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On a New Class of Codes for
Identifying Vertices in Graphs

Mark G. Karpovsky, Fellow, IEEE, Krishnendu Chakrabarty, Member, IEEE, and Lev B. Levitin, Fellow, IEEE

Abstract—We investigate a new class of codes for the optimal
- covering of vertices im an undirected graph 7 such that any vertex
in & can be vniquely identified by examining the vertices that
cover it. We define a ball of radius ¢ centered om a vertex v to
‘be the set of vertices in G that are at distance at most ¢ from v.
[ The vertex v is then said to cover itself and every other vertex
iin the ball with center v. Our formal problem statement is as
follows: Given an undirected graph G and an integer ¢ > 1, find
Ea (minimal) set C of vertices such that every vertex in 7 be.lnngs
ito a unique set of balls of radius ¢ centered at the vertices in
; The set of vertices thus obtained constitutes a code for vertex
i nhﬁcatmn We first develop topology-independent bounds on
e size of C. We then develop methods for constructing C for
eral specific topologies such as binary cubes, nonbinary cubes,
I trees. We also describe the identification of sets of vertices
e=-:~'| g covering codes that uniquely identify single vertices. We
levelop methods for u:unstrncﬂng optimal topologies that yield
iden tifying codes with a mipimum number of codewords. Finally,
we describe an application of the theory developed in this paper
{0 fault diagnosis of multiprocessor systems.

3 Index Terms— Code construction, coding theory, covering ra-
flius, fault diagnosis, graph theory, multiprocessor systems.

I. INTRODUCTION

RAPHS find a wide range of applications in several
R_J fields of engineering and information sciences. A graph
ean be used to represent almost any physical situation and
relationship between various entities. Graph models are
1 refure ofien employed in solving a number of practtcal
Soblems I'7].

$In this paper, we investigate the problem of covering the
Eriices.of a graph G such that we can uniquely identify any
erteX in G by examining the vertices that cover it. We define
ball of radius 1 centered on 'a vertex v to be the set of
rices of (¢ that are at distance at most ¢ from ». (The
"f:; ance between vertices v; and vj is the number of edges in
ghortest path between v; and v;.) The vertex v is then said to
Bier itself and every other vertex in its ball. We are interested
1dent|fy1ng the vertices of G using a minimum number of
dis of radius . This is formally stated as folows: Given an
-_-.u ected graph G and an integer ¢ > 1, find a (minimal) set C
Rvertices such that every vertex of (G belongs to a unique set
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of balls of radius ¢ centered at the vertices in C. We view C as
an identifying code such that all vertices in it are codewords.

An application of the theory developed in this paper lies in
fault diagnosis of multiprocessor systems. The purpose of fault
diagnosis is to test the system and locate faulty processors. A
multlpmcessm system can be modeled as an undirected graph

= (V, E), where V is the set of processors and E is the set
{}f links in the system. Specific software routines are executed
on certam selected processors to camry out diagnosis. The
selection of these processors is done by generating the code C

- thal allows for unique identification of fauity processors. Every

Processor currespundmg to a codeword vertex tests itself and
all its neigbhoring processors. This corresponds. to the use of
balls of radius one centered at the codewords, ie., ¢ = 1.
Hence an optimal code (mlmmum number of codewords)
minimizes the amount of overhead requ:me:d tﬂ implement fault
diagnosis.

The orgamization of the paper is as fnllnws In Sectmn 11,
we develop topology-independent bounds on the size of C,
and present methods for constructing C for practical topologies
such as meshes, binary and nonbinary cubes, and trees. Section
HI addresses the problem of constructing codes that identify

not just single vertices as in the previous sections, but sets of

vertices of up to a given size. Finally, in Section IV, we discuss
the construction of optimal graphs that yield identifying codes
with a minimum number of codewords.

Il. CODE CONSTRUCTION |

Let M (t} be the minimum number of codewords required
to identify every vertex uniquely when a ball of radius ¢ is
used. We first obtain some lower bounds on M(%). Let V;(t)
be the volume of a ball of radius ¢ centered at vertex v;, ie.,
the number of vertices that are at distance at most ¢ from v;.

Theorem I: For a graph with N vertices

1) M(#) > Togy(N +1)].

2) Let Nf2 > Wi(t) 2 Va(t) > --- > V(). Then
M(t) > K, where K is the smallest integer such that

i h( vilt) ) 2 logy(N -+ 1)

=1

where h{z) = —iﬂlﬂggﬂ: — (1 — x)logy(1 — z) is the

« binary entropy function.
3) Let K be the smallest integer such that for a certain
! (1 <1< min(K, Vi(t)), the following conditions. are
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satisfied:

i—1 '
K 1
{E —
~ 4 (:?')Jr L\ 4
i=1 L .t=l

2 i)
£5(0):

=1
Then M(t) > K.

Proof: The first lower bound follows from the fact that
there are N + 1 cases (N different vertices and the selection
of o vertex—no veriex is identified) to be msungmshed
Therefore, the mfunnatmn can be encnde:d m a mjmmum of
Moga(N + 1)] bits. | |

We prmre the second bound as follows. We denote b}r
X; (1 = ., K) the result of the (1de:nt1ﬁcatmn) test
performed by the zth codeword. Each X; is a binary random
variable: X; = 0, 1. Denote by Y the random variable which
is equal to 0 when no vertex is to be identified and j (j =
1,2,---,N) if the jth vertex is to be identified. In the abSEnce
of any a priori Imuwledge we assime that all N + 1 cases are
equiprobable. Thus the E:ntmp}* H(Y) =logy(N + 1). Now,
denote by I(X;;Y/X1, -+, Xi—1) the information in X; about

=

55()]

J_
(1)

=1

Y gwe:n the outcomes uf XI;, Xg, . SR Then
Z.I(xi;.y,f'xl,:_-..,xii_l) = H(Y) .
i=1. . | - _'
=loge(N +1). . ()

On the other hand,

XY/ Xy, X)) =H(Xi/ X1, X1}
"}?(Z;/]ﬂ;xﬁ;"'ﬁX;‘I)' (4)

-Since H(X;/Y, X1, -+-,Xi-1) = 0 (the value nf Xg., is
uniquely determined b}f Y) we obtain |

I{XE,Y/Xh < Xiod) = H(X:/ X1, -, Xam1)
< H(X;). - ®)

However, the probability Pr{X; = 1} = V(t)/(N +1), hence

H(X:) = h(;_(:)l)

. It follows from (4}6) that the number of codewords 1s not
smaller than the smallest K such that E;r"; AV (t)/’N+ 1) >
log,(N + 1).

