
Fault-Tolerant Message Routing for Multiprocessors

Lev Zakrevski, Mark Karpovsky♣

Research Lab. on Reliable Computing,
Boston University, Department of Computer Engineering,

8 Saint Mary’s St., Boston, MA 02215, USA
zakr@bu.edu, mr@enga.bu.edu

Abstract. In this paper the problem of fault-tolerant message routing
in two-dimensional meshes, with each inner node having 4 neighbors,
is investigated. It is assumed that some nodes/links can be faulty, so it
is necessary to route messages, using local information at each step. A
new and efficient algorithm is proposed to solve this problem. This
algorithm is local and consists of pre-routing and routing stages. The
pre-routing algorithm is implemented off-line. The complexity of the
pre-routing stage is O(tN), where N is the number of nodes in the
system, and t is the number of faulty nodes. The complexity of the on-
line routing stage (the size of the routing table stored in the local
memory) is O(t). The pre-routing algorithm is performed only once,
after a new fault is detected. The algorithm allows 100% of deliverable
messages to be delivered in the presence of faulty nodes with no
deadlocks or lifelocks. No nodes are declared unsafe. The main idea is
to construct fault-free rectangular clusters during the pre-routing stage
and store the information about their boundaries in local memories. At
the routing stage the direction for sending a message at any node is
determined by a cluster to which the destination node belongs. The
algorithm is generalized on the case of multidimensional meshes.

Key Words. Fault-tolerant network computing, multiprocessors,
meshes, routing algorithms, adaptive routing

1 Introduction1

The problem of fault-tolerant message routing is of a great practical importance. It is
assumed that some of the nodes and/or links in the computer network can be faulty,
and it is necessary to find, if possible, a simple routing algorithm for message
transmission between non-faulty nodes. Due to the large number of nodes, the routing
algorithm must be local, i.e. that no central host will be used for message routing.

 ♣ This work was supported by the NSF under Grant MIP 9630096

The above problem was investigated by several authors (see e.g. [1-5]). The
common drawback of the existing methods is that a message from a source to a target
node will not always find its way, even if it exists. This means, that a large number of
potentially “unsafe” nodes, which are excluded from communication may be present
in the network. In this paper we propose an adaptive routing algorithm which does not
require declaring any fault-free nodes unsafe. If it is possible for a message to be
delivered from node S to node D, then the corresponding path will be found by the
proposed algorithm.

Suppose that we have a multiprocessor network, consisting of N nodes, each of
these (except of the border ones) is connected to 2n neighbours. In this paper we will
analyze first the case of two-dimensional meshes with r× r nodes, where each inner
node has 4 neighbours. The proposed methods are expanded to other regular
structures, such as two-dimensional torus and three-dimensional meshes.

Fig. 1. An example of the 2-dimensional mesh with faulty nodes shaded

The maximal number of faulty nodes will be denoted by t. Unless specifically
stated otherwise, we will assume that only nodes (and not links) are faulty. In Section
5 we discuss the case when links can be faulty. Each node can test its neighbors. We
assume that if a testing node is fault-free, it will receive the correct state of the node
under test (including the link between these nodes). Only catastrophical (permanent)
faults are investigated. An example of an 6×6 network with t=5 faulty nodes is shown
in Fig.1. (Faulty nodes in Fig.1 and following Figs are 7shown in black color.)

In Section 2 an overview of the existing methods for fault-tolerant routing in
meshes is given. Criteria for comparison between routing algorithms are introduced
and necessary requirements are formulated.

In Section 3 a new adaptive cluster algorithm for fault-tolerant message routing in
2-dimensional meshes is described. The algorithm consists of the following steps:

- off-line pre-routing (at the end of this stage information will be stored in the
routing table of each node. This information is used for message routing);

- on-line message routing during the normal work of the network. At this stage the
message routing algorithm has to decide:

1 2 3 4 5 6
1

2

3

4

5

6

1) whether the message will be sent;
2) if it will be sent, then what direction will be used for routing.
Section 4 is devoted to generalizations of the proposed algorithms. In particular, 2-

dimensional toruses and 3-dimensional meshes are analyzed. A more general fault
model, including dynamic faults and faulty links, is considered.

Experimental results are given in Section 5. The simulation results illustrate the
efficiency of the proposed algorithm for 2-dimensional meshes.

