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A b s t r a c t  

In this paper we present some of our recent results on applications of spec- 
tral techniques over finite fields to the problems of testing and diagnosis of 
computer systems. 

1. Testing By Space Compression Of Test R e s p o n s e s  

Consider a computer  system of (not necessarily identical) processing elements 

(PEs) (this system may be  a computer  board, multichip module, array processor or 

computer  network). If the system has n ou tpu t  PEs  and every P E  has at most m 

output  pins, then the response of the system at any given t ime can be represented 
as y = (YO,.-. ,Yn-1) ,  where yi �9 Zq, q -- 2 m, Zq is the field with q = 2 m elements 

r :  r& and y �9 Zq. 
n be the set of all possible errors in the system such that  as a result Let E C_ Zq 

of the error e �9 E y is replaced by y + e. 

Problems of compression of test responses for error detect ion can be formulated 

in the following way: 

P 1 .  Given E C Z~, construct  a t ransform y, , H(y) , 

H(y) = {Hj(y) l j  = O, 1 , . . . , r -  1}, Hi(y) �9 Zq, 

with minimal r such that  

H(y § e) ~ H(y) for all y e Zq and e e E. 

P 2 .  Given a distr ibution P(E)  = {Po, P1, . . . ,PM-1} ,  where M = qn and 

P~ = Prob{e = i}, construct  a t ransform y ,  ~ H(y), 

H ( y ) = { H j ( y ) J j = O ,  1 , . . . , r - 1 } ,  Hj(y) eZq,  

minimizing P r o b { H ( y  + e) = H(y)}  (we assume that  all y e Z~ are uniformly 

distributed).  

*This work was supported by the National Science Foundation (USA) under grant MIP 9630096, 
the NATO under Grant 910411 and Volkswagen Foundation (Germany) 
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We note  tha t  Z = H(y) e Z~ (Z = ( Z 0 , . . . , Z r - 1 ) ,  (Z j  -= Hi(y), Zj e Zq)), and 
r instead of E Z~ one can achieve a considerable if r << n by moni tor ing Z E Zq y 

reduct ion in overheads required for testing. 

Let us consider the  case r = 1. Select 

n - 1  

z - -  z l =  ttl( 0, (1) 
i=O 

where a is a primit ive element in Zq,and all the  operat ions in (1) are in Zq (n <_ q- l ) .  
This approach is known as the s ignature analysis and is widcly used for off-line 
tes t ing and for built-in self test ing (BIST) [1, 2]. 

C ompu ta t i on  of the  signature, Z, can be implemented  in n steps by the  following 
recursive procedure:  

Z(i-1) = aZ(i) + yi-1 (i = n, n - 1, n - 2 , . . . ,  1), (2) 

where 
Z n = O , Z  (i) E Z q  a n d Z  ( 0 ) = Z .  

This  procedure  can be implemented  in hardware by an m - b i t  linear feedback shift 
register (LFSR) with parallel input  and With the  characteristic equat ion defined by 
(2) where yi-1 is the new input ,  Z (i) is the previous state and Z (i-1) is thc new 
state. 

The  hardware implementa t ion  of an m-bi t  L F S R  requires only m flip-flops and 
several X O R  gates in the feedback loops [1]. 

We note  tha t  Z1 defined by (1) is the  first coefficient of the Fourier expansion 
of y = ( y 0 , y l , . . .  ,Yn-1)over Zq [3, 4]. The  network (LFSR) comput ing  Z1 can be 
considered as a network comput ing  syndrome for the q-ary(n, n - 1) Reed Solomon 
code of length n with dis tance 2 [5]. In view of this one can see tha t  (1) provides 
for the  solution of P 1  for single errors, i.e. when  E = {elllel] = 1}, where IleH is the  
number  of nonzero components  in e = (e0 ,e l , . . . ,  en-1) (ei e Zq). 

Let us consider the efficiency of the  signature analysis defined by (1) for solution 
of P2 .  In this case we assume tha t  errors in different components  of y are inde- 
pendent  (components  of e are independent) ,  and all components  of e have the same 
dis t r ibut ion 

P(e) = (P0,P1, . - - ,  Pq-1) 

(q = 2 m,P~ = Prob{ej  = i [ for all j = 0, 1 , . . . , n -  1}). 

We will present below our results on probabilities PAL = P r o b { g l ( y  + e) = Hi(y)}  
(which are also known as masking or aliasing probabilities) for three impor tan t  
classes of error distr ibutions which correspond to so called "symmetr ica l  errors", 
" independen t  errors", and "errors of a given multiplicity". 