To prove the third bound, we consider a K X IV binary
matrix 4 = {|er}, 5 =1,2,---; K;n = 1,2,---, N, where
ar, = 1 if the kth codeword covers the nth vertex, and

= ([ otherwise. Denote by w( ") the welght (number of

NONZEro cﬂmponents) of the kth row and b}r wg) the wei ght

of the nth column. Ohvmusl}',

Z w{""] = Z w{r].

n=1

16)

(7

EEETﬁﬁﬂmﬂﬂﬂﬂﬁiﬂiEEHMMHHGHTHE&EL?HHH$LNﬂulhﬂﬂmﬂIEE

ZV(t}fiz ( ) 2).

Our goal is to find the minimum K for a given N and
fV:(H)},4 = 1,---, N, provided that all columns of A are
nonzero and dlst:mct.

Consider the dual problem:. fnr a given K, find the max-
imum number N of distinct and nonzero columns. Since,
obviously, |

K
Y w’ < ZV(t}
k=1

- i=1

it follows that

(8)

E w'e < z V(t}
n=1 =1
To maximize the number of columns ‘N under the constraint.
(8), we have to_choose the we1ghts of the columns w.,(-,.) as
small as possible, starting with columns of weight 1, 2, etc.,
up to the point where the right-hand suie nf (8} is exceeded
Let!beanmtegersuchthat - .

; ( ) .ZV(tﬁ; ( ) (9)

Fm' the maximum posmbie: number of columns N, (8)
should turn mtu an equahty Taking into account (9), let

S-S (§) rmise

where 0 < g <1—1,0 < mi+g <1 (). Obviously,

Ly -3 5 (%)

t=1 i=1

We need to consider the following three cases.
Dm< (¥)g+m< (¥).

Then the largest number of columns V and the aquallty in (8) '
are achieved if we use all possible distinct columns of weights |
1,2,---,1—2, (:K1) gc{}lumns:::fwelghtl—-l and m+g
culumns of weight 1.

(10)

(11)

Z}m{( )g+m}( ).

To maximize N and to achieve the equality in (8), we should
use all columns of weights 1,2, -+, I—2, (%, ) —g columns of ;

weight I —1, all () columns of we1ght1’ and m + g — (K)::
culumns of wmght [+ 1.

3) m = (1—1}19 = 0.
Then we should use all columns of weights 1,2,---,1.

In all cases, the total number of columns in A i3

V-3
=Z(f)+._ (; Vilt) - jZ:.r( ))(H

7=1
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In fact, because of (8), (12) gives an upper bound on the
number N of columns for a given number K of rows (where I
is defined by (9)). It follows that for a given /V, the minimum
- number of rows K should satisfy (1). Thus (1) and (2) together
~determine a lower bound on the number of codewords for a
| given number ¥ of vertices. ]

In the special case of a regular graph where Vi(£) = V(£)

' for all 7, (9) and (12) take simpler forms

-2 _ .
Z'(KTI){:V@ {z ( 1). (13)
i—o N 7 =0
I—1 .- | -2 fK -1

K .
N < (I;) T V-3 | 3 )

j=1 1 e =0 ]

| '- (14)

A simpler lnwe:r bound in the case of a rﬂgular graph is

i gwen by Theorem 2.

2 Theorem 2: The size. of an identifying cocle for a regular
f graph with /¥ vertices is lnwer-boundcd by

ON
M{e) 2 V() +1

Proof: As in the proof of Theorem 1, consider the K x N
 binary matrix e arn, = 1 if and only if the kth
f codeword covers the nith vertex, and az, = 0 otherwise. The
.number of nonzero elements in the matrix is obviously KV (1).
. On the other hand, since at most K columns can have weight
-1 and the remaining N — K columns must be of weight at
- least 2, the number of nonzero elements should be at least

(15)

K+ 2(N—K) = 2N — K. Hence, KV(t) > 2N — K.
F Theretore, | - - i
2N

M) 2 K—Vm+1v -

x T_hE: lower bound (15) is, in general, weaker than (13) and
. (14). However, both bounds coincide if 7 < 2. It can be shown
in Theorem 1 (part 3), that I < 2 if and only if V(¢) £ vV2N.
L The latter condition is satisfied for'a broad class of graphs if
¢ does not, grow too fast with . -

' We next examine some speclﬁc graph tupulngles

A. -Binary Cubes | |
" A binary n-cube computer is a multiprocessor system with
N = 2" processors interconnected as an n-dimensional binary
cube. Each processor FP; constimtes a node of the cube and
is a self-contained computer with its own CPU and local
memory. Each F; also has direct communication paths to
in other neighbor processors through the edges of the cube.
An example of a commercial binary-cube computer is the
i NCUBE/en, which is a ten-dimensional system developed b}r
NCUBE Corporzation [8], [14].
Let M,(t) be the minimum number of codewords required
for identifying the vertices in an n-dimensional binary cube

using balls of radius £. We first consider the case ¢ = 1. The

specific topology of the n-dimensional cube imposes addi-
tional constraints which makes the lower bounds of Theorems
| and 2 unattainable. A tighter lower bound i1s given by the
fnllnwmg theorem, a proof-of which is given in the Appendix.

