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Abstract

The problem of exhaustive test generation for
detection of coupling faults between cells in word-
oriented memories is considered. According to this fault
model, contents of any w-bit memory word in a memory
with n words, or ability to change this contents, is
influenced by the contents of any other s-1 words in the
memory. A near optimal iterative method for construction
of test patterns is proposed. The systematic structure of
the proposed test resultsin simple BIST implementations.

Key words: Memory testing, word-oriented memory,
pattern sensitive faults, pseudo-exhaustive memory
testing.

1. Introduction

In this paper the problem of test generation for word-
oriented memoriesis considered. Most of the existing test
generation methods are developed for bit-oriented
memories. In the case when each cell can be in more than
2 states, the number of faults increases, so new methods
for test generation are needed. There are severa
approaches to the problem of testing of word-oriented
memories [4,9,13]. One of the most attractive solutions
for the test cost reduction problem is based on built-in
self-test (BIST) [15].

We assume that there are n memory cells, each of
them can be in q different states, and s-coupling fault
model isused. A set of scellsis said to be s-coupled when
a Write operation in one cell produces a change in the
contents of another cell, subject to a particular data pattern
in the remaining s-2 cells, which may be anywhere in the
memory [1]. This model includes most classical fault
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models for word-oriented memories. Typicaly g=2", (wis
the number of bits in the memory word) in practice cases
w=2, w=4 and w=16 are most common.

This fault model applies especially to DRAMS, where
in addition to the traditional faults for SRAM chips [7,8],
neighborhood pattern sensitive faults (NPSFS) [11] have
to be considered. Severa tests for NPSFs detection were
proposed in [11]. Their main restriction is that the
physical topology of the cells in the memory cell array has
to be known. In practice, it is usually not the case. Also,
most of the existing methods are oriented for fault
detection in bit-oriented memories.

The word-oriented memory test algorithms can be
constructed, using the backgrounds, by replicating the
single-bit memory test agorithm (dog,wit+1) times [12].
This approach (with some modifications [13]) alows to
detect the 2-coupling faults only and does not guarantee
the detection of the k-couplings as well as pattern
sensitive faults [4].

Pseudo-random memory tests [1,3,10,14] do not
require knowledge of the physical topology of the
memory cell array and can be applied to word-oriented
memories, however, they have the disadvantage that their
fault coverageis probabilistic.

In this paper a unified approach for word-oriented
memory BIST is proposed. This approach is based on the
results for bit-oriented memories (g=2), which were
presented in [1,4]. In [4], some of these results were
generalized for word-oriented DRAMs with small
numbers of cells.

This paper is organized in afollowing way:

In Section 2 the general mathematical model of s
surjective matrices for test generation is proposed. Matrix
Aq(n,s) with elements from {0,1,...,g-1} is caled s
surjective ((n,s) exhaustive), if in each s columns al o g-
ary stuples can be found as rows.
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In Section 3 we discuss the problem of building s
surjective g-ary matrices Aq(n,s) with minimal numbers of
rows. A general method for construction of near-optimal
s-surjective matrices is developed. It is based on an
iterative procedure and small s-surjective matrices, called
seeds. The problem of construction of optimal seeds is
solved, upperbounds on minima numbers of rows in s
surjective matrices and estimations on test times are
presented. Also, special cases g=4 and g=16 are analyzed
(they are important from the practical point of view).

In Section 4 the hardware realization of the memory
BIST based on the proposed approach is considered and
required overheads are estimated.

2. Mathematical model

Definition 1. Matrix Aq(n,s) with n columns and elements
from {0,...,0-1} is caled ssurjective ((n,s)-exhaustive
[1,2]), if in each stuple of columns dl ¢° g-ary possible s-
tuples can be found as rows.

To detect and locate al possible unlinked s-coupling
faultsin n cells, it is necessary (but may not be sufficient)
to generate all possible g° combinations for every s cells,
thus g-ary test matrix Aq(n,s) with n columns must be s-
surjective[1]. (Rows of Ay(n,s) are test patterns.)