For symmetr ica l  errors we assume [6, 7, 8]: 

f l - p ,  i = 0 ;  for s o m e 0 < p <  1 (3) 
Pi---- ~ p ( 2 m  1-1, i ~ O .  
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In this case using results from [6, 10] it is possible to show that  

PAL = Prob { H ( y  + e) = H(y)} 

= 2-rai l  _ 2m(1 _ p)n + (2 m - 1)(1 - 2rap(2 m - 1)-1). (4) 

For independent errors [6, 7, 9] we consider every ej E Zq(q : 2 m) as an m-bit  
binary vector, and we assume that  distortions in the binary components of these 
vectors are independent.  If [[i[[ is the number  ones in the binary representation of 
i (i = 0, 1 , . . .  2 m - 1), then we have for independent errors 

: - ) , (5) 

where Pb is a probability of a distortion of one bit, and for n = c(2 m - 1) we have 

[6, 71 
PAL = 2-m[1 -- ( 2'~ -- 1)(1 -- 2pb) cm2"-1] -- (1 -- pb) c(2"~-1)m. (6) 

For errors of a given magni tude [6] 

1 -  

Pi = p, 
O, 

p, i = 0 ;  
i = a  

otherwise ; 

for some a E Z q -  0 ; (7) 

and f o r n : 2  m - 1  

PAL = 2-m [I- (2 m- I)(i -- 2p) 2"-I] -- (1 -- p) 2"-I. (8) 

For large n, (say, n > 50) for all three models PAL = 2-m.  Analysis of aliasing 
probabilities for benchmark circuits [6] shows that  for small n the independent error 
model predicts min imum aliasing, and the symmetr ical  model predicts aliasing more 
accurately than the other  models. 

Let us consider now the case r > 1. In this case we select the following system 

of r q-ary functions 

n - 1  

z j  = H j ( y o , . . . ,  (j  = 0 , . . . , r -  1) (9) 
i:O 

where a is a primitive in Zq, q = 2 m. This approach is known as the multisignature 
analysis, and it was also used for off-line testing and diagnosis [11, 12, 13]. The hard- 
ware implementat ion of this approach requires r m-bit  LFSRs with characteristic 

equations 

Z ( i - 1 ) = a J Z  ( i )+y~- l ,  Z ( '~)=0,  Z ( ~  j : : 0 , 1 , . . . , r - 1 .  (10) 

In this c a s e  Z0 ,  Z 1 ,  �9 . . ,  Zr-1 defined by (9) are the first r coefficients of the Fourier 
e• o fy  = (yo, Yl . . . . .  Yn-1) over Zq. The network computing Z0, Z1, .. �9 Zr-1 
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( t i n - - b i t  LFSRs ) computes syndromes for the q-ary (n, n - r )  Reed-Solomon codes 
of length n with distance r + 1. Thus, (9) provides for the minimal solution of P1  for 

the case when at most r components of e = (e0, e l , . . . ,  en - l )  are not equal to 0, i.e. 
at most r components of y ~- (yo, ...  ,yn-z) are distorted (E =- {e [0 < Hell < r}). 
For large n we have for the above error models PAL ~ 2 -m = q-r for all e such 

that  [[e[] > r. (PAL ----- 0for 0 < I1'11 < ~). 

Let us consider a more general case when the set, E, of errors is defined by 
the topology of the system. Let X be the set {X0, X 1 , . . . ,  X/v- l}  of N processing 
elements. Consider a digraph G having X as a set of vertices and a set U = 
{U0, U1 , . . . ,  UM-1} of directed edges (m-bit communicat ion links) between vertices 

of G. We shall also assume that  the graph has no cycles and all n output  vertices 
n be are reachable from at least one input vertex. Let y : (y0, y l , . . . , y n - 1 )  E Zq 

an output  vector for the system represented by the graph G, where yi E Zq is an 
output  of the corresponding output  vertex (i -- 0, 1 , . . . ,  n - 1).The problem to be 

considered is the problem of error detection under the assumption of single vertex 
failures in the  graph G. A failure in the  graph (system of processing elements) refers 
to a physical malfunct ion that  cause an undesired event. We consider a fault in the 

graph which alter its output  value to ~ '=  (Y'0, y l , - - . ,  Y'n-1), where Y'i E Z a. The error 
in the  graph's output  y can be characterized by the  error vector e = (e0, e l , . . . ,  e n - 1 )  

where ei -- Y'i + yi for i = 0, 1 , . . . ,  n - 1. 