Theorem 3: Fnr an n-dimensional T:rm::u'}r cube, » > 3,
| n-2" n-2ntL
| V() n(n'+1)+2'
where V(2) = 1+n+ (3) is the volume of the ball of radius
two in the Harhming space Z%.
The lower bound (16) is achieved if there eXists a perfect

cnvenng of the n-dimensional cube by balls of radius two,
ie., a perfect code! with distance five. The only such case is

M,(1) > (16)

for n ='5. Then all vertices of weight one and four can be

chosen as cudewards and the total number 'Df codcwnrds is
ten, which is given b}r (16). |

Let K'(rn,q) be the size of an optimal 4::1{:114:1«2:2 c* 'nf length
n with covering radius ¢, ie., every vertex is at Hamming
distance at most ¢ from a codeword of C* [4], [5], [9L
[12], [17], [21]. An upper bouﬂd on M, (1) follows from the
theorem below. ‘

Theorem 4: Let C* bé an optimal binary code of length

and covering radius 2, i.e, C* has K(n,?2) codewords. Then,

for £ = 1, a code C identifying verfices in the n-dimensional
binary cube can be selected as C = {w|qv € C*,d(v,w) =1}
(d{v,w) is the Hamming distance between v and w). |
Proof: We show that every vertex in the cube G is
covered by a umque set of cadewnrds
Case I: - |
Let v € C*. Every neighbor of v belongs to C. and therefore
covers v. We need to prove that there exists no vertex v that is

covered by the same set of vertices. Let v = (v1,v2,- - -, ¥ )-
The codewords covering v are
(ﬁl: g +-+, ﬂﬂ): {‘Ulyﬁﬂ ree :ﬂr.l.-.}.: T ('Ulg ‘u2: - 1ﬁﬂ.)

where v; € {0,1} and ; = 1 — w;. Clearly, v is the only
vertex that is a neighbor of all these: codewords.

Case 2:

Let v € C and v ¢ C*. New, v.is covered by itself and
every neighbor v € C. We show that there exists »” € C such
that d(v,v") = 1 but d{v’, 2"} > 1. Note that because there
are no triangles in G, there does not exist a vertex u such
that d(u,v) = d{w,v") = 1. Hence, we have only to prove the
existence of v for every v. Let. z € C* be a neighbor of v/,
Since d{v,x) = 2; thefe exist exactly two vertices that are at
distance. one from both £ and v. One of these vertices {from
above) is v'; the other.is v”.

- Case3: . . |

letv ¢ Candwv ¢ C* Supposevls mveredby!codewords
in C (I > 2). Without loss of generality, let v = (0,0, ---,0},
and the codewnrds covering v be -

(1,_[}, -, 0}, (0 1 I[] 0) .'}.0’.0}_'__
ol

:I[}'.l 11_0: e 1{])*

1A binary (n, k; 21+1)mdexspe:fm1le_1 (B) =12k

2;ﬂu'.lnptlmalcmr&nngnudcisnncthathasamﬂ]]mumnurnbﬁrc-fﬂode
words.
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Clearly,.there is no vertex other than v that is at distance one
from all these codewords. Hence v is uniquely identified.

Next, suppose { = 1. Without loss of generality, let
v = (0,0,---,0), and the .only codeword ¥’ covering v be
(1,0,---,0). There must exist at least one vertex w in the
covering code C* such that d(w,v’) = 1. Thus

we {(1,1,{],"‘,ﬂ),(l,ﬂ,1,{],*",U},"*,(l,.ﬂ,"',n,l)};

It can now be easily seen that each vertex in the above set
contributes codewords to C that cover v, which contradicts the
assumption that { = 1.
~ Finally, suppose { = 2. Let the two codewords cnvenug (Z
be (1,0, --,0) and (0,1,0,:--,0). Now, w = (1,1,0,---,0)
is the only vertex other than v .th'at is at distance one from both
these codewords. If w € C* then w is uniquely identified. If
w & C* then there exists w* € C* that generates (1,0,---,0)
as a codeword of C. Once again, without loss of generality,
let w* = {1,0,1,0,---,0). Then (0,0,1,0,---,0} € C which
contradicts our assumption that { = 2. Hence w € C* and v is
uniquely identified. | O

Corollary 1: The number of codewords in an optlmai iden-
tifying code with ¢ = 1 for a binary n-cube (n > 3} is
upper-bounded by -

M,.(1) < nK{(n,2).
Exact values for small n as well as bounds on K{n,2) are
available in the literature; see, e.g., {3]. In particular
K(n,2) < K(In/2], DK ([n/2],1).
Using this and (16), we get
n 2"
V(2)
For example, if m = 2° — 1, then I{(m 1) = 2"/m + 1.
Therefore, for n = 2° — 2 we have
' _ gnti
= < Mn(1) < .
n(n+1}+2 (n +2)?
The ratio r,, of the upper bound to the lower bound
2An?+n+2) |
(n+2)?

<M (1) < nK([n/QJ 1}I{([n/2] 1).

g1 » 211-{-2

> 2

Th =

with n — oc. |

Another solution to the 1dentrfymg code construction prob-
lem for an n-dimensional binary cube {is obtained by se-
lecting codewords separately for its two constituent (n —
1)-dimensional cubes. This “divide and conquer’ approach,
which implies that M,(1) < 2M,,_1(1), often gives beiter
" resulis for small 7 than the construction method wsing K(n,2)
(seée Table I). Note that for n.= 3 and n = 4, we achieved the
lower bound on M, (1) using ad hoc construction methods.