2 Overview of the Existing Algorithms

Different approaches to the problem of constructing message routing algorithms in
networks containing faulty nodes are outlined below. They can be compared using
such criteria as:
1) reliability (the probability that message will not be delivered after sending or the
probability that a message to a reachable destination will not be sent);
2) dilation time - additional length of a message path compared with the shortest
possible path;
3) the number of necessary computations - related to 2);
4) amount of additional information stored in a message;
5) amount of additional information stored in one node (size of the routing table);
6) length of the initial pre-routing stage;
7) the complexity of information update after new faults occur.

To be efficient, an algorithm has to be deadlock-free and lifelock-free. It means
that any message will be either delivered, or at least efficiently canceled. Cycles must
be avoided. It is essential for the case of many messages in the system [4,10].

All routing algorithms can be divided into exact and non-exact algorithms. For an
exact algorithm we can be sure that if a message is sent, it will reach the destination. A
non-exact algorithm can cancel a message. A simple example of such an algorithm is a
directional one - if a message can not be sent one step closer to destination, it will be
canceled.

Any non-exact algorithm can be transformed into exact one, if during the pre-
routing stage messages with all possible sources and destinations are sent,
acknowledgments received and this global information stored in local memories. This
approach is time-consuming and depending on the algorithm which is used at the pre-
routing stage for message transmission, there can be a situation when a message will
not be sent although in principle it can be delivered.

An example of the deadlock-free routing algorithm is NAFTA [2,3]. This
algorithm is based on the combination of North-Last and South-Last strategies and
allows deadlock-free routing without global knowledge. However, it introduces some
unsafe nodes. The number of these nodes can grow as O(t2) for the worst
configuration of faulty nodes.

Another recent algorithm [6] uses the concept of faulty rings to route around
faulty nodes. Its main drawback is severe restrictions on fault locations - it is

prohibited to have faulty nodes both to the South and North, or to the East and West,
from a fault-free node.

The main idea of the proposed cluster algorithm consists of the construction of
fault-free clusters (rectangles) at the off-line pre-routing stage. Within fault-free
rectangles a simple deadlock-free algorithm can be used for message transfers. A
cluster connectivity graph is also formed at the pre-routing stage to be used for
routing. For each message being sent, first a path in the cluster terms is determined,
and then the message is sent to the corresponding adjacent cluster. This will minimize
the computational complexity at the routing stage at the price of additional work at the
pre-routing stage. The pre-routing algorithm is performed only once after new faults
are detected. The size of a local memory, needed to store the routing information, will
decrease from the number of nodes N to the number of clusters C = O(t), where t is
the number of faults.

The proposed algorithm allows to achieve an efficient routing in the presence of a
large number of faults. In particular, it is scaleable - we can increase N, keeping t/N
constant. As opposed to the approaches presented in [2,3], the proposed algorithm
does not require that some fault-free nodes be declared “unsafe” and excluded from
the system.

3 Adaptive Routing Using Fault-Free Clusters

At the off-line pre-routing stage, the following operations have to be implemented:
1) Cluster’s formation.
2) The boundaries of all clusters (fault-free rectangles) are broadcasted to all
reachable fault-free nodes. In each of these nodes a list of all reachable clusters is
constructed. If several clusters are identical, only one of them remains in the list.
3) For each cluster, adjacent clusters are determined.
4) A cluster connectivity graph is formed and the shortest path problem for this graph
is solved. As the result at this stage, routing tables are constructed and stored in local
memories. (Contents of these tables will be different for different nodes.)

At the routing stage for each message it is determined, whether the destination
node is reachable, and if it is, to which cluster it belongs. After this the routing table is
used to find the next cluster on the path to the destination cluster.

3.1 Cluster Formation

The main concept, used in the proposed algorithm, is the concept of a cluster. Only
rectangular clusters are considered in this paper, to minimize the memory
requirements to store the information about them.

Definition 1. A cluster is defined as a rectangular area in the mesh, free from faulty
nodes and links.

Each cluster is formed by the expansion first in x than in y direction starting with
one fault-free “basic” node. The following nodes are selected as basic ones, if they are
fault-free:
- nodes to the North, West, East from the corresponding faulty nodes,
- South-West corner node of the mesh, with the coordinates (1,1) (or any one node for
the toroid structure).

Fig. 2. Basic node selection and message routing during cluster formation

Basic nodes (1,2,...,10) for the example of Fig.1 are presented at Fig.2. In this case
we have NB=11 basic nodes and C=10 clusters (two basic nodes generate the same
cluster).