Let us define an error set E(G) characterized by the underlying graph G. In 

our definition of an error set we assume that  at most one vertex or any number 
of incoming edges to this vertex may fail and a fault in the graph manifests itself 
by distorting all successor vertices' outputs,  i.e. error propagates along a directed 

path. Let Ej  = {(eoU),el0"),...,e~'))} (j -- 0 , . . . , g  - 1) be a set of error pat terns  
(J) 

corresponding to a fault in vertex Xj, where e i E Z a - 0, if there exists a directed 

path  from Xj to an output  and e~ j) --- 0 otherwise. The set E (G) -- U~I__~IEj of 
all possible error pat terns  corresponding to all single vertex failures in G called the 
error set for G. To illustrate the above definition let us now consider the  p-ary 
star network topology (see Fig. ). For this p-ary star, the single central processing 

element (root) is connected to all others, N -~ p + 1 and n = p. Due to single vertex 
of processing element failures we have the following nonzero errors in the p-ary star: 

(~0 ,  e l ,  �9 �9 �9 , e p - l ~  I 

(e0, 0, 0, 0 , . . . ,  0), 
E ( a ) =  ( 0 , e l , 0 , 0  . . . .  ,0) ,  , 

(0, 0, c2, 0 . . . .  ,0),  

(11) 

where ei E Zq-O. Thus, we have IE (G)I = (q - 1)P+p (q - 1) nonzero error vectors 

for p-ary star over Zq. 
Let Z = Hy, where H is a (r • n)q-ary transform matrix over Zq (y e Z~, Z E 

Z~). Consider a graph, G(E),  having the error set E(G) (0~ E(G)) as a set 
of vertices and U = {(Ei, Ej)[Ei, Ej 6 E (G), Ei + E i 6 E (C)} as a set of edges. 
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Figure 1: p-ary Star Network Topology 

'J Yl Y: .v; .v_ ) .  y~ .v: .~., .v.j ) ~  y. .  YI: ) l)  Y:-' ~1. 

Figure 2: 4-ary Full Tree of Height h=3 

Denote by X (E) the chromatic number for G (E). (X (E) is a minimal number of 
colors required to color the vertices of G (E) in such a way that no two neighboring 
vertices have the same color. Techniques for graph coloring with lower and upper 
bounds for X (E) can be found e.g. in [14]). Then using results from [14, 15] we have 
for a minimal number r m i n  of transform coefficients required for detection of E (G): 

rain (rll, r;2) < r ~  < [ l o g q ( I E ( G ) l ( q -  1 ) +  1)] (12) 

where nl -- ' ~ -  Llogq ( q ~ - I E  (G)I)J, and )72 = [logq (X ( E ) +  1)]. 
We will present now solutions for the data compression problem P1 for the two 

important topologies: trees and Fast Fourier Transform (FFT) networks. 

Let Th be a p-ary full tree of height h (p > 2, h > 2). The height of the tree is 
the length of a longest path from the root to any leaf. (Here we assume that input 
vertex is the root and the output vertices are n = ph-1 leaves of the tree). Then 

h - 1  

IE (G)I ~- Z p  i (q - 1) ~ - ' - '  . (13) 
i = 0  
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For example, 4-ary tree T3 is represented in F ig . .  
For this tree the error set E (G) is: 

(e0, el ,  e2, e~, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), 
(0, 0, 0, 0, e4, es,  e6, eT, 0, 0, 0, 0, 0, 0, 0, 0), 

(0, O, O, O, O, O, O, O, es, eg, elo, eu ,  O, O, O, 0), 
, (0, O, O, O, O, O, O, O, O, O, O, O, e12, e13, e14, el5), (14) / (~o, 0, O, o, o, O, o, o, o, o, O, O, O, 0, o, 0) ,1  

(0, e~, O, O, O, O, O, O, O, O, O, O, O, O, O, O) 

(0, O, O, O, O, O, O, O, O, O, O, O, O, O, O, el~), 

where e~ E Zq - O. It is possible to show ([15, 16]), that  for a p-ary filll tree with 

_< (logp ( 1 ~ - ( q -  1 ) - 1 ) ) f o r  any p, rmi. h ~ h a n d  

�9 p - 

H = H (h) : H (h- l )  H (h- l )  H (h- l )  . . .  H (h- l ;  , 

W 

where W is a row of one 1 followed by n - 1 = ph _ 1 zeros, and 

H ( 2 ) =  [ 1 1 1 1  . . .  1]  (15) 
1 0 0 0  . . .  0 " 

For example, f o r T 3 r e p r e s e n t e d b y  Fig. ( 2 =  4, h = 

1111 1111 1111 
H=H (3) : I000 i000 i000 

1000 0000 0000 

3) we have 

1111 
1000 
0000 

For the n-point FFT,  there are N = n log 2 n vertices interconnected with log 2 n 
levels of butterfly structures, e.g., the graph for the 8-point F F T  with decimation- 
in-frequency (DIF) is shown in Fig.. 