To provide for test generation for transition faults, the
concept of strong surjectivity can be used.

Definition 2. Matrix Aq(n,s) with elements a(i,j) is called
strongly s-surjective, if Aq(n,s) is s-surjective and for any
X1, X2,...%s 1 {0,...,0-1} and any s1 tuple of columns
{i1,--+js1} there exists a row i such that a(i,j) = Xq,...,
a(i,js1) = X1 @nd a(i+l,j;) = Xs.

At the testing stage a MARCH test is used - each row
is considered as a test background and is loaded to the
memory using the MARCH procedure [1,2,4,7]. After
loading a background, the state of all memory cells is
checked.

To generate a minimal test, we need to construct a
strongly s-surjective g-ary matrix with n columns and
minima number of rows. This humber is represented by
function fy(n,s).

Since each row (background) of a test matrix
corresponds to n Read and n Write operations, the
resulting test length (number of Read and Write
instructions) can be estimated as 2n fy(n,s).

An obvious low bound on fy(n,s) is given by the
following statement:

Statement 1. If n3 s, then fy(n,s) 3 o°.

The proposed methods can be used for both
transparent and non-transparent memory testing. For
transparent testing the state of all memory cells must be
restored after the test (at least, at the absence of faults). It

means, that the i-th background is loaded as the modulo-
two sum of the present background (or initial memory
state) and the i-th row of the test matrix Aq(n,s). To
provide the restoring of the initial memory state in the
absence of faults, the number of ones in each column of
test matrix should be even.

We will describe below an iterative method for
congtruction of strongly s-surjective matrices, which aims
to minimize the number fy(n,s) of rows in these matrices
for given n,g,s. This method is based on the method for
congtruction of s-surjective matrices for the binary case
suggested in [1].

We note that even for the binary case (g=2) the
problem of construction of s-surjective (but not necessary
strongly s-surjective) matrices with minimal numbers of
rows is still open. Some results in this direction can be
foundin[1,5].

3. Construction of non-binary strongly s
surjective matrices

3.1 Iterative construction of surjective matrices

If we have a strongly s-surjective matrix Aq(b,s) with
fq(b,s) rows and b columns, we can expand it using a
specia matrix My(n,s) with n columns. Elements of
Mp(n,s) should be integers from {0,..,b-1}. The following
condition must be satisfied: for each s columns there exist
a row in My(nss) with al different elements in the
selected columns (we assume b 3 S). An example of
matrix Ms(10,4) for s=4, n=10 and b=5 is given below.

0011223344
0112233440
Ms(104) =| 0123401234
0123412340
0123434501

We can congtruct a strongly s-surjective matrix
Aq(n,s) with n columns from matrix My(n,s) in the
following way: instead of every eement i in My(n,s) we
substitute the i-th column of Aq(b,s). The resulting matrix
will be strongly s-surjective and have fy(b,s) my(n,s)
columns, where my(n,s) isthe number of rowsin My(n,s).

Thus we have the following result

Statement 2. For any sEb fy(n,s) £ f(b,s) my(n,s).

We note also that by deleting columns in strongly s
surjective matrix Aq(b,s) we can obtain seeds with
numbers of columns less than b.

Let us suppose that elements of raw i of matrix
My(n,s) are upperbounded by t. Then we can use for
substitution of elements in the i-th row of My(n,s) seed
matrices with t; columns.



Statement 3. If matrix My(n,s)=(m(ij)) and
maxm(i, j) =t,, then f (n,9) £ f,(t;,9)
! i

In view of Statement 3, the procedure for
congtruction of strongly s-surjective matrices can be
divided into two parts - construction of good seeds and
construction of matrices My(n,s) with small numbers
my(Nn,s) of rows.