To construct a cluster, the (x,y)-expansion algorithm (first - expansion along the
row, then - along the column), beginning from the basic nodes, is used. (The example
of cluster formation for basic node 10 with coordinates (4,6) is represented in Fig.2).
Clusters can intersect. If a node is faulty, all messages from this node will be ignored
by the fault-free nodes.

Let us analyze the process of cluster formation in detail, taking basic node 10 with
coordinates (4,6) as an example (see Fig.2). At the first stage, two messages are sent
East and West, until they come to the edges of the mesh (East, node (6,6) and West,
node (1,6)), then they return back, bringing left_edge and right_edge parameters (1
and 6) to the basic node 10. At the second stage, two messages are sent from the basic
node of the rectangle under construction one more time, one traveling to the top,
another to the bottom of the network. The second message, for example, will travel the
following path: East to the right_edge, one node to the South, West to the left_edge,
one node to the South, etc., until a fault or an edge of the mesh is reached. After this
the message travels back to the basic node. On the forward path the coordinates of the
basic node, left_edge and right_edge are transmitted, at the backtracking step
top_edge is sent to the basic node. When both top_edge and bottom_edge parameters

1 2 3 4 5 6
1

2

3

4

5

6

1

2 3

4 5

4 76

8

10

9

are received by the basic node, the cluster is constructed. (For the above example
top_edge = bottom_edge=6. The constructed cluster is shown at Fig.2 by the dot line)

The maximal complexity in hops of this stage is of the order t× r2, but the cluster
formation can be implemented in parallel by a local algorithm, reducing the time
complexity for this stage. We note that at the cluster formation stage each node from a
row containing a basic node, receives not more than 4 messages, and all other nodes -
not more than 2.

It is worth mentioning also that the process of cluster formation for several basic
nodes can result in the same cluster. In this case only one cluster remains in list. This
elimination is done at the next stage, during the cluster list formation. To reduce the
number of generated clusters the following rule is used during cluster formation - if to
the West of the given basic node there is another basic node, the process of cluster
formation is aborted.

For the above example the following 10 different clusters will be constructed:
[1] = (1,6,1,1); [2] = (1,3,1,2); [3] = (5,6,1,3); [4] = (1,2,1,6); [5]= (5,6,3,3);
[6] = (4,4,3,4); [7] = (6,6,1,6); [8] = (1,3,5,6); [9] = (5,6,5,6); [10]=(1,6,6,6).

Here (x1, x2 , y1, y2) are boundaries of a cluster (x1≤x2, y1≤y2). The total number of
nodes in a cluster is (x2-x1+1)×(y2-y1+1). Cluster [i] is generated by the basic node i.

Remark. If the number of faults t is greater than r, then one can select as basic all
fault-free nodes from the first column and to the East from the faulty nodes. Also in
this case it is advantageous to modify the process of cluster construction. Namely,
clusters will be constructed in 2 steps. At the first step for each fault-free node the
distances to the closest faulty node (or to the edge of the mesh) to the North and to the
South are determined. At the second step, for each basic node only x-expansion is
made and minimal distances of the included nodes are used to determine north and
south boundaries of the constructed cluster. In this case complexities of cluster
formation and cluster broadcasting are decreasing (see Section 2.2).

Since the number of clusters C is important to estimate a complexity of the
algorithm, we will present below some upperbounds on C.

Theorem 1. For a 2-dimensional (r×r) mesh with t faulty nodes the number of
clusters is upperbounded by

C ≤ min (3t+1, t+r, r 2/2). (1)

Proof. 1. Since each basic node corresponds to a cluster, and each cluster corresponds
to at least one basic node, we have from the definition of basic nodes C ≤ 3t+1.

2. All clusters can be classified by the corresponding basic nodes into x-clusters,
which are formed by the basic nodes, which are to the East/West from the fault, and y-
clusters, formed by North basic nodes and node (1,1). Only y-clusters that do not
coincide with x-clusters are required. Let us suppose that there are l fault-free rows in
the mesh. Then the number of different y-clusters is upperbounded by l, since any two
basic nodes in a fault-free row will form the same cluster. If there is a fault either to
the west or to the east from a basic node, which is to the North from another faulty

node, then the corresponding y-cluster will be the same as one of the x-clusters. A
number of different x-clusters, generated by the basic nodes in a row with ti faults is
upperbounded by ti +1. Making a sum over all such rows, we receive t+r-l. It means
that the total number of clusters is upperbounded by t+r.