The construction of Theorem 4 can be extended n a
straightforward manner for ¢ > 1. We now construct an
optimal C* with covering radius 2¢; the number of codewords
in C* is K(n,2t). The identifying code C is generated by
selecting vertices that are at distance exactly ¢ from the ver-
tices in C*. |

TABLE 1

NumMBER oF CopEWORDS REQUIRED FOR IDENTIFYING
VERTICES IN B]NART {CUBES

17y

Lower bound Ml(n} {(uging Ml{n) (d:ﬂde
n | bound on M, K{n,2)) | and conguer)
3 | 6 —
4 6* 8 —
5 10 10 —
& 16 24 . 20
7 29 . 49 40
10 177 300 320
16 7282 14336. 20480
* | ower bound attained by construction.

Theorem 5: For any given { < n/2, acode C for identifying
vertices in the n-dimensional binary cube (n > 2) can be
obtained by selecting as codewords all vertices at distance
exacily ¢ from the codewords of an optimal code C* which
has covering radius 2¢, ie., C = {z|3u € C*,d(z,u) = t}.

Proof- We first make the following observation: if ver-
tices v; and v, are such that there is at least one ball centered
at a vertex in C* to which v, (v;) belongs but vg (v1) does not
belong, then v; and vs can be distinguished using codewords
from C. Therefore, we only need to prove that any two vertices

~ can be distinguished if they. belong to t.he same ball of radius

2t cenfered at a vertex u € C*.
Without loss of generality, let

u=(0,0,---,0).

n

All vertices of weight ¢ now belong to C and serve as
codewords for identifying a vertex. Given two vertices v, and
v, that are in the same ball centered at u, we show that we
can always find a codeword z € C such that x covers one of
them but not the other. We™define z = x - y to be a vector
with components z; = x;¥;. In addion, ¥ < & if r-y=uyw,
and ¥ is the component-wise negation of y. Let w(vn)} = {
and w(vy) = Iy, where w(v) is the weight of ». Assume,
without loss of generality, that 1) < l,. It follows therefore
that I > 1 because otherwise both ‘Ul and v wﬂl be the same
vertex (0,0,---,0). o .

Consider now three cases, ’

1) w(vy - %) > t. We choose z € C (w(z) = ¥
such that £ < vy - D2. Then d{z,vq) = h — ¢ < ¢, and

diz,vy) = t+ 13 > & '

2) 'HJ('U], ﬂg) = 3 < {. Note that if I3 = 0 then {» > li,
otherwise, v, and v» would be identical. Assume that at least
one of two conditions is fulfilled: I3 > 0 or I; is even. Choose
x & ( such that )

™" ﬁg E Xy ‘IH(I - ‘Ug) — ]]13}[{{], ”1/2] — 53}
and
w(:ﬂ U101 'L'fg) = mm{n — 1y I3, t = [I1/21} =

Thﬂﬂ 'H.?(I ‘111) = ”1,/2} and ﬂ!(:!.‘r 1?1) = t*!-I]_ —2[I1f2] < 1.
On the other hand, .

fﬁf-(::t:_,ﬂg)=t+zg —2{#—E3—£¢)§t.

Thus in both cases, codeword z covers v ‘but not va.
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TﬁBLEI[
BﬂUhmsﬂHmE Nmmmwﬂnmwﬂmsmmﬂﬂmmmﬁmt = 2
FOR 4N n-DIMENSIONAL BINARY CUBE '

im hnﬁ.nd

Upper bound on

Upper bound | Upper bound on -

n | V(2) | onMa(2) on K(n,4) | M,(2) using K(n,4) | on M,(2) using (18)
41T 5T 1 — B g '

5| 16 | 6t 2 N— 12

6 | 22 - gt 2 - 16 .

8 | 37 17t 2 56 36 7

9 | 46 26t 2 72 80 p
12| 79 1041 12 702 400

16 | 137 9508 64 TR0 $400

20 | 211 -9893¢ 512 07220 90000

- 3) w(vy - 73) =0 and {; is odd. Then »; < v, and at least
one of two conditions is fulfilled: I; is even or I — {; > 2.
Choose ¢ € C such that w(z - v2) = [I3/2] and

& w(x - v1) = max{0, [12/2] f_IE -|- El}-.

d(z,v2) =t + 1y — 2[la/2] < ¢

diz,m1)=t+4 — 21313.:{-[{] [12/2] — I +11} > t.

:5 4
ffhus in this case, codeword 2 covers vg but not vy. O

e Corollary 2: For t < =nf2, the number of codawords

Equired for identifying vertices in a binary cube is uppcr
® ded by -

2
g

{:__. - ag (t){K(n 215)( )

We next estimate the ratio v, between the upper bound and
¥ lower bound on the number of codewords M,,(t) when
. Zt IS an mteger We know from (15) and Cnm]lary 2 that -

s 0E I{(nl -I-ﬂg.,tl +f,g) < K(ﬂl, tl)K(ng, tg) [3], it fDHDWE

+ gl
1+Z( )

B the following well-known upper bound on K (g, 1) (see

<M< () (K2 .

24
K(‘L 1) = 2llogalat1)].

- 92t[logg (n/2t+1}} "

Hower hnundfmm Theorem 1 {part 3), *Luwa'_ buum:_l. from (15)

If n/2¢ + 1 = 2°, then using

V(t) = Zt: (":) ~ b 8]

=1

for n — oo and constant ¢, we get®

2“+1t'n*f < M, (t) (2t)2*2“ _*(t')“

Tlle Tatio ro,, of the upper hmmd tu the lower bound
(n—}co)lsﬂlerefﬂregwenb}rﬂ - .