K we include input fanout branches as possible source of errors, then there are 
n (log 2 n + 1) single faults in the n-point F F T  graph. Duc to these single faults we 
have the following nonzero errors for the 8-point F F T  graph of Fig. : 

(eO~ el ,  e27 e3~ e4~ e5, e6~ e7), 
(eo, el,  e2, ea, O, O, O, 0), 
(0, O, O, O, ~4, ~5, e6, e~), 

(~o, el ,  O, O, O, O, O, 0), 
(0, O, e2, ea, O, O, O, 0), 

E(C)= (0, O, O, O, ~4, ~5, o, o), 
(0, O, O, O, O, O, e~, ~),  

(eo, 0, 0, 0, 0, 0, 0, 0), 
(0, el ,  O, O, O, O, O, 0), 

i ol o l  ol o, o, ol o i s  
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- E --o ( q -  l )  2'-'  n w h e r e e i E Z q  0 and [E (G)] = t 2 i , = 2  t. 

The  recursive const ruct ion for matrices H for DIF F F T  topologies is given by 

H H (n) H (n/2) H (n/2) = = W = [100 0] H (2) = (16) 
W ' 10 

For example, for the 8-point DIF F F T  graph represented by Fig. : 

11 11 11 11]  

] H = H ( S ) =  1 0 1 0 1 0 1 0  
00 10 00 10 " 

10 00 00 00 

(A construct ion similar to (16) can be used for F F T s  with decimation-in- t ime [16]). 

Thus for a n-point  F F T  we have 

r m i n  • log2n + 1. (17) 

The  flow graph of the Walsh-Hadamrd Transform (WHT) [3, 4] differs from the flow 
graphs of the F F T  only in the  values of twiddle factors ( =t= 1 for W H T  ). Thus,  solu- 
t ion (16) is valid also for networks comput ing  WHT.  Solutions for mult idimensional  
F F T s  and for Fast Chres tenson Transforms can be found in [16]. 

To conclude this section we note  that  elements of matrices H for trees and FFTs  
are zeros and ones only. 

2. R o b u s t  Q u a d r a t i c  T r a n s f o r m s  for  T e s t i n g  o f  C o m p u t e r  S y s t e m s .  

In the previous section we considered linear da ta  compressors Z = Hy, (Z E Z~, 
y e Z~). For any linear t ransform we have for the probability, PAL (e ) ,  of masking 
(aliasing probability) for a given error pa t te rn  e 

1, e E Kern H; (18) 
PAL(e) -=-- Prob {H(y + e) = H(y)} = Prob {l ie  = 0} = 0, e r Kern .H 

Thus, performances of linear compressors are very sensitive to error distr ibutions 

P = {P0 ,  P 1 , - - - ,  PM-1} (M ---- qn, Pi -- Prob {e  = i}) .  

We will describe in this section a class of nonlinear quadrat ic  robust transforms, such 
tha t  their performances do not depend  on error distributions.  We will show that  for 
opt imal  robust t ransforms described by r quadrat ic  q-ary functions, we have 

PaL (e) : q-r for any e • 0. 

n ,- 7" Suppose n = 2rs. Consider the  following nonlinear mapp ing  Zq ~ ~ Zq 

Z = ( Z 0 , . . . ,  Zr-1)  -- H(yo , . . . ,  Yn--1) = YoY1 + 112113 + . . .  q- V2s-2Y2s-1 (19) 
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Figure 3: Eight-Point  DIF F F T  Network Topology 

where Yi = (yir, - - -, Y(~+l)r-1) (i = 0 , . . . ,  2S-- 1), and all operat ions in the  quadrat ic  
form (19) are in Z~. 

For q = 2 and r = 1 these quadrat ic  forms are known as bent  functions [3, 5, 18, 
19, 20, 21]. In this case n = 2s, Yi = yi and 

Z =- yoyl + y2Y3 + . . .  + Yn-2Yn-1, (20) 

and we have for the  autocorrelat ion for bent  functions 

2 ' -1  - 2 ~/2-1, e = 0; 
B ( e ) =  E H ( y )  H ( y + e ) - =  2n-2--2 n/2-1, e::]~O 

~ez~ 
(21) 

Thus B(e) = Conste#0. (We note  tha t  B(e) can be compu ted  by applying twice the 
Walsh-Hadamard  Transform using the  Wiener-Khinchin t h e o r e m  [3].) 

For any linear function f (y0 , - - . ,  y,~-l) .(yi' �9 g2) such tha t  

1, (yo,...,y,~-l) �9 y 
I (u0, : . . , ~ , - 1 )  = 0, ( ~ 0 , . . . , u ~ - l )  ~t v ' 

where V is a subspace of Z~, we have for its autocorrelat ion 

B(r ~ / ( y ) / ( y + ~ )  = t Ivl, ~ e Y  (22) 
~ez~' k O, e ~ V  
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Since for bent functions defined by (20), we have B(e) = Conster one can say that  
bent functions are at the maximal  distance from any linear function [5]. 