3. To prove the last part of the statement, it is sufficient to note that for each row
the number of different x-clusters is upperbounded by r /2 , and for each two
adjacent rows - by r.

We note that all three upper bounds of Theorem 1 are precise, i.e. it is possible to
construct fault patterns for each one of the bounds such that numbers of clusters for
these fault patterns are equal to the corresponding bounds in (1). Thus we have from
Theorem 1 for the compression rate C/N for global information to be stored in local
memories
 (3t+1)/r2, t≤r/2;
C/N ≤ t/r2 + 1/r, r/2<t≤r2/2; (2)

 0.5, t>r2/2.

Theorem 2. For a 2-dimensional (r×r) mesh with t faulty nodes each fault-free node
of the mesh belongs to at least one and at most t+1 of the clusters.

Proof. 1. Let us suppose that there exists a fault-free node which does not belong to
any cluster. Consider a southmost such node. There are two cases - when it belongs to
a fault-free row or not. In the second case either to the left or to the right of the node
(perhaps after some fault-free nodes) a basic node can be found. In the first case it is
either a bottom row, containing a fault-free node (which is covered by basic node
(1,1)), or a node just South belongs to a cluster, which can be expanded one line to the
North. This contradicts the original assumption.

2. To prove that the maximal number of clusters, to which a given node A belongs,
is upperbounded by t+1 recursion by t can be used. Let us assume that this statement is
valid for t=k and prove it for t=k+1. An arbitrary faulty node B can be considered
“additional” (k+1)-th faulty node. For each faulty node, clusters containing nodes to
the East and West from this faulty node, can not intersect, the same is true for the
North/South nodes. It means that node A belongs to at most two clusters, generated by
fault B. However, if A belongs to two such clusters, then in the absence of fault B
nodes A and B belong to the same cluster, now deleted. So the total number of
clusters, intersecting at one node, is upperbounded by (k+1)-1+2= t+1. If t<r-1, this
bound can not be improved, as it is clear from the example given at Fig.3, where t=4
and node (1,1) belongs to 5 clusters. (For this case, N=36, r=6, C=10).

Fig. 3. The configuration of faulty nodes such that a fault-free node (1,1) belongs to t+1=5
clusters

We note also that if several faults can be grouped in one rectangle, then the
number of basic nodes and the number of clusters can be reduced. Namely, instead of t
in the formulation of the Theorems 1 and 2 the number d of disjoint rectangles,
covering faulty nodes, may be used. Also, the basic nodes in this case can be selected
in the following way: for each faulty rectangle, 3 basic nodes are generated - the
southmost of the East and West of faulty nodes in the faulty rectangle and the
westmost of the North nodes (if these nodes are fault-free). So, the total number of
basic nodes is upperbounded by 3d+1. (An example is given at Fig. 2 where faults
(3,3) and (3,4) form the rectangle, so instead of 2 basic nodes - (2,3) and (2,4) - only
node (2,3) is sufficient.)

3.2 Broadcasting of Clusters Boundaries in 2-Dimensional Meshes with Faulty
Nodes

After cluster formation each basic node has an information about the boundaries of the
corresponding cluster generated by this node. This information must be transmitted to
other nodes to form a cluster list, which will be stored in all nodes (local memory of
size O(t) will be required for this). To this purpose the following simple broadcasting
algorithm is used.

Let us assume that a message M need to be transmitted from the basic node S to all
other reachable nodes. To do this, each node must perform the following procedure:
when it receives M, it checks, whether this information is already stored at the local
memory, if yes, nothing is made. If the received information is new, message M is
transmitted to the 3 other directions (excluding faulty nodes). In such a way, each
node can generate not more than 3 messages (any basic node can have maximum 3
non-faulty neighbors).

We note that the total number of messages for broadcasting from one basic node to
all nodes is not more than 3N. Each node receives not more than 4 messages.

1 2 3 4 5 6
1

2

3

4

5

x

y

6

1

At the cluster list formation process each basic node generate a message,
containing its coordinates and 4 numbers, defining the rectangle borders - all together
6 log2r bits. To minimize the total number of messages, one additional improvement is
used - each time when a new message is received, it is checked, whether in the local
memory exists information about another cluster with the same borders. In this case
only the cluster with the minimal basic node is left in the list; if it is a new one, the
message will be transmitted to the neighbors.