Forit =1, wehave Too —2asbcfﬂre while for t = 2,
= 32. | |
For the special case offn = (4s+1)t 5> 1 we have the
following corollary, which follows from the fact that

L R(H(2s+1),78) < (K25 +1, ) =2

Camlh:'rji 3: The number of codewords requnad for a bi-
naty cube with (45 + 1)¢ dimensions usmg ‘balls of radius st
is upper—b{mnded by

45 + 1)t
M{4s+1)t(5ﬂ < (_{ st ) )2t—

 As specml cases, for 5 = -1, we have Ms.(t) < ()2, and
for 5 = 2, we have Mgf(Zt) < (32t

Table 11 shows the upper and luwer bounds on M,,(2). For
the lower bounds, we used (15) for = > 9 since V(2) < V2N
for these cases, and (15) coincides with the bound given by

. 'Theorem 1 {part 3). For n < 9, we applied Theorem 1 (part 3)

directly and cbtained tighter -bounds than given by (15). For
n < 4, the covering radins approach cannot be applied with
¢ = 2. The last colume -of the table is based on the fullnwmg
result, Wluch we pmve: later (se:e Cnmllary )

n(z) < szj (1} - M (1)

Whﬂe it ma}r be mtmtlvel}f expected that the number of
codewords mqmre-d for identification decreases as ¢ increases,

(18)

 this is not necessanly the case. For example, Mg(ﬁ) = 7 but

Ma(l)

Ja(n) ~ b{n) + hmn_.m ﬂ(ﬂ}jb{n) = 1

"‘“ﬁ‘
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B. Nonbinary Cubes
The next tﬂpolugy that we examine is a nonbinary cube,

which finds several applications in parallel processing. A p-
ary n-dimensional cube has p™ processors and each processor

is connected to its 2n neighbors. (Every processor has two

neighbors in each dimension.) Similar practical architectures
include two-dimensional rectangular meshes such as-Intel’s
Paragon architecture [10] and three-dimensicnal mashes such
as the MIT-Intel J-machine [6].

We next consider codeword selection for the identification

of vertices in n-dimensional p-ary cubes. Every vertex in this -

case can be assigned a coordinate vector {zy, 2, - ;Ta) Of

length n, where 0 < z; £ p — 1. Two vertices

= (21,%2, ", %n)
and
g’ = {31,231 ¥n}
are neighbors if
-z =(0,0,---,£1,0,---,0)(mod p}.
P(x) = (p1,p2, - -,Pn) be the parity vector corre-

sponding to (z1,Z3,--,%5) such that p; = 0 (1) if »; is
even (odd). For a p-ary code C, let P(C) = {P(z)|lz € C} be
the binary parity code with codewords (p1,p2,+**,Pn). =

We use M,{f ) (t) to denote the number of codewords required
to identify vertices in a p-ary n-cube using balls of radius
t (¢t < m). (For the binary case p = 2, we had omitted
- the superscript.) First we examine the construction of the
identifying code C for ¢t = 1.

Theorem 6: For an n-dimensional p-ary cube (n = 2°—1,p
even and p > 4), vertex identification is achieved with
a smallest possible number of codewords, i.e., My ) =
p”/{n + 1), if and only if the identifying code C consists of
all codewords such that their parity vectors form the perfect

binary (n,n — 8,3) code
Proof: We first prcve that ﬂvery vertex is cnvered by a
unique combination of codewords. Every codeword is covered
only by itself because the Hamming distance between any two
parity vectors of codewords is at least three. Next consider
a noncodeword vertex with coordinates (21,22, -+, %) and
~ corresponding parity vector (pi,pe,---,Pn). There are two
vertices with coordinates =~ o
T = (:r{l::r"?:'“:m:t}
and |
7! — (:ET! :'1:”2, L 1mfm)

such: that they have the same parity vector (1,42, *:qa), 2’
and 2’ are neighbors of z in the n-dimensional nonbinary
cube, (g1, g2, +, g belongs to the code C, and the Hamming
distance between (p1,P2,---,Ps) and (g1,¢2,"**,¢n) 18 one.
We note that for p > 4, z is uniquely determined by «’ and "
To prove necessity, we note that if two vertices in the p—ary
n-dimensional cube are neighbors, their parity vectors are at
distance 1. Thus for an identifying code, the covering radius
of the set of parity vectors must be equal to 1, and the smallest
set with this property is a perfect (n,n — 8,3) code.- - [

For the important case of the three-dimensional p-ary cube,
we have the following useful corollary, obtained from the

above theorem with n = 3.

Corollary 4: For a-three-dimensional p-ary cube (p even
and p > 4), optimal codeword selection (M3¥’(1) = 7°/4) is
achieved if and only if the vertices with parity vectors (0,0,0)
and (1,1,1) are chosen as codewords.

Theorem 6 and Corollary 4 show that the dens1ty of code-
words is only 0.25 for three-dimensional cubes, and tends 1o
zero as n increases. The next theorem is a generalization of
Theorem 6 for arbltrary n.

Theorem 7: Let C* be an opumal binary code of length n
and covering radius one, Then C 1s an. optimal p-ary (p even,
p > 4) identifying code for a p-ary n-dimensional cube if and

only if C consists of all vectors such-that their parity vector |
code P(C) = C~. |

The proof of the theorem is similar to the proof of Theorem
6; the only difference being that the perfect {n,n—s,3) code is
now replaced by an optimal binary code with covering radius
one. - - | |

Corollary 5: For an n-dimensional (n = 23), p-ary (p even,
p = 4) :::ube |

p- (7)
< M} { —
7+ 1 — (1) n

Proof: The lower bound follows from (15). The upper
bound follows from Theorem 7 since K(2°,1) = 22 —8 =
2" /n. o

Note that the above construction is not the best for all values |
of n. For example, if we apply this coastruction to the case.
n = 2, then ¢* = {00,11} and we obtain a set of p®/2
codewords in a “checkerboard” pattern, implying a codeword
density of 0.5. However, the following theorem gives a beiter .
cqnstmctmn for n = 2. :

Thoerem 8:. Let K®(n,2) be a minimal number of code-
words in a p-ary n-dimensional code with covering radius 2
in the Lee metric [17]). Then for any p > 4

(19)