3.2 Construction of seed matrices

It has been shown in [4] that we can construct
optimal strongly s-surjective matrices Aq(q+1,9) with g°+1
rows. (For s=3 and g=2" s-surjective matrices Ay(q+2,s)
with g™+1 rows can be constructed.) These matrices are
based on extended Reed-Solomon codes over GF(q) [6].
The extended (g+1,g+1-s,s+1) Reed-Solomon code over
GF(q) is defined by the check matrix:

101 11 ..1
0 01 a a%?..a"
H50 0 1 a?a*.. a%e2

0 1 1a"tasd f@2ED

Here a is a primitive element of GF(g) (a' ta ' for ij
I {0,1,...,0-2}) [6].

It was shown in [4] that if dl ¢° linear combinations
of rows of H ordered in a specia way are selected as a
rows of matrix A then A = Ay(g+1,9) is a strongly s
surjective matrix with ¢ +1 rows. (The second row is
repeated at the end.) The main idea consists in using
another primitive polynomial over GF(q°) to order the
rows of Aq(g+1,9).

For example, let us consider gq=2"=4, s=2 and
construct  strongly  2-surjective matrix A4(5,2). Then
GF(2%)={0,1,a,a%, where a is a root of polynomial
j (X)=x*+x+1 (a®=1). The operations of addition and
multiplication in the field GF(2?) are described by the
following tables:

Addition Multiplication
0 |1 |a |a®||0 |1 |a |a&°
0 [|]O |1 |a [a&a* |0 |O0O |0 |O
1 1 0 a? |a ||O 1 a |a?
a [|0 |a® |O 0 |a |a* |1
a®|la® |a |1 |0 ||0 |a® |1 |a

where 0 =00, 1 =10, a= 01 and a’= 11.

For the construction of the optima 2-
pseudoexhaustive backgrounds over GF(2%) we use the
following check matrix:

gL 01 1 1y

H=a '
W 11a a’l

To order the resulting backgrounds, primitive
polynomial in GF(4%) should be considered, such as
| (X)=x*+x+a. Let | (0)=0, bl GF(4%). If b'=(vy(i), v2(i)),
where vy(i), vo(i) T GF(2%), then i-th row of A4(5,2) can be
obtained as (v1(i), v2(i)) H.

The rows of the resulting seed matrix A4(5,2) with 17
rows are givenin Table 1.

For the matrix A4(5,2) in any two columns al 16
pairs (x;,X2) (X%l GF(2%) can be found as rows and in
each column al 16 pairs (x;,X;) can be found in two
consecutive rows.

Table 1. Construction of strongly 2-surjective matrix
A4(5,2)

i vi(i) | va(i) i-th row of Ay(5,2)
0 0 0 0O 00O0O
1 1 0 1 0111
2| o 1 0 11 a a’
3| a 1 a 1 a0 1
4 a a® a a’1 a’o0
5 1 1 1 10 a’a
6 a 0 a 0 a a a
7 0 a 0 a a a’1
8 | a® a a? alo0 a
9 | a? 1 a?1a10
10| a a a a0 1 a?
11| a? 0 a? 0 a’a?a’
12 0 a2 | 0 a’a’1 a
13 1 a? | 1 a*a 0 a’
14| 1 a 1 a a’a O
15| a? a’ a’ a’0 a 1
16 1 0 1 0111

The elements of this matrix can be easily generated
using an embedded BIST test generator, based on 2
LFSR’'s[4] (see Section 4).

The resulting test can be constructed by combining
the generated backgrounds with the MARCH test
(MATSH), asillustrated in Table 2 for n=5, w=2 [4]. Here
a,...,a4 are the initial states of the cels Wi,...,\W,.
Read/Write operations to cell W are denoted as r(W) and
w(W). Each 5 clock cycles next test background (printed
in bold in Table 2) is generated.