This “storing forward” broadcasting can be implemented efficiently and without
deadlocks if at the broadcasting stage we allocate in each one of the local memories
for every source (basic node) a block of size 6 log2r. Since by Theorem 1 a number of
basic nodes is upperbounded by 3t+1, 3t+1 blocks will be sufficient.

It is well known that storing forward broadcasting may be very inefficient but in
our case this approach will be sufficient for the following reasons:
1. This broadcasting is implemented off-line and only when a new fault in the system
is detected.
2. Every source is sending a single message.
3. These messages are short (6 log2r information bits).
4. A number of sources is small (at most 3t+1 or at most t+r).

We note that for the described procedure some clusters can be completely covered
by a union of other clusters. In general, such clusters can be removed from the list but
this cluster reduction is difficult to implement (the covering problem is NP-hard [
14]).

3.3 Cluster Connectivity Graphs

At the next step in each node the same cluster connectivity graph is formed and the
shortest path problem for this graph is solved, using a well-known algorithm for a
weighted shortest path in a non-oriented graph, (see e.g. [15]). This procedure is
implemented independently in each node, using a shortest distance (in links) from this
node to a destination as a weight. The computational complexity of this procedure is
O(t2), no hops are needed.

The cluster connectivity graph for the above example is shown at Fig.4.

Fig.4. The cluster connectivity graph for the mesh of Fig.1

[9][7][1][2]

[10][8][4]

[6][5][3]

The whole graph does not need to be stored. All that is needed is to store in each
node the name of the next cluster for the shortest path, the distance from the node to
the cluster and the coordinates of the closest belonging to this cluster node, called
entry node - arrays NC, D and K are used for this purpose, where NC(i) is the number
of the next cluster, if [i] is a destination cluster, D(i) - distance (in links) from the
source to the cluster [i] (D(i) = 0 if a node under consideration belongs to cluster [i]),
K(i) - closest to the source node from cluster [i] (entry node).

To construct these arrays, a modified search in breadth is used. We use 2 node lists
- open and close, initially first have all clusters that contain the node under
consideration, and the second one is empty. During each step the cluster is selected
from open, which has a minimal distance from the source node (minimum D(i)).
Selected cluster is moved to close, and all new clusters, adjacent to it, are added to
open. If cluster [x] is moved and cluster [y] added, then NC(y) is set as NC(x), if
NC(x)≠ 0, otherwise NC(y)=x. Also if cluster [y] is adjacent to [x] and belongs to the
open already, it is checked whether a new distance (via cluster [x]) from the source to
[y] is less than the existing one; if yes, then values of D(y) and K(y) are modified.
New value of D(y) is calculated as D(x)+R, where R is the distance between nodes
K(x) and K(y), K(y) is the nearest to K(x) node in cluster [y]. In a similar way arrays D
and K are constructed. If a source node (a,b) belongs to the cluster [i], then
NC(i)=D(i)=0, K(i)=(a,b). The process always begins from the cluster [j] that has
D(j)=0 (there can be several such clusters that contain the initial node under
consideration).

To illustrate the above algorithm, let us consider a node (5,3) at Fig. 2. After a pre-
routing stage, it will have the following information stored in its local memory:

(1) array B [16,6] (t=5), containing the information about the basic nodes and the
borders of the corresponding clusters
 B [1] = (1,1,1,6,1,1); B [2] = (3,2,1,3,1,2); B [3] = (5,2,5,6,1,2);
 B [4] = (2,3,1,2,1,6); B [5] = (4,3,5,6,3,3); B [6] = (4,4,4,4,3,4);
 B [7] = (6,4,6,6,1,6); B [8] = (3,5,1,3,5,6); B [9] = (5,55,6,5,6);
 B [10] = (4,6,1,6,6,6); B [11] = (0,0,0,0,0,0); ...
where B[i]= (ix, iy, x1, x2, y1, y2), ix, iy are coordinates of the basic node i, x1, x2 and y1,
y2 are x and y coordinates for boundaries of the cluster [i].
(2) array NC [16] (only first 10 values will be used)

NC(1)= 1, NC(2)= 1, NC(3)=0, NC(4)= 1, NC(5)= 0,
NC(6)= 6, NC(7)= 7, NC(8)=7, NC(9)= 7, NC(10)= 7,

(3) array D [16] (only first 10 values will be used)
D(1)= 2, D(2)= 4, D(3)=0, D(4)= 5, D(5)= 0,
D(6)= 1, D(7)= 1, D(8)=7, D(9)= 3, D(10)= 4,

(4) array K [16] (only first 10 values will be used)
K(1)= (5,1), K(2)= (3,1), K(3)=(5,1), K(4)= (2,1), K(5)= (5,1),
K(6)= (4,3), K(7)= (6,3), K(8)=(3,6), K(9)= (6,5), K(10)= (6,6),

The node (5,3) belongs to the clusters [3] and [5]. So, these two clusters
correspond to the first two opened nodes for the process of the cluster connectivity
graph construction.