Let us introduce a system of characteristic functions hi(y) (i ---- 0 , . . . ,  qr _ 1) for 
non-repeatative quadratic form H over Zq defined by (19): 

hi (y) = 1 iff H (y) = i. (23) 

Autocorrelation functions Bi(e) for hi(y) can be defined as 

Bi(e) = E hi(y)hi(y 4- e) = I{ylH(y) = H(y t e) = i}l. (24) 
yez~ 

(Autocorrelation functions Hi (e) can be computed by the Wiener-Khinchin theorem 
using the Chrestenson transform over Zq [3, 41.) 

It is possible to show [22, 23] that  for i -r 0 

{ q2rS-~ _ q~s- L e - o; (25) 
Bi(e) = q 2 r s - r  -t- qrS-r, e ; 0; 

and we have for the total autocorrelation 

{ q T,, e 0; (26) 
B(e) = ~ B i ( e ) =  I{ylH(y) = H(y + ~)}1 = qer,-r, ~ 0; 

i 

where H (y) is defined by (19). 
Thus, quadrat ic ' forms defined by (19) have the fiat total  autocorrelation and 

compressors implementing these forms are robust with a probability of masking any 
error 

PAL (e) = q-r  = 2--mr. (27) 

Let C be a quadratic q-dry error-detecting code defined as y E C iff 

H (y) = YoY1 4- . . .  4- Y2s-2Y2s-t ---- 1, (28) 

where lq = (Yir,. . . ,Y(i+l)r-1) and all operations in (28)are  in Z~'. Then C is a c o d e  

with the length n = 2rs and the number of codewords [C I = q2sr-r _ qSr-r. These 
% J 

codes provide for an equal protection against all possible errors for large q or large 
n and are optimal for the minimax criterion on error detection [22]. For a given 
block size, n, and the number  of codewords, Ich  these codes minimize m ~ Q ( e )  

where Q (e) is the conditional error masking probability given the error pat tern e. 
For these codes for any e ~ 0 

(q2rS-2r qrS-r) 

(q2rS-," _ qrS-T) 

and 

(q2rs-2r ~_ qrS-r) 
Q(e) < (q2rS-r+qrS-r) (29) 

Q(e) ,,~q-r (30) 
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for large n or large q. Simple encoding and decoding procedures for these codes are 
presented in [22]. 

3. Soft Decis ion Diagnosis.  
Let y = (y0, y l , . . . , yn -1 ) ,  y{ 6 Zq, q = 2 m be a test response for a system- 

under-test. As a result of faults in the system y may be distorted into y + e, where 
e = (co, el, . . . .  e n - j ,  ei e Zq, e E E (G), and the set of errors, E (G), is defined 
by the topology of the system. Denote 

supp (e) = (supp (eo) , . . . ,  supp (en-1)), 

where 
1, ei # O; 

s u p p  ( e l )  = O, e i  = O. 

The soft decision diagnosis problem can be formulated in the following way. For a 
n given E (G) C_ Zq construct a transform Z = H (y) over Zq 

Zj = Hj (YO,..-,Yn-1) (J = O, 1 , . . . , r  - 1) (31) 

with minimal r such that 

(32) 

for any e(Z),e(2) E E ( G ) a n d  supp(e (1)) #supp(e(2)).  We will consider the case 

when H is linear. Then (32) can be written as: 

He O) # He (2) (33) 

We will call H (y) a fault-free signature, H (y + e) a faulty signature and S = He 
a syndrome of error e. If (33) is satisfied, then the location, supp(e), of an error 
e can be computed by analysis of the distortion H (y) + H (y + e) in the fault-free 
signature. The bounds on a minimal number of spectral coefficients in the transforms 
satisfying (33) can be obtained from bound (12) for error detection by replacing the 
error set E (G)with E(G)kA{e (I) +e(2) l supp (e (1)) ~ supp(e (2)) ;e(1),e(2)6 E (O)}. 

We note that any matrix H satisfying (33) is a parity check matrix of a linear q-ary 
(n, n - r) code locating the error set E (G). We note also that a linear (n, n - r) code 
with a parity check matrix H locating an error set E (G), 0 ~ E (G) corrects E (G) 

if and only if for every distinct e(1),e(2) E E (G)wi th  supp(e (1)) = supp(e(2)),. 

e(1) + e(2) - .  e(3) + e(4). 