Table 2. Construction of MARCH test to detect all 2-
couplings in word-oriented memory for n=5, w=2

t r(W) | w(wi) Wo Wi W, W3 W,
0 Q & B B A
1 WwWo) | O & & as &
2 wW) | 0 0 a ag &
3 wWo) | O 0 0 a5 &
4 wWs) | 0 0 0 0 &
5 wW) | 0 0000

6 || rwy) [wwy) | 0 000 1
70 r(ws) [wws) | 0 0 01 1
8 [l r(m) [wwy) | 0 0 1 1 1
9 rw) [wwW) |l 0 011 1
10 r(Wo) [WWo) | 2 01 1 1
1 r(Wo) [wwe) | 0 0 1 1 1
20 r(wW) [ww) || 0 12 1 1 1
13 r(W) [wwy) | 01 1 1 1
14 r(Ws) | w(Wa) 011 a1
15 r(W) |[wWy) | 0 1 1 a a?
8L r(Wo) [WWp) [ 1 a0 a 1

82| r(w) [wW) | 1 00 a 1
8 rWo) [ WWo) || 1 0 1 a 1
84 r(Wa) [WW3) [ 2 0 12 1 1
85 | r(Wa) [WWa) | 1 0 1 1 1
86 || r(Wa) 1011 1
87 || r(wWs) 1011 1
88 || r(Wh) 1011 1
89 [ r(wy) 1011 1
90 | r(W) 1011 1

3.3 Construction of matrices My(n,s)

For s=1, matrices My(n,s) contain only one row, since
we can use the same column to construct surjective
matrix. Thus

My(n1)=[11...1],

0 ..0
1 .1

Anl)= [a ..a and fy(n,1)=0q.
e

Now, let us consider the case s=2. In this casg, it is
necessary and sufficient that al columns of My(n,s)
should be different. So, we can simply write numbers

0,...,n-1 in the (g+l)-ary system as the columns of
Mg+1(n,9).

For example, let us assume that we have a strongly 2-
surjective seed matrix Ay(5,2) with 5 columns and
4?+1=17 rows (as it was constructed in the previous
Section). We can use the following matrix Ms(25,2) with
25 columns:

Ms(252) = 0123401...401232
0000011...344444) .

After substitution, the resulting test matrix A4(25,2) will
have 33 rows.

In the general case, using this approach we receive
the following formula for the number of rows in the
resulting strong 2-surjective matrices:

Statement 4. f,(n,2) £ * d0ggs NU+ 1.

For example f,6(10°2)=1,281 for q=16.

For s>2, procedures for construction of matrices
Mp(n,s) are more complex. Severa different procedures
can be used. For example, we can combine shift and
concatenation operation, as it is shown by the following
example (s=3, b=6):

01234555555555
Me(14,3) =] 00000123455555
00000000012345

Using this approach we can construct matrices My(n,s)
with §n-2)/(b-2)Urows.

Another procedure, which will be used in this paper,
was proposed in [1]. The main idea of this construction is
the following: for each iteration r mutually prime numbers
Py,..., pr are selected and matrix My(n,s) is constructed,
wherem; =imod p; (T {1,....,1}) .

An example of matrix Ms(8,3) constructed in such a
way, is given below:

01234012 (p1=9H)
Ms5(8,3)=(01230123| (p=4)
01201201] (ps=3).

Here the seed matrix had 5 columns and the resulting
matrix A4(8,3) - 8 columns.

The following result was proven in [1] and can be
generalized to any q.

Statement 5. Let M=(m;) and m;=i (mod p;) and there
exist strongly s-surjective matrices Aq(p;,s) with f4(p;,9)
rows. If  pg,...pr are mutualy prime such

50
A z
tha(Q p 3 ngz’a then there exists a strongly s
i=1
surjective matrix Aq(n,s) with fy(n,s) = & f4(p;,S) rows.






Table 6. Test timesfor IMbit memory

N 1 2 4 8
1 0.2 sec 0.2sec 0.4 sec 3.2
2 0.4 sec 8.6 secC 32 sec 40 min
3 8.2 seC 4.5min 36 min 405 hours
4 55 sec 13.8h. 89hours | 1.8-10°h.