3.4 On-Line Routing Stage

At the routing stage for each message a destination cluster is found from the list of
clusters stored in the local memory. To avoid additional calculations, the name
(coordinates of the basic node that was used for cluster construction) of this cluster
can be sent with a message, rather than be recalculated in each subsequent cluster. If a
message have to be sent from S to D, where S belongs to cluster [u] and D - to cluster
[w], then NC(w) is retrieved from the routing table, stored in the local memory for S,
and the message is sent to cluster [v]=NC(w). A restriction is NC(u)×NC(v)=0, so the
message travel via nodes which belong either to [u] or to [v]. This procedure is
implemented until NC(v)=0, which means that the next cluster has been reached. After
coming to the next cluster, the process is repeated. No backtracking can happen at the
routing stage.

An example of routing based on the cluster algorithm for the network of Fig.1 is
given at Fig. 5. A cluster, generated by the basic node 8, is shown. Also a path
between nodes S=(5,3) and D=(3,5) is given. This path includes clusters [5], [7], [10]
and [8]. Another possible path includes clusters [3], [1], [4], [8].

Fig. 5. Message routing using cluster algorithm

A long message can be divided to flits, according to the wormhole routing strategy. To
simplify the routing procedure, each node keeps in the local memory the name of the
next node for several last flits. For the each new flit it is checked, whether this
information is already available.

3.5 Deadlock Elimination

1 2 3 4 5 6
1

2

3

4

5

6

1

2 3

4 5

4 76

8

10

9

Now let us consider the deadlock/lifelock problem for the proposed cluster algorithm.
The problem of deadlock elimination consists of 2 parts - deadlock elimination for the
routing stage and deadlock elimination for the pre-routing stage.

Since there are no faults inside a cluster, we can use any deadlock-free algorithm
developed for fault-free networks, with virtual channels to eliminate deadlocks [4] for
message routing inside clusters. An example is x-y algorithm, since for it there are no
cycles in the channel dependency graph.

For pre-routing stage the number of messages that can be received by each node is
restricted. It means that if we can guarantee that if the local memory is large enough,
no deadlocks will occur, since stored-forward approach is in use. In fact, a local
memory of the size O(t) will suffice, since by Theorem 1 and Theorem 2, each node
receives not more than 2(3t+3) at the cluster formation stage (see Section 3.1) and not
more then 4(3t+1) messages at the cluster broadcasting stage (see Section 3.2).
To show that the developed algorithm is lifelock-free, it is sufficient to note that the
length of any message path at the pre-routing and routing stages is upperbounded by
the total number of nodes N=r2.

Hence, the cluster algorithm is deadlock-free and lifelock-free.

3.6 Multiple Entry Nodes for Clusters

One of the important criteria for algorithm evaluation is dilation time - the difference
between the length of the routing path constructed by the developed algorithm and the
shortest path (in the presence of faulty nodes). As it is shown at Fig.6, it can be greater
than zero for the proposed algorithm (path between node S=(4,1) and D=(2,3) is
considered in this case). Shortest path contains 6 links, while for the proposed cluster
algorithm this number is 7.

Fig. 6. Example of non-zero dilation time

To decrease dilation, not one, but several entry nodes can be stored for each
cluster. For the proposed example, the destination cluster has two entry nodes - (1,3),
with distance 5 from the source, and (6,3), with distance 4 from the source.

1 2 3 4 5 6
1

2

3

4

5

6

S

D

Theorem 3. If one entry point is used for every cluster, then the dilation time is equal
to zero for each path containing not more than 2 clusters. If two entry points are used
for each cluster, then the dilation time is equal to zero for each path containing not
more than 3 clusters.

The proof of this Theorem follows immediately from the definitions of a cluster
and an entry point.

With an increase in the number of entry points k, the dilation time is decreasing but
the size of the routing table is increasing proportional to k.