We note that the above condition is a necessary and sufficient condition on the 
set E (G) such that if and only if this condition is satisfied any linear code locating 
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E(G) will also correct  E(G). For example ,  for the  p-ary s tar  wi th  p = 5 and q = 22, 

F ( c )  = {(~o, ~1, ~ ,  ~3, ~4), (~o, 0, 0, 0, 0), (0, ~1, 0, 0, 0), (0, 0, e~, 0, 0), 
(0, 0, 0, ~3, 0), (0, 0, 0, 0, ~4)}, 

where  ei �9 { 1 = 0 1 ,  a =  10, o~ 2 =  11}. A code  locat ing E ( G )  does not  guaran-  

tee error correc t ion  since for two errors e (1) = (1, 1, 1, 1, 1),  e (2) : (1, 1, ~, (~, ~) 
thcre  is no pair  e (3), e (4) wi th  different suppor t  such tha t  e (1) + e (2) = e (3) + e (4) = 
(0, 0, ~2, ~2, cx2) (note  tha t  a 2 + c~ + 1 : 0). 

Using the  above  a rguments  one  can  see tha t  any code  over Zq locat ing  up to l 
i ndependen t  errors ( S  (G) = {e t 0 < Ilell _< 2l}) can  also correct  1 errors. The  same  

is also t rue  for codes loca t ing  bur s t  errors. 

Let  us now consider  the  case when  at  mos t  I componen t s  in y = (Yo,. . . ,  Yn-1) 
m a y  be d i s to r ted  ( S  = {e 10 < ]1~11 _< 1}). In this case H can be  taken  as the  check 

ma t r ix  of the  q-ary Reed-So lomon  code  of  length n [5] 

1 1  

l a  

H :  1 c~ 2 

10~ r - 1  

, . . 1 

~2 . . .  O~n-1 

o~ 4 . . .  t~2(n- l )  

~  

~2(~-1) . . .  ~( . -1)(n-1)  

(34) 

p-ary  tree~ [16]. 

H (h) = 

H ( h - 1 )  H ( h - 1 ) . . .  H ( h - l )  

11 . . .  1 c~o~...~ . . .  o~ p -1  o~ p - 1  . . .  ~ p - 1  

1 0 . . . 0  0 0 . . . 0  . . .  0 0 . . .  0 
0 0 . . . 0  1 0 . . . 0  . . .  0 0 . . .  0 

(30) 

where  a is pr imi t ive  in Za, n <_ q - 1 and  r -:  21. For this mat r ix  any r co lumns  

are l inearly i ndependen t  over Zq. C o m p u t i n g  Z :- Hy, where  H is def ined by (34), 

requires n clocks and r L F S R s  wi th  parallel  input .  An  error  locat ing p rocedure  for 

this case identifies supp(e)  for a given He. This  p rocedu re  is based  on the  Euc l idean  

algoritIm~ [12] and has a complex i ty  n = O (Irn) + 0 ( log2n).  (L is the n u m b e r  of  

equivalent  two- inpu t  gates,  q = 2m.) For example ,  for n = 100, m == 32 and  I = 5 we  

have L _~ 28,000 [12]. We  note  also tha t  H defined by (34) wi th  r = 21 can be  used  

for locat ing  of  more  than  l errors. It was shown in [13] t ha t  if ]Jell = t > l then  the  
fract ion w of local izable errors wi th  IleH = t, l < t < 21, is l owerbounded  by 

> (1 - q-~)(~')-1 ~ e-( i ' )q-' .  (35) 

For example ,  if t = 5, r = 6, n = 100, q = 232 (m = 32), then  w =: 0.979. Thus,  by  

allowing a small  f ract ion of  errors not  to be  located,  one can reduce  subs tan t ia l ly  

the  required r edundancy  f rom r -- 2l to r : l + 1. 

Let  us consider  now the er ror- locat ing  p rob lem when the  original sy s t em is the  

full p-ary  t ree  of  height h (n  = ph- l )  ( the  4-ary  full t ree  of  height h = 3 is p resen ted  

in Fig. , and  the error set for this t ree  is given by  (14)). 

The  following rccursive p r o c e d u r e  can  be  used for cons t ruc t ion  of  H = H h for 
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where 
1 1 1 . . .  1 

H ( 2 ) =  1 a 22 . . .  a p-1 (37) 
1 0  0 . . .  0 

0 1 0 . . .  0 4xp 

4 _< p < q, and a is primitive in Zq. Thus, for any p-ary, (4 _< p < q) tree r = 3h - 2. 
For the case of p --= 3 one can also use the above construction (36) with H (2) = 13 

(/3 is the identity matrix of 3 x 3). Therefore, for the p-ary tree with p = 3, q > 

p, r = 3h - 3. 