- MP () < @n + DK (n,2). 20)

quf To prove (20), it is sufficient to show that all -
vertices in a Lee ball B, of radius 2 with center v can be
identified by balls of radius 1 centered at all vertices that
belong to the ball B; of radius 1 centered at v. Without loss

of generality, we can assume that v = (0,0,---,0). Then
Bl = {({]: O: Tt 10)} U{(us e :D:il:[}a "t :U) {:IIlDd _‘P)}
and ]
Bg = B U{(ﬂ ':DaiZ:-{]:"'r{]) (]Ilﬂd P}]’
U{([} -, £1,0,---,0,%1,0,--- ,0) (]]lﬂd )}

et £ € Bs. We have to cnnmder the fn]lnwmg four cases:

1) & =(0,---,0). Then z belungs to all balls of radius 1
w1th centers in Bl | . |
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l-;'ig. 2. Identifying ﬂﬁ;.fm = 2,p = 85 with Mépl[l) =_%p2. The
construction is repeated with period 8 and wrapped arcund. .

Proof: Let £ = (x1,22) and y = (yl,yg) be vectors
of length n, where x1(1n) and z2(y2) are of length a and
Fig. 1. Identifying code for n = 2,p = 13 constructed using Theorem 8, T — @, Tespectively. Let v = {v1,v2) be a vector of length
The edges wrap around. n such that ¥y (vs) covets z1(z2) but not y1{y2) with a ball
- | | . of radius s(t — s} centered at it. Then D{wy,z,) < 5 and
2y x = (0,---,0,%£1,0,---,0). Then = belongs to tWo D(vs,x3) < t — s, where D{x,y) is the distance between

bals of radius 1 with centers at x and (0, ---,0), verices z and y in the p-ary nonbinary cube. This implies that
respectively. | - .

3) £ = (Da"*'}{]: j:]-gﬂj"1'1 :I:]. ,01*‘*,{]). . D(HF$J=D(1‘?11$1)+E(T}2'}$2)E £.
N

g i Hence v covers x with a ball of radius t. Now, D{vy,y1) > s
Then z belnggs to two balls with centers | - and D{vy,y2) > £ — 8, which implies that D(v,y) > . Thus
{(0,---,0, £1,0,---,0) and (0,---,0, +1,0,---,0). v does not cover y with a ball of radius ¢. Therefore, the

~ | —~ identifying code C(n,t) for an n-dimensional p-ary cube can

r I
4) z = (0,---,0, £2,0,--,0). . o be cﬂnstmct?c_l usi;ng &1'3 ide:ntifying' codes for the smaller a
N’ . o and nn — g dimensions in the following way:
- t ; " . ) . ' .
Then z belongs o one ball with centﬁ_r _- Cln,t) = {(z, )|z € C(a, ),y € C(n — a,t — 5)}
{ﬂ:“':or :I:l*.-'{]:”"iu)' . '
g : . ~ and MP() < |C(n, 1)) u
i letes th : | |
This comple e proof. | .. = Corollary 7: As a special case of Theorem 9, we have |
. Corollary 6: Let n = 2 and p = 13s. Then . ' S - '.
S o s - MP @) <p*- ME,(0)
M (1) < = »p°. | (21 - |
- | .-3()—133’-. | o (21) where n — @ > t.
Proof: The proof follows from the fact that |Bll = Proof: ¥rom Theorem 9, we have
5,|B2| = 13, and KP(3,2) = p4/13. = g

MP () < MP(0) - MP (1) =p* - MP (). k.

- Fig. 1 shows that construction given by Theorem 8 for - |
n=2and p = 13 (K3(2,2) = 13, MID(1) = 65) (When ¢ = 0, every vertex in the p-ary a-dimensional cube )
‘However, the above construction is not optimal for n = 2, must be selected as a codeword.) o - 1:
Fig. nghuws the best known construction for n. = 2 and Corollary 8: For any p > 2 and t < n, we have |

| We next turmn to the ¢code construction problem when balls M Y<M (v) ([£/2])- M () ([t/2]).

b o o - - - - . /2] [ref21M 77 /s
of radius greater than one are used. The following theorem o o ] |
jprovides a powerful “divide-and-conquer” technique for de-  Corollary 9 The following upper bounds exist on the num- 7
termining M (£) for ¢ > 1. (Note that M (t) is not ber of codewords in optimal identifying codes for binary and

;. defined.) nonbinary cubes.
. Theorem 9: The number of codewords required fo identify 1) MgP(t) < 0.4¢ - p%;p = 5s.
vertices in.a p-ary n-dimensional cube is given by s 2 M) < 0.4 -p™, for any k>.0,p = 5s.

- 3) Mg}_l}t(tj < (p? ~1/22), for any s > 0, arid even

p >4 |
4 MP(t) <075 2%

5y MP(t) < 0.5 - 2%,

Yy by | -

M®) (8) < MP)(s)- MP,(t — 3)

-Whﬁfﬂﬂ{_:tﬁ:ﬂ,ﬂﬂsEt}ﬂﬂsﬂﬂ;nit-_.slﬂn._ﬂi
fand 1 < a < n— 1. - =




i
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6) MP(t) = (5/16)¢ - 2°%.

/D MPE) < (0.125) . 2%,

p*-

Proof: To prove part 1), we note from Theorem 9 that
MP () < (M (1)) = 0.4%p™.

Hence the density of codewords in a p-ary cube with 2¢
dimensions is at most 0.4%, and decreases with an increase
in ¢. Part 2) follows directly from CoroHary 7 and part 1). To
prove 3), we use the result o

MB)_ (1) < (MEL, ) = (72"

For even p > 4'and & = 2, we have M{P(¢) < 0.25¢ - p.
The proofs of 4) and 5) are similar, but using optimal code
constructions with ¢ = 1 for binary cubes nf djmensmn 2, 3,
4, and 5 (see Table I). O

We now determine the ratio Yoo between the upper bound
and the lower bound on M (t) as n — oo. It follows from
(19) that v, = 1 if £t = 1 and n = 2°. We next examine the
case t = 2. By applying (15) and Corollary. 8, we get (for
n > 2,p >4, pis even) |

o7

2" i
7o 71 S MP@) < (Magraym (DY

and , -
V(i2)=14+2n+ (;)4 + (?)2 =1+ 2ﬂ+2ﬂ2.