The proposed cluster algorithm can be generalized to the case when both faulty
nodes and faulty links may be present. To allow a problem-free message delivering
inside a cluster, the process of cluster formation (see Section 3.1) has to be modified
in this case. The first step (x-expansion) remains the same, but for y-expansion all
vertical links must be checked. It results in an increase in the number of hops for
cluster construction by about a factor of 2. Another change is that the procedure for
constructing all neighbors of a given cluster is more complex. In this case if two
clusters do not have common nodes, but have adjacent nodes, all links between such
nodes must be checked. Since appropriate information must be broadcasted before
construction of the cluster connectivity graph, another broadcasting stage with the
same complexity as the one described in Section 3.2 is added to the developed
algorithm.

If a new fault is detected, the routing tables in all nodes must be updated. Since the
list of the clusters is the same in all reachable nodes, a fault-free node adjacent to a
new faulty node, which will become basic, will be able to calculate the boundaries of
all new clusters and broadcast this information throughout the system. We note that
only clusters, containing a new fault, will be affected.

4 Algorithm Extension to the Multidimensional Case

Up to now, only 2-dimensional meshes were analyzed. The developed algorithm can
be, however, extended to other network architectures, including toruses and 3-
dimensional meshes.

At first, let us analyze 2-dimensional torus, where each node has 4 neighbors. In
this case some clusters can be also toroid, that can be represented by setting the
corresponding border values to zero. Several minor changes must be made in the
procedure for cluster construction. Instead of checking for a boundary node , in this
case we check whether the next node already belongs to the cluster under construction.

For a 2-dimensional torus, in is sufficient to select only two basic nodes for each
fault at the cluster construction stage (for example, to the North and West from the
fault).

Theorem 4. For t>1, a total number of clusters C for a toroidal 2-dimensional mesh is
upperbounded by the min (2t, t+ r/2 , r2/2) and the maximal number of clusters
containing the same fault-free node is upperbounded by t+1.

The proof of this theorem is similar to the proofs of Theorems 1 and 2.
For the 3-dimensional case, parallelepipeds will be used as clusters instead of

rectangles. So, the procedure of cluster formation will be more complex- it will have
three stages - expand x, expand y, expand z - instead of (x,y)-expansion, described in
Section 3.1. Similar modifications have to be made to the algorithm, used to send
messages inside a cluster. In this case the total number of clusters C, and number of
clusters containing the same fault-free node are upperbounded by 5t ant 2t+2
correspondingly.

5 Experimental Results

In this section some results of the experimental investigation of the cluster algorithm
are given. All experiments were conducted for 2-dimensional meshes.

Table 1. The results of cluster formation experiment.

r t BN C IC NU
8 1 3.62 3.49 2.00 0
8 2 5.98 5.57 2.74 0.02
8 3 8.35 7.43 3.52 0.10
8 4 10.45 8.87 3.87 0.15
8 5 12.57 10.15 4.14 0.37
8 6 14.66 11.38 4.28 0.52
8 7 16.64 12.42 4.47 0.87
8 8 18.52 13.21 4.65 1.16

16 1 3.80 3.67 2.00 0
16 2 6.13 5.71 2.73 0.01
16 3 8.68 7.95 3.55 0.03
16 4 11.06 10.06 3.91 0.04
16 5 13.20 11.12 4.15 0.11
16 6 15.04 12.25 4.31 0.19
16 8 19.25 15.17 4.65 0.34
16 12 25.87 19.22 5.09 1.25

First, we analyze the process of cluster formation. Results of the experiments are
given in Table 1, where r is the size of the mesh, t - the number of faulty nodes, BN -
the number of different basic nodes, C - the number of different clusters, IC - the
maximum number of clusters intersecting at one node, NU - the number of
unreachable nodes. (All experiments are repeated 100 times and the average values
are presented.)

To compare the experimental results with the theoretical estimations, in Fig. 7 the
graph C(t) for r=8 and r=16 is shown. In the same graph theoretical upperbounds from
Theorem 1 is given.

Fig. 7. Estimations on a number of clusters C(t) for r=8 and r=16 (experimental results are
shown as dots).

Fig.7 shows that average numbers of clusters C are considerably smaller than the
upperbounds given by Theorem 1 and the difference is increasing with an increase of
a number of faults. Also it follows from Table 1 that almost all fault-free nodes are
reachable with the proposed cluster algorithm.