We note that numbers of rows in matrices My(n,s) can
be further reduced, if we allow that the fraction of s-tuples
of columns such that the probability that there exists arow
with all different elements in the selected columns is at
least 1-e for smal e>0 (in the previous sections we
assumed e>0).

Statement 7. Let M=(my;), where m;=i (mod p)), P,....Pr
are mutualy prime numbers, s<p;< p<..< p, , and

6 p/n® 0 Then we have for the probability
]
j-1

ad(ps,--.pr, S that for a randomly selected s-tuple of
columns there exists a row with al different entries in
these columns;

L st
P P92 1- O A- O Q- j/p)).
i=1 j=1
For example, if s=4, g=16, p;=13, p,=15, ps=16,
ps=17 then e »0.002.

4. Hardwar e realization

The hardware overhead needed to redize the
proposed test procedure for built-in self testing consists of
hardware required for generation of elements of seed
matrix Aq(b,s) (2 LFSRs, see Fig.1 and 2), a hardware to
generate elements of My(n,s), a comparator and a control
unit.

An example of the network generating rows of 2-
surjective seed matrix Aq(g+1,3) with g+l columns is
given by Fig.1. It is assumed that the initial memory state
is“al zeroes’ [4].

The given network contain two LFSRs. First LFSR
(LFSR-b) is implementing the primitive polynomia
| (X)=x*+x+a (on GF(4)) and is used to order the
backgrounds and consists of 4 flip-flops, second (LFSR-
a) generates a'. This LFSR if implementing polynomial
j (X)=x*+x+1 and it consists of 2 flip-flops. The realization
of these LFSRsis shown in Fig.2.

The clock pulse input C, is used for loading initial
LFSR-b state (voi), va(i))=(1,0) Clock pulses C; and C,
enable al flip-flops to make the shift operations (see
Fig.1). LFSR-a is the binary w-bit LFSR over GF(q),

which operate as ordinary LFSR when C3;=0 and as
register with paralled load when C;=1. Detailed
description of control unit operation is given at [4].

Co|Cy :L

Tw w
v Vli
Control [ C2 >
unit Cs 5 LFSR-2
Cs
Cs dw
= ] Le ]
w w
A
¢W
Cmie Ce
» &

iw

Fig. 1. Network generating rows of seed matrix A4(5,2)
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Fig. 2. Hardware redlization of LFSR-a and LFSR-b for
=4, s=2.

A hardware implementation of the network
generating rows of seed matrix Aq(n,2) requires
3wA(w+2)doggnuflip-flops and 12w gates.

In the general case (s>2) s-1 LFSRs, corresponding to
a,a’a"" are required, each with w flip-flops, along with
one LFSR-b with wsflip-flops.

To generate elements of matrices My(n,s), it is needed
to store al prime numbers p;, used for the row generation.

We note that all used matrices My(n,s) have the
following properties:

1) m(1j)=0;



2) m(i+1j) 1 {0, m(ij), m(ij)+1}.
These properties can be used to generate the resulting test.
The total hardware overhead to detect 2- and 3-
couplings is about 3% in terms of gates and 5% in terms
of the area for a 1-Mbit DRAM. This system was
implemented in hardware for g=2 and results confirm the
estimations [1].

5. Conclusions

In this paper we develop an efficient approach for
detection and location of unlinked couplings between cells
in word-oriented memories. The proposed approach is a
generalization of the approach suggested in [1] for the
binary case. The proposed method requires 36 min for
detection of 100% of 3-couplings between words for
IMbit DRAM with 4 bits in each word and 50 ns access
time. The required overhead for BIST implementation is
less than 5%. Test time can be drastically reduced, if a
small percentage of faults will be not detected.
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