For binary trees over Zq the following recursive construction can be  used: 

H(h-1) H(h-1) 

H ( h ) :  1 0 . . . 0  0 0 . . . 0  , (38) 

oo.. .o 1o.. .o 

where H (2) = I2. Thus, for the binary tree over Zq of height h, r = 2h - 2. The 

complexity L for the  syndrome comput ing network implementing H(h)y in terms of 

numbers adders and multipliers in Z a is [16]: 

L =  (2 (ph- l  -- p) + h (p - 1))L |  + ((h - 1 )  (p - 1 ) )  L| (39) 

where L| is the  complexity of a multiplier tha t  multiplies a field element from Zq 
by a fixed element from the same field. This network for h = 3 is represented in Fig. 

The error locating procedure for tree errors is very simple. Let us denote 

Sh-1 

S--- H(h)y = sh  , (40) 

where S h-1 are syndromes due to the [H(h-1)H (h-l) . . . H  (h-l)] par t  of H (h) (see 

(36)) and S h, S t ,  S h are syndromes for the last three rows of the pari ty check 

matrix H (h). Let S 1 denote the syndrome for the all 1 row. The location algorithm 

to find a faulty vertex is described as follows: 

1. If Si -- 0, i = 1, 2 , . . . ,  3h - 2 : no error, end. 

2. Let j = h  

3. If bo th  S~ ~ 0 and $33 ~ 0 : error location is the root of the  tree of height j, 
end. 

4. For j > 2, if either S~ -- 0 or S~ -- 0 : error location in the subtree  k, 0 _< 
k < p - 1, where o k c J / r  for j 2, if either S 2 = 0 or S 3 -- 0 : error 

location is in vertex (leaf) k, 0 _< k _< p - 1, where ~k __ S1/$2.2 1 
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: i  

Figure 4: Network for Computing S = H(3)y 

5. Repeat  step 3 and 4 for the tree of height j = j - 1. 

6. End. 

The t ransform matr ix  H3 for the 4-ary tree of height h == 3 is 

H (3) - -  

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
i a a 2 a 3 1  a a s a 3 i a a 2 a 3 i a a 2 a 3 

1 0  0 0 i 0 0 0 1 0 0 0 1 0 0 0 
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0  
] ] 1 1 a a a a a 2 a 2 a 2 a 2 a 3 a 3 o~ 3 a 3 

I 0 0 0 0 0  0 0 0 0 0 0 0 0 0 0 

0 0  0 0 1 0  0 0 0 0 0 0 0 0 0 0 

(41) 

Suppose that  a root of a subtree 1 (see Fig. 

e = (0, 0, 0, 0, a, a,  1, a 3, 

) i s f au l t y ,  q----8, a 3 + a + l = 0 a n d  

0, 0, 0, 0, 0, 0, 0, 0 ) .  (42) 

Then 
= .(+._- ( 4 3 )  

= S l l S  2 = C l a  = This yields S~ 0, therefore the error is in the  subtree 1 since 3 3 
a, i = 1. Since S 2 ~ 0 and S~ ~ o, error is in the root of subtree 1 of height 2. 

We note that  the number,  r, of  rows in H (h) for p-ary trees of height h can be 
drastically decreased (from r = 3h - 2 to r = h) if we allow a small probability of 

misdiagnosis. In this case one can take [16] 

H(h) = [ H(h-1) H(h-1) "'" H(h-1) ] (44) 
11. . .  1 a a . . .  a . . .  a p - l a  p - 1 .  . .  a p - 1  ' 
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where 
H(~)= [ 1 1 1 "'" 1 ] 

I ~ Ot 2 . . .  Ot n-I , n=p<q. 

The number of rows in H (h), defined by (44), is equal to h. The location procedure 
in this case is very simple, and the probability of correct diagnosis for this procedure 
can be estimated as [16] 

w =-- 1 - (1 - p q - l )  h-1 (45) 
k / 

which is small for large q. 

4. Hard  D e c i s i o n  Diagnos i s .  
The hard decision diagnosis problem can be formulated in the following way. For 

�9 a given E (G) C Zq construct a b ina ry  matrix H with minimal number of rows 

such that for any e (1), e (2) E E (G) with 

where s u p p ( Z = Z 0 , . . . , Z r _ l ) =  ( supp(Z0) , . . . , supp(Zr_ l ) ) .  (46) 

The hard decision approach allows identification of errors e by analyzing supports 
of their syndromes S = He. Magnitudes of distortions in components of a syndrome 
are not important for the hard decision diagnosis. The identification of locations of 
errors is possible if there is a one-to-one mapping 

E(G)*-~ {supp(He) [e 6 E ( G ) } .  

