single bit value 1 (0) to the host if it detects (does not detect) the presence of a fault in

tts ball. The number of bits in the syndrome is therefore equal to the number of monitors.

Monitors must be selected such that by using balls of radius one (¢ = 1) centered at the

monitors, we can diagnose processor faults in the system. An important design objective

therefore is to minimize the number of monitors. In addition to minimizing the syndrome

length, this offers another important advantage. Since the test program has to reside on

the local memory of every monitor processor, optimal monitor selection also minimizes the

amount of memory required to store the test program.
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