If n/2 = 2%, then

n /2
®) (1) <
DORS

Therefore,
P PIfoy & TF_ 431
| 1—|—2n+n2_M (2) =
whxch implies that for large n
P 45"
5 < MP)(2) € = =

The ratio 7o of the upper bound to the lower bound (n/ 2=2°
n — oo} is equal to 4.
We next extend this analysm to ¢ > 2. F:rst we use the
v~y

( )21-” tzt/t[
i=()

for p-ary n-dimensional cubes if p and ¢ are constant, and
n — 00. 'Ihusfnrnﬁ_.Z*' and constant ¢ and p

prt!
pt2t—-1 ™~
Therefore, ro, = £$2¢~1 /¢!, For example, for t = 2, we have
ro =4 as above, while for ¢t = 3,r,, = 18.

To conclude this section, we note that its main results
(Theorems 6-9) can be easily generalized to the case of
mixed codes with codewords (z1,%2,---,%,) Where x; €
{0,1,---,p; — 1}. (For Theorems 6 and 7, p; is even and
p; > 4forali=1,---,n) |

approximation

ﬂ-tt

(1) <
=M@ < B

(22
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C. Other Topologies -

The next topology that we consider is a balanced p-ary
tree. A number of hierarchical computing systems such as
dictionaries and search machines can be modeled as a tiee [2],
[24]). Many parallel algorithms can be mapped on to p-ary tree,
and the architecture of a general-purpose multiprocessor can
often be modeled by a tree structure [19]. Another application
of a tree structure is the data network of the Thinking Machine
CM-5 [11}, [16].

We can uniguely identify vertices in a p-ary I-level tree
with ¢ = 1 by selecting as codewords vertices at levels
[,1-21—4,--., where the root is at level one and the leaf
vertices are af level {. This yields the following bound on the
number of codewords M(1}):

141
P+

M(1) < o

T (1 _ p—zl_ﬂ.-ﬁﬂ—.l“-l—l)). (23)

Theorem 10: For a p-ary tree with [ levels (I > 3), we have
the following bounds on the minimum number of codewords
in the identifyving code:

I+1
| pz_ll, if { is odd
PP )< MU) <] By |
- , if [ is even
p? — 1

Proof: The upper bounds follow from (23). The lower
bound on M (1) is obtained by viewing the p-ary I-level tree
as containing p*—3 3-level subtrees, each containing 1+ p+p*
vertices, of which there are p? leaf vertices. We next show that
at least p? + 1 vertices from each of these subtrees must be
selected as codewords. First we note that at east p(p — 1) leaf
vertices must be codewords (to cover the noncodeword leaf
vertices), and in ‘order to distinguish between the level-iwo
vertices, the root of the subfree must be selected. A similar
argument can be used for cases where p sibling vertices are
selected as codewords, This yields a minimum of p? + 1
vertices in each subtree, and hence M(1)>p'~3(p?+1). O

Corollary 10: For p-ary trees with-{ = 3 levels, M(1) =
p? + 1, while for a p-ary tree with ! = 4 levels, M(1) =

p(p* + 1),

The code construction of Theorem 10 is asymptutlca]ly
optimal if p — oo since M(1) ~ p*~! for large p, which
coincides with the luwer bound. Fnr the bmar}' tree (p = 2),
we have

5-21-3 < M(1) < (16/3) - 2!~3

for large I, hence the codeword selection is very close to
optimal. Table II lists the number of codewords for binary
and ternary trees.

We next prove that the vertices in a tree are not identifiable
ifi>1

Theorem I1: Tt is not possible to uniquely identify . the
vertices of a p-ary l-level tee for ¢ > 1.




TABLE 1L
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NUMBER OF CODEWORDS m(1) FOR (a) BALANCED BINARY
TREE (P = 2); (b) BALANCED TERNARY TREE {p = 3)

| Lower bound, | Upper bound |
N | (1), on MQ1) [ (1), on M(1) | M(1)/N | M(1)/#{(1)
i h 9 {.714 1
15 10} 10 {666 1
31 20 21 0.677 1.05
209 160 170 0.666 1.0625
1023 640 682 {.666 1.0656
2047 1280 1365 (.666 1.0664
4095 2560 2730 0.666 1.0664
65535 40960 43690 0.666 1.0666
- {a)
| Lower bound, | Upper bound | -
f1L| N L m(l), on M(1) | My, on M(1) | M()/N | M(1)/n
-3 13 10 i0 0.769 1
. 4 40 30 30 0.75 1
B _121 - 00 91 0. 752 1.0111
[ R 3280 2430 2460 0.75 1.0123
710 20524 21870 22143 0.75 1.0125
L 11] 88573 65610 66430 0.75 1.0125
12 | 265720 196830 199290 0.75 1.0125
. 16 | 21523360 15943230 . 1614252() 0.75 1.0125
- (D)

@

Fig 3. Cndewnrds{shaded)mﬂlt— 1 fﬂra{a}hexagﬂnalmhﬂnd{b)
riangular mesh (the ends wrap around).