In general, this approach requires more rows in H (more observation points for the 
compressed response Z = Hy)  but the decoding procedure is very simple and has a 
straightforward hardware implementation. 

Let H | denote the Boolean multiplication of an (r x n) binary matrix H 
by an n-bit binary vector supp(e) = (sup p ( e0 ) , . . . ,  sup p (en-1)) with the addition 
being replaced by logical summation (OR). Then with probability 1 - q-1 if 

then 

and 

He 0) # He0); e (1), e (2) 6 E (G) C Zq 

(47) 

Let us consider now the hard decision diagnosis problem for the case of l inde- 
pendent errors (E = {e I 0 < I]e]] < /}) .  We note that in this case any check matrix 
of an l- th order binary superimposed code [24, 25, 26, 27] can be chosen as the 
transform matrix H. 
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A binary super imposed  code of order l consists of a set of codewords such tha t  
componentwise  Boolean sum (OR) of any l codewords differs from every other  com- 
ponentwise sum of I or fewer codewords. Thus,  in view of (47), any check mat r ix  of 
an l - t h  order linear super imposed code can be chosen as a hard  decision diagnostic 
matr ix  H. Since there are IEI t = Y~i=0 (?) different locations of l errors, we have the  
following lower bound  on the  minimal  number  r = r (n, l) of the  required spectral  
coefficients (rows in H)  '(:) r (n,/) > Flog2 ~-~ ]. (48) 

i=0 

For the case of single errors (l--- [lell --- 1), one can take as H any binary matr ix  
with different nonzero columns. Thus 

r ( n , l ) =  [log 2 ( n + 1 ) ] .  (40) 

The  case of mult iple errors (l > 1) is not as simple and it is difficult even to est imate 
r = r (n, l) .  Several good construct ions of check matrices for linear super imposed 
codes can be found in [24, 25, 26]. 

A hardware implementa t ion  of the  hard  decision diagnostic algori thms for I -- 
1, n = 100, q = 232 requires about  10,000 equivalent two-input  gates [27]. 

Let us consider now a general case of hard  decision diagnosis, when the error 
set E(G) is defined by the  topology G of the  system. Let N be the number  of 
processing elements in the systcms (nodes in G) and d is the length (number  of 
nodes) of the longest pa th  in G. Then  we have the  following at ta inable  bounds  on 
minimal  number  of rows in H 

m a x (  [log2 (N -f- 1)] ,d) < r < n. (50) 

These bounds can be improved if we have addit ional  informat ion about  the topology 
of the system. 

Let N (j) be the number  of pa ths  of length at least j and M (j) be the number  
of pa ths  of length at least j which do not have any endpoints  in common. The  
following two lower bounds  on r have been proven in [28, 29]: 

> g ( j ) ,  (51) 

+ > M (j).  (52) 
i==l ~=U(~+~)2-1] 

Lower bounds (51), (52) are valid for all values of j = 1, 2 , . . . ,  d. 

For the p-ary full tree of height h we have d = h , n  ~- ph--1, N : P h - I  and p-1 

N (d) ~- pd-1. Thus,  by (50), (51) we have the following lower bounds  for the  minimal  
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d 2 3 4 5 6 7 
r(d) 2 4 5 6 8 9-10 

} "d - l l 161-217 r(d) [[108-111 192 ] 131-014[ i4-16 I ] 

Table 1: Minimal Numbers of Spectral Coefficients Required for Hard Decision 
Diagnosis of Binary Trees 

number r = r (d) of spectral coefficients required for hard diagnosis of p-ary trees of 
height h = d. 

r (d) >_ [log 2 \ p L  ~ + 1 1 (53) 

and 
r(d)-d+l 

i = 1  

Solving (54) for d ~> 1 we have asymptotically 

1 . 2 9 ( u -  1), p = 2; 
r(d) > 1 .64(d-  1), p = 3; 

(log2p) ( d -  1), p _> 4. 

We note, that  for p > 4 and d >> 1 (53) gives better lower bounds than (55). The 
best known upper bounds on r for binary trees [29] are given by 

1.5 (d - 1) ,  u -- 4~ + 1; (56) 
(~) <-- [1.5 (~ - 1) 1 + 1, o t h e r w i s e .  

Values of r (d) for binary trees with N < 212 are given in the 'Fable 1: 

constructions for (r (d)•  pal-l) transform matrices H Optimal o r  near optimal 
for p-ary trees, together with lower and upper bounds for r (d) for different p > 2 

and N = Pd-1 p-1 < 5,000 can be found in [28, 29]. The gap between bounds is small. 
Constructions for optimal or near optimal transforms for hard diagnosis for two 

dimensional meshes and multidimensional cube topologies can be found in [29]. 
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