In the second part of the simulation the efficiency of the resulting routing is
analyzed. For randomly generated messages, the following parameters are estimated: l
- the average length of a message path (in clusters), L - the average length of a
message path (in nodes), Lmin - the length of the shortest path (in nodes), δ = L-Lmin -
dilation time.

t

C

87654

3

3
0

0

1

1

8

7

6

5

4

2

2

9

12

14

13

11

10

16

15

r=8

r=8

r=16

r=16

Table 2. The results of routing experiments.

r t l L Lmin δ
8 1 1.6 4.10 4.10 0
8 2 1.9 4.42 4.42 0
8 3 2.3 4.83 4.83 0
8 4 2.5 5.13 5.07 0.05
8 5 2.7 5.32 5.21 0.1
8 6 2.9 5.65 5.53 0.1
8 7 2.9 6.24 5.95 0.3

16 1 1.7 8.42 8.42 0
16 4 2.5 8.74 8.74 0
16 8 3.2 9.26 9.17 0.1
16 12 3.4 10.78 10.47 0.3

It follows from Table 2 that the proposed cluster algorithm provides the lengths of
message path very close to the shortest ones and the dilation time grows very slowly
with t.

5. Conclusions
A new adaptive algorithm for fault-tolerant deadlock-free and lifelock-free routing in
two-dimensional meshes was proposed. This algorithm is local and consists of pre-
routing and routing stages. The complexity of the off-line pre-routing stage is O(tN),
where N is the number of nodes in the system, and t is the number of faulty nodes.

The complexity of the on-line routing stage (the size of the routing table stored in
the local memory) is O(t). The pre-routing algorithm is performed only once, after a
new fault is detected. The algorithm allows 100% of deliverable messages to be
delivered in the presence of faulty nodes with no deadlocks or lifelocks. No nodes are
declared unsafe. The further advantage of this algorithm is in its scaleability - it works
for large numbers of faults and large numbers of nodes. The algorithm was expanded
to toroid networks and 3-dimensional meshes.

6 References
1. Christopher J. Class and Lionel M.Ni, The Turn Model for Adaptive Routing. / Proc. of

the 19th Annual Int. Symp. on Computer Architecture, pp. 278-286, May 1992.
2. C. Cunningham and D. Avresky, Fault-Tolerant Adaptive Routing for Two-Dimensional

Meshes. / Proc. of First Int. Symp. on High Performance Computing Architecture,
Raleigh, North Carolina, USA, January 1995.

3. C. Cunningham and D. Avresky, Fault-Tolerant Adaptive Broadcasting and Multicasting
using Wormhole Routing in Two-Dimensional Meshes. / Technical Report 95-033,
Department of Computer Science, Texas A&M University.

4. J. Duato, A Necessary and Sufficient Condition for Deadlock-Free Adaptive Routing in
Wormhole Networks. / Proc. of Int. Conf. on Parallel Processing, vol. I., pp. 142-149,
August 1994.

5. R.V. Boppana and S. Chalasani, A Comparison of Adaptive Wormhole Routing
Algorithms. / Computer Architecture News, 21(2), pp. 351-360, May 1993.

6. S. Chalasani and R V. Boppana, Communication in Multicomputers with Nonconvex
Faults. / IEEE Trans. on Computers, vol. 46, pp. 616-622, May 1997.

7. H.-L. Chen and N.-F. Tzeng, Subcube determination in faulty hypercubes. / IEEE
Trans. on Comput., vole.46, pp. 871-879, August 1997.

8. L. M. Ni and P.K. McKinley, A Survey of Wormhole Routing Techniques in Directed
Networks. / Computer, vol. 26, pp. 62-76, February 1993.

9. W. Dally and C.L. Seitz, Deadlock-Free Message Routing in Multiprocessor
Interconnection Networks. / IEEE Trans. on Comput., vol. 36, pp.547-553, May 1987.

10. Y.M. Boura and C.R. Das, Fault-Tolerant Routing in Mesh Networks. / Proc. of Int.
Conf. on Parallel Processing, vol. O., pp. 106-109, August 1995.

11. R.V. Boppana and S. Chalasani, Fault-Tolerant Wormhole Routing Algorithms in Mesh
Networks. / IEEE Trans. on Comput., vol. 44, pp.848-864, July 1995.

12. W.J. Dally and H. Aoki, Deadlock-Free Adaptive Routing in Multiprocessor Networks
Using Virtual Channels. / IEEE Trans. on Parallel and Distibuted Systems, vol. 44, pp.
466-475, April 1997.