(b)

i '|
L

i Proof: Consider the subtree consisting of the SIhlmg leaf
qremces Vi = {v1,v2, - -,vp} and their parent v,,;. For
t > 1, v and v; (1 < i, J§ < p) cannot be distinguished
lgy any selection of codewords. This is because the vertices in
1;’ are at distance two from each other and any vertex v; ¢ V;

}_E_ertlces in V; are not distinguishable if ¢ > 1. - U

' Finally, we address the problem of code construction for
fiexagonal and triangular meshes, the former topology having
Te eceived attention recently [23]. Every hexagonal (triangular)
| ., has three (six) neighbors. Fig. 3 shows these topologies
' th the cndewnrds (shaded) for vertex 1dent1ﬁcat1nn with
t = 1. |

* For the hexagonal mesh, the number of codewords Af(1) =
N /2, where N is the total number of vertices in the graph.
Every codeword is covered only by itself while every noa-
codeword is covered by a unique subset of three codewords.
Fhe lower bound on M(1) for this tﬂpolngy obtained from
15) is 2N /5.

l: The code construction for the t:nangular mesh 18 perfcct
since the nomber of codewords My = N /4, which corresponds
-;-H.. lower bound of (15). In this case, every codeword is

n at the same distance from all the vertices in V;. Hence the
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. covered only by itself while every noncodeword is covered by

exactly two codewords. The above discussion is summarized
by the following theorem.

Theorem 12: For a hexagonal mesh with NV vertices (V —
=), the number of codewords M(1) is given by

0.4N = M(1) < 0.5N,
while for a triangular mesh with ¥ vertices,

M(1) ~ 0.25N.

IlII. IDENTIFYING SETS OF VERTICES

We have assumed thus far that only a single vertex in the
graph G has to be uniquely identified. In this section, we show
that codeword selection for single vertices provides a near-
complete identification of sets of vertices of higher cardinality.”
Let C(I} be the fraction of sets of vertices of cardinality
exactly { that are uniquely identifiable.

Theorem 13: The fraction C(I} of sets of vertices of car-
dinality exactly ! that are uniquely identifiable with £ = 1 by
a code identifying single vertices (see Section IT) is lower-
bounded by

' i—1 .
e =] N;_Vi@)
={)

where V{4) is the number of vertices at distance 4 or less
from any given vertex in the graph, and ¥V is-the number of
nodes in the graph G.

Proof: A set of vertices is uniquely identifiable if the
distance between any two vertices in this set is at least five.
Noie that this condition is sufficient but not necessary. The
fraction of ldentlﬁable sets Df vertices is therefore lower-
bounded by '

oy s NV = VYN —2v(8) - (N = (1~ )V (4))
- N
( I ) I
S N- iV(4) A
= s | In

i=

For example, V(4) = 40 for a p-ary two-dimensional cube
(7> 9), and V(4) = B, (7) for an n-dimensional binary
cube. It follows from the theorem that over 96% of sets of two
vertices in a 16-dimensional binary cube are identifiable.

Fig. 4 shows the lower bound on the fraction of uniquely
identifiable sets of vertices of higher cardinality in binary
cubes.

Corollary 11: ‘As the number of vertices in a graph with
constant degree tend$s to infinity, the fraction of sets of

~ vertices of cardinality exactly / that are uniquely Idﬂﬂtlﬁﬂblﬂ

approaches one if I = o{+/N).
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Fig. 4. Lower bound on the fraction of sets of vertices that are wniquely
identifiable in binary cubes,

Proof: et

I = 1‘[ (N — wgyy — ).

i=0 -

Ifcanbeeasily saenﬂlaxfnr.i..ﬁ\fﬁ

N-iV(4) #(V(4) ~ 1)
ln N — = In (1— N = )
_i(V(4) -1
- N—i
and
V4 —1
H ; {() )
- Nﬁw -
((V(4)—1 I—1 V4—1
2_(_;5)_1-) (N)(I() ) g-1)
a'm:l
(1_1)“”(4)_1}(1
N—rm N - E

if F/’N — 0 (since V(4) is constant). | O

111

010
® Codeword
Fig. 5. An optimal graph for uniquely identifying a single vertex.
o ) '

|

- IV. OPTIMAL GRAPHS

Finally, we develop a method for the constmction of optimal
graphs that 'require a minimal number of codewords for
identifying sets of vertices. We are interested in generating
a graph with N vertices in which the number of codewords
is as close to [logy (N + 1)} as posmhle: for the identification
of smglﬂ vertices and to [logs 2 i 0 ( )] for identification
of seis of up to I vertices. |

We first consider identification of single vertices (I = 1).
Consider a graph with N = 2™ — 1 vertices labeled

(1:'{]1{]5'“1{])1(0:1:0:'“:0):”':(1113'”:1)

with vectors of length n = log, (N + 1). We select all vectors
of weight one as codewords. Consider any noncodeword B =

(bibs - - - by ), where b; € {0,1}. B is connected to codeword
0y+++,0,1,0,---,0)
- i-1
if and only if b; = 1. (An example of this topology for ¥ =7

and n = 3 is. given in Fig. 5.) This construction ensures that
every vertex is covered by a umque set of codewords, hence

_identification of single vertices is achieved using a n:ummal

code,
“We next extend this construction to a general method for

genemung npﬂma] graphs (and cndcs) for 1df:nt1fymg sets of
vertmes |

. Consider a matrix A with rows corresponding to codewords
and columns cmrespondmg to vertices in the graph. An entr_',r

‘a4 ; in this matrix is one if ‘codeword ¢ covers vertex j. An

optimal graph is constructed by generating A with a minimum
number of rows. For identifying single vertices, A can be any
matrix with. different nonzero columns. If the luglcal OR of
any k(k < I).columns of A yields a unigue nonzero vector,
then sets of vertices of cardinality up to ! are 1dent1ﬁable
“There are &i_, (7 ) sets of cardinality at most . Hence
a lower bound on the minimal number of rows r{iV, I) of A
is given by L
L 'i—ﬂ(-)“-x. _
It is difﬁcul't to find the .exact value of (N,I). However,
near-optimal construction of the matrix A (and therefore the
graph) for sets of vertices can be obtained using superimposed
codes-of length N [13] and techniques for conflict resolution

r(N D> ‘Vlﬂgg E

in multiuser channels with N users [18]. For these codes